
When TCP Friendliness Becomes Harmful
Amit Mondal and Aleksandar Kuzmanovic

Northwestern University
{a-mondal, akuzma}@cs.northwestern.edu

Abstract— Short TCP flows may suffer significant response-
time performance degradations during network congestion. Un-
fortunately, this creates an incentive for misbehavior by clients
of interactive applications (e.g., gaming, telnet, web): to send
“dummy” packets into the network at a TCP-fair rate even when
they have no data to send, thus improving their performance
in moments when they do have data to send. Even though no
“law” is violated in this way, a large-scale deployment of such
an approach has the potential to seriously jeopardize one of the
core Internet’s principles — statistical multiplexing. We quantify,
by means of analytical modeling and simulation, gains achievable
by the above misbehavior. Further, we explore techniques that
both misbehaving and regular clients can apply to optimize
their performance. Our research indicates that easy-to-implement
application-level techniques are capable of dramatically reducing
incentives for conducting the above transgressions, still without
compromising the idea of statistical multiplexing.

I. INTRODUCTION

It is well known that short TCP flows may experience
significant performance degradations when they multiplex with
long-lived TCP flows [1]. The root of the problem is the
lack of knowledge about the level of the underlying network
congestion. In absence of the large number of packets char-
acteristic for long-lived flows, even a single packet loss can
force a short-lived TCP flow to experience long retransmission
timeouts [2], which in turn significantly increase a client’s
perceived response time. While several solutions have been
proposed to efficiently combat the problem, none has been
deployed in the Internet, probably because they require non-
negligible architectural changes [1], [3], [4].

However, one extremely relevant — and imminent — aspect
of this problem is still unexplored. In essence, TCP-based
interactive applications such as gaming [5], telnet, or persis-
tent HTTP [6], which share the above problem common for
short flows, have incentive to improve their performance; still,
without waiting for any Internet-wide architectural changes.
In particular, they can “upgrade” themselves from “mice” to
“elephants” in a trivial way, simply by sending packets into
the network at a TCP-fair rate even when they have nothing
to send. In this way, they become capable of developing larger
congestion windows, avoid “loosing memory” in moments
of application-level data starvation [7], and improve their
performance by avoiding long retransmission timeouts.

While it may appear that this is a minor problem, or even
there is no problem at all (given that all flows are TCP
friendly), this is far from being the case. A large-scale deploy-
ment of this approach has the potential to seriously jeopardize
one of the core principles that today’s Internet is built upon
— statistical multiplexing. Indeed, if everybody would start

taking their own fair bandwidth share, the network would soon
become highly congested. While the absolute performance of
all flows would necessarily degrade in such a case, a troubling
observation is that those applying the “padding” misbehavior
would still benefit relative to the regular clients. Hence, the
dangerous incentive remains.

Unfortunately, upgrading an interactive to a fully-
backlogged flow is easy to implement, both at the TCP and
the application levels. Indeed, client-side only implementations
could dramatically improve user-experienced response times,
still without requiring any changes at servers. Moreover,
inciting servers to send traffic at TCP-fair rates is not impos-
sible [8]. In all scenarios, both network- and endpoint-based
mechanisms that check for TCP-friendliness, e.g., [8]–[10], are
incapable of detecting any violation, simply because all flows
are TCP friendly.

To understand all aspects of the above problem, we conduct
an extensive modeling and simulation analysis. By combining
and extending the modeling results of [11]–[14], we quantify
the response-time gains that fully-backlogged flows achieve
over the interactive ones. Our results show that the expected
response times of fully-backlogged flows can be two to three
times smaller than those of interactive ones. Likewise, gains
achievable by fully-backlogged TCP flows are much more
pronounced in the case of Random Early Drop (RED) queues.
Even if a packet is dropped at a RED bottleneck in the
network, the probability is high that at least three of the follow-
up packets will trigger the triple-duplicate ACK mechanism,
thus avoiding long retransmission timeouts. Because Drop Tail
queues invoke correlated packet losses, the corresponding gain
is smaller.

Next, our research indicates that there exists a “sweet spot”
system state for misbehaving clients. It is the packet loss
ratio for which the fully-backlogged clients maximize their
response-time gain relative to interactive flows. While the
optimal point is a function of various system parameters, such
as round-trip time (RTT) and the queuing discipline at the
bottleneck link, we explore ways that misbehaving clients can
apply to drive the system to the desired state.

Further, we explore techniques that regular clients can
apply to mitigate the problem. Given the inherent deployment
issues with network-based solutions [1], [3], [4], we focus
on endpoint based methods. We initially explore a TCP-level
approach of reducing the retransmission timeout parameter
by a half. Despite evident improvements, both our modeling
and simulation results indicate that the method is incapable of
removing the dangerous incentive for misbehavior.

0743-166X/07/$25.00 ©2007 IEEE

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2007 proceedings.

We further explore two other endpoint techniques to address
the problem: (i) short-term padding, and (ii) a diversity
approach. In the first scenario, applications append a small
number of small-sized packets to data bursts, thus increasing
the probability to invoke the triple-duplicate ACK mechanism.
In the second scenario, TCP endpoints repeat their packets: if
at least one reaches the destination, the response time is small.
Surprisingly, our modeling and simulation results indicate
that not a single approach is superior, and that the queuing
discipline (e.g., RED vs. Drop Tail) again dominantly impacts
the system performance.

Finally, our results clearly show that both endpoint tech-
niques outperform the fully-backlogged approach, thus effec-
tively removing the dangerous incentive for the greedy TCP-
friendly behavior. While various sub-versions of the proposed
application-level techniques could themselves become attrac-
tive options for misbehaving clients, this no longer poses
a threat to the Internet. Indeed, we show that even if all
interactive-application clients deploy one of the proposed
approaches, the overall network performance does not change
dramatically. Thus, the statistical-multiplexing benefits remain
available to all network clients.

II. PROBLEM ORIGINS AND IMPLICATIONS

A. Problem Origins

TCP congestion control operates at two timescales. On
smaller time scales of the order of RTTs, TCP performs
additive-increase multiplicative-decrease (AIMD) control with
the objective of having each flow transmit at the fair rate of
its bottleneck link. At times of severe congestion in which
multiple losses occur, TCP operates on longer timescales of
Retransmission Time Out (RTO). It provides two mechanisms
for packet loss detection: Fast Retransmit and timeout.

TCP interprets receipt of three duplicate ACKs as an indica-
tion of a packet loss. It retransmits the lost packet immediately
upon the receipt of the third duplicate ACK. This mechanism
is called Fast Retransmit; it detects a packet loss and reacts
to it on the order of a flow’s RTT. Another mechanism to
detect a packet loss is the timeout mechanism. TCP sender
starts a retransmission timer when it sends a packet. In case it
receives less than three duplicate ACKs and the timer expires,
the sender retransmits the packet. The initial RTO value is set
to three seconds [2]. It has been experimentally shown that
TCP achieves near-maximal throughput if there exists a lower
bound for RTO of one second [2], [15].

The main reasons for the response-time performance degra-
dations experienced by short TCP flows is their poor knowl-
edge about the actual level of congestion in the network.
Indeed, given that such flows only have a few packets to send,
in case a packet gets lost in the network, they have no other
option but to wait for the RTO to expire. In other words, they
are unable to resend the packet immediately after one RTT,
because the three duplicate ACKs may never return; simply
because the corresponding data packets were never sent by the
sender. Given that RTTs are typically of the order of 10’s to

100’s of msec, each such event degrades the response time for
approximately one to two orders of magnitude.

While the above effect has mainly been explored in the
context of web traffic [16], [17], the same problem holds for
interactive applications [4]. In such scenarios, a client typically
sends a small burst of data, and then waits for a longer period
of time (e.g., a few seconds) before sending the next burst.
One additional issue with interactive scenarios is that even if
an application manages to develop large congestion windows
during burst periods, it cannot “freeze” the window during
times when no data is coming from the application, and reuse
it afterwards. Indeed, because the network conditions may
change quickly, TCP endpoints are required to reduce their
congestion windows during periods of data starvation [7].

B. Proposed Solutions

Several solutions based on the idea of service differentiation
and preferential treatment to short flows in the network are
proposed to address the above problem. Guo and Matta [1]
use different marking/dropping functions at the routers and
a packet classifier at the network edge to distinguish between
long- and short-lived TCP flows. In addition to requiring large
changes to the existing network infrastructure, the solution
appears to address the problem of short, but not the interac-
tive flows. Noureddine and Tobagi [4] propose application-
and TCP-level marking to give strict priority to interactive
applications in the network. In addition to requiring per-
user traffic policing at the network edge (tedious to deploy),
the authors assume a widespread network support for multi-
prioirty services in the Internet (to the best of our knowledge,
not the case).

Le et al. [3] propose an AQM scheme which gives a strict
priority to short flows, while it applies congestion control
only to long flows. The key advantage over the above two
schemes is that it requires no support from the endpoints; it
distinguishes short from long flows by tracking the number
of packets that have recently been seen from each flow at
the router. In addition to provoking potential security and
stability side effects (e.g., see [17]), the proposed scheme
requires to be implemented in the network core; unfortunately,
no strong incentives for such a deployment exist. Similarly, it
has been shown that marking, instead of dropping, TCP control
packets using Explicit Congestion Notification (ECN) could
significantly improve the performance of short flows [17].
Unfortunately, ECN is poorly deployed in today’s Internet.

Endpoint-based approaches have also been proposed. To
address the problem of low network observability by short
flows, RFC 2414 [18] allows the initial congestion window
of two segments, while RFC 3390 [19] further allows the use
of four segments. If at least one of the packets returns to
the sender, the connection will not suffer the initial default
3 second-long timeout penalty [2]. Yang and de Veciana
[20] develop TCP/SAReno in which the AIMD parameters
dynamically depend on the remaining file size, such that short
flows become more aggressive. Finally, Savage et al. [21] and

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2007 proceedings.

Anderson et al. [22] have demonstrated that using history can
be efficiently used to improve the performance of short flows.

Despite the fact that all of the above endpoint approaches
enable protocol support for improving the performance of
short or interactive flows, the key problem remains: the
application-level data starvation can prevent clients from
experiencing any benefits from the above designs. In particular,
the burst periods of interactive flows are typically small
enough to fit into a single packet [23], [24]. As a result, an
increased congestion window, a more aggressive TCP, or a
history-based approach cannot help. If a packet gets lost in
the network, the sender must rely on the RTO mechanism
before re-injecting the packet back into the network, thus
experiencing significant performance degradations.

C. Implications

The unsolved status of the above problem creates a danger-
ous incentive for clients of interactive applications to quickly
solve the problem without anybody’s support. The logic is
simple: if interactive flows experience performance degrada-
tions relative to long TCP flows, then why not upgrading
interactive to long flows? Clients can simply send packets into
the network even when they have no data to send at a TCP fair
rate, thus improving their performance in moments when they
do have data to send. Figure 1 depicts this approach. Whenever
data packets are available, they are immediately sent (hence,
strict priority); in times of application-level data starvation,
“dummy” packets are sent into the network.

Incentives for clients to apply this approach are manifold.
First, by sending dummy packets into the network, clients
avoid loosing memory in moments of data starvation [7].
Larger congestion windows can help “jumpstart” an actual
data burst arriving from the application. Second, “dummy”
packets following data packets may significantly increase the
probability that a potential packet loss will be detected via the
triple-duplicate ACK mechanism rather than the RTO. Finally,
clients can freely apply this approach, without any fear of
“getting caught.” This is because both network- and endpoint-
based schemes designed to check for TCP-fairness compliance
(e.g., [8]–[10]) would detect no violations.

Unfortunatelly, even though no law is officially broken
with the above approach, its wide-spread adoption has a
strong potential to seriously jeopardize the overall Internet
performance. Indeed, if interactive clients would start taking
their bandwidth fair-share, the network would soon become
highly congested. The packet-based Internet as we know it
would soon become a “circuit-based” network; given the
large number of short and interactive flows [16], [25], the
bandwidth “dedicated” to each “TCP-friendly circuit” would
soon converge to zero [26]. Still, our research indicates that
even in such scenarios, misbehaving clients would outperform
the behaving ones. Thus, the dangerous incentive remains.

Finally, implementing the approach of Figure 1 is not partic-
ularly challenging. Client-side only implementations, both at
the TCP and the application levels are straight forward. Such
designs could improve the times required to “push” packets

TCP−fair rate
priority
strictdata

"dummy"

packets

packets

Fig. 1. Padding misbehavior: Upgrading mice to elephants.

to servers, a feature of particular interest to online gaming
players. (Many online games require reliable transport, and
hence use TCP ports [5]). While slightly more challenging,
provoking servers to send at TCP-friendly rates is not impos-
sible. One example is a recently proposed mobile TCP code
method [8]. It enables clients to deploy a desired TCP version
at servers. Given that it only checks for TCP friendliness, the
approach of Figure 1 would not be qualified as a violation.

III. PADDING-INDUCED RESPONSE-TIME GAINS:
MODELING AND SIMULATION

Here, we quantify the gain a misbehaving client is able to
achieve by applying the padding approach. The key perfor-
mance metric is the response time, defined as the time that
elapses between sending a data packet into the network and
receiving a corresponding acknowledgement. To establish a
baseline for comparisons, we initially model the performance
of pure interactive flows. Next, we model the response times
achievable by fully-backlogged flows, assuming both random
and correlated packet losses in the network. Finally, we verify
our modeling results via simulation.

A. Modeling Response Times of Application-Limited TCP
Flows

Interactive applications are characterized by two parameters:
the data burst size, and the inter-burst arrival time. Both
parameters are dependent on human behavior and activities,
such as the user think times or the typing speed. The burst
sizes are typically small, and they easily fit into a single packet
[23], [24]. The inter-burst arrival times differ from application
to application. They are typically modeled by the exponential
distribution, with the mean of several hundreds of milliseconds
(e.g., for gaming [23]) to several seconds (e.g., telnet [24]). In
any case, as long as the inter-packet arrival times are longer
than one third of the RTO, a potential packet loss will not
trigger the triple-duplicate ACK mechanism, but will rather be
detected via the RTO.

Thus, assuming single-packet-long data bursts and the RTO-
based packet-loss detection, we proceed as follows. Denote by
p the packet loss probability. Let Ph(i) be the probability that
a packet experiences exactly i failure transmission attempts,
followed by one successful try. Then,

Ph(i) = pi(1 − p). (1)

After the timeout expires, the client doubles the current
value of RTO; thus, after i consecutive packet losses, the RTO
value is set to 2iRTO. Denote by L(i) the corresponding

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2007 proceedings.

latency experienced by the client after i failure transmission
attempts. L(i) can be expressed as

L(i) =
i−1∑
k=0

2kRTO + RTT

=
(
2i − 1

)
RTO + RTT. (2)

Thus, for p < 0.5, the expected value of the response-time
latency becomes

E [L] =
∞∑

i=0

Ph(i)L(i)

= RTO

(
(1 − p)
(1 − 2p)

− 1
)

+ RTT. (3)

B. Modeling Response Times of Fully-Backlogged TCP Flows

Here, we model the response times of fully-backlogged
network-limited TCP flows. By establishing this result, we be-
come capable of understanding gains that a misbehaving client
can achieve by applying the padding approach. We exploit the
sophisticated modeling results of [11], [14], and further extend
them to obtain the desired response-time characteristics. In
our analysis, we consider both correlated and random packet
losses, typical for FIFO and RED routers, respectively.

1) Correlated Packet Losses: Padhye et al. [14] develop
the well-known TCP throughput model for fully-backlogged
TCP flows, which we exploit to obtain the response-time
characteristic. We use the same notation and preserve all
relevant assumptions of [14]. From our perspective, the most
important is the correlated packet loss assumption. It says that
if a packet is lost, so are all the following packets within the
same RTT round. Indeed, when the bottleneck router applies
FIFO (DropTail) queuing, this is likely the case.

Denote by b the number of packets acknowledged by each
ACK. Denote by w the TCP congestion window size, and
by E[w] its expected value. Then, according to [14], E[w]
becomes

E [w] =
2 + b

3b
+

√
8(1 − p)

3bp
+
(

2 + b

3b

)2

. (4)

Next, for a given w, denote by Q̂(w) the probability that a
loss is indicated via a timeout. According to [14],

Q̂(w) = min

(
1,

(1 − (1 − p)3)(1 + (1 − p)3(1 − (1 − p)(w−3)))

1 − (1 − p)w

)
. (5)

Q, the probability that a loss indication is a timeout is,

Q =
∞∑

w=1

Q̂(w)P (W = w) = Q̂ (E[w]) . (6)

Consequently, the probability that the sender detects a
packet loss via triple duplicate ACKs is given by 1 − Q.

2) Random Packet Losses: Brosh et al. [11] show that the
above model underestimates the fast retransmit and fast recov-
ery TCP features when routers deploy RED. Because in such
scenarios packet losses are random, rather than correlated, the

1−p p

RTO

2
2
RTO

2 RTO1

1−p

p

p

1−p RTT

RTO

2 RTO
1

1−p

p

p

1−p

Q 1−Q

Fig. 2. Decision Tree

loss recovery probability increases and the subsequent loss
recovery latency decreases. Thus, by adopting the Bernoulli
loss model, the assumption is that each packet in a round is
dropped with probability p, independently of other packets.
Let B(w, k) =

(
w
k

)
pw−k(1−p)k. Then, according to [11], for

a given w, and for w > 3, the probability that a loss indication
is a timeout is given by

Q̂(w) ≤
∑2

k=0 B(w, k)(1 + (1 − p)k(−1 + (2 − p)w))
1 − (1 − p)w

.

(7)

Next, considering a uniform distribution of the TCP con-
gestion window W , on the discrete interval [0, wmax]; the
probability that a loss indication is a timeout becomes

Q =
wmax∑
w=1

Q̂(w)P [W = w]

≈ min(1,
1

wmax
(6 + 96p − 32p2 + o(p3))). (8)

Again, the probability that the sender detects a packet loss
via triple duplicate ACKs is given by 1 − Q.

3) Response Times: Finally, we compute the response times
for both of the above scenarios. One important issue here is
that TCP always evokes an RTO if a retransmitted packet is
lost again [13]. All versions of TCP, including NewReno and
SACK, cannot recover from a retransmission loss without a
retransmission timeout. Figure 2 depicts this effect. Once a
packet is lost (with probability p), the triple-duplicate ACK
mechanism will be invoked with probability 1−Q. However,
if the packet is lost more than once, the RTO is inevitable.
While it may appear that computing Q is not that essential
(given that it appears only once in the decision tree), this is
not the case. Given that the Q branch is close to the root of
the tree, it does impact the response times in a non-trivial way,
as we demonstrate below.

For a fully backlogged TCP connection, denote by L′(i)
the latency experienced by the client after exactly i failure
transmission attempts of a packet, followed by a successful
transmission. Using the decision tree of Figure 2, we derive
L′(i) as

L′(i) =

RTT for i = 0,

RTT + Q(2i − 1)RTO+
(1 − Q)(RTT + (2i−1 − 1)RTO) for i ≥ 1.

(9)

Consequently, the expected value of the response-time la-
tency becomes

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2007 proceedings.

 0

 20

 40

 60

 80

 100

 120

 140

 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

E
xp

ec
te

d
la

te
nc

y
(m

s)

 Ploss

Non-backlogged
Fully-backlogged with FIFO
Fully-backlogged with RED

Fig. 3. Modeling: Expected latency as a function of packet loss prob.

E [L′] =
∞∑

i=0

Ph(i)L′(i)

= Q

(
1 − p

1 − 2p
− 1
)

RTO + RTT

+ p(1 − Q)
((

1 − p

1 − 2p
− 1
)

RTO + RTT

)
. (10)

Finally, we define the response time gain, G, as the ratio
between the expected response times for an interactive and a
fully-backlogged TCP, G = E[L]/E[L′].

C. Modeling Results

Figure 3 depicts the expected latency as a function of
the packet loss probability for application-limited as well
as fully-backlogged flows (both for random and correlated
packet losses). Naturally, in all scenarios, the expected latency
increases as the packet loss probability increases. However,
the key point is that for a given packet loss rate, the fully-
backlogged flows always outperform interactive ones. In other
words, clients promoting their flows from mice to elephants
always experience better performance than pure interactive
flows. Unfortunately, this means that the incentive for con-
ducting the misbehavior is always present.

Figure 3 further shows that the padding misbehavior pays
off better for RED-based bottlenecks. Because packet losses
are random, avoiding RTOs is more likely in such scenarios.
In particular, if a packet is lost, the probability that the
following packets from the same RTT round will make it to the
destination (and the corresponding ACKs back to the source)
is not small. As a result, the triple duplicate ACK probability
(1−Q) is larger for random packet losses than for correlated
ones. Figure 3 demonstrates that there still exists gain of fully-
backlogged flows with FIFO over the pure interactive scenario;
this is despite the correlated packet loss assumption (if a packet
is lost in a round — then all packets that follow in the same
round are dropped). If at least three packets from a RTT round
make it to the destination before the concerned packet is lost,
they may still trigger the triple-duplicate ACK mechanism in
the following RTT round (see reference [14] for details).

Figure 4 depicts the response-time gains achievable by the
padding misbehavior as a function of the packet loss ratio.
Such a measure is of particular importance for misbehaving
clients trying to maximize their performance gains, an issue
we discuss in more depth below. All curves in Figure 4 show

a similar shape. Initially, the gain is relatively small for very
small packet loss ratios. Indeed, even if packet losses are
detected via the RTO, such events are rare, and thus the
impact on the expected latency is negligible. However, as the
packet loss ratio increases, so does the gain. Interactive flows
suffer more and more, while fully backlogged flows manage to
improve their performance by relying on the triple-duplicate
ACK mechanism. Finally, the gain starts to decrease as the
packet loss ratio keeps increasing. In such environments, the
TCP congestion window starts reducing, Q starts converging
to 1, and padding is not as beneficial any more.

Figure 4 further shows that the gain is a function of RTT;
the higher the RTT value, the smaller the RTO/RTT ratio, and
the smaller the gain. Also, as RTT increases, the maximum
gains are achieved for larger packet loss ratios. Indeed, as the
RTO/RTT ratio decreases, it must be compensated by its
factor ((1 − p)/(1 − 2p) − 1) (Equations (3), (10)) to keep
a balance, meaning that p increases. Finally, for the reasons
explained above, RED’s gain is larger than FIFO’s.

D. Simulation

To verify our modeling results, we conduct extensive sim-
ulation experiments. The topology consists of a client and a
server pool that are interconnected by a pair of routers and a
bottleneck link. The effective round trip time fluctuates in the
range from 10 to 100 ms; likewise, we vary the bottleneck link
capacity from 1.5 to 10 Mbps. By generating the background
cross traffic of appropriate intensity, we control the packet
loss ratio at the bottleneck. We use ns-2’s TCP/FullTcpAgent,
which is an implementation of a TCP Reno version. For each
data sample, we run the simulation for a thousand seconds
repeatedly and report averages.

For interactive traffic, we open a telnet connection. The
telnet client generates packets using an exponential distribu-
tion with average inter-arrival time of 1 second. For fully-
backlogged TCP connections, we open FTP connections be-
tween a pair nodes, one each from the server and the client
pool. To accurately emulate an interactive connection con-
verted to a fully-backlogged connection, we mark packets
randomly using the same exponential distribution as in the
telnet scenario. For the analysis of the simulation results, we
consider the statistics for those marked packets only.

Figure 5(a) plots the simulation results for the gain ratio
(the y-axis in the figure) as a function of the packet loss rate
(the x-axis in the figure) for RED and FIFO queues. In this
particular scenario, we set the bottleneck bandwidth to 5 Mbps,
and the round-trip propagation delay is 12 ms. The bottleneck
router buffer is 40 kB; in the RED case, we use the default
ns-2 RED parameters. The shape of both curves in the figure
is as predicted by modeling. Likewise, simulations confirm
that gains are larger in the case of RED than with FIFO.
However, due to varying queuing delay in simulations, and
because the effective RTT increases with the packet loss ratio,
we are unable to directly compare the modeling and simulation
results in this scenario.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2007 proceedings.

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 0 0.05 0.1 0.15 0.2 0.25

G
ai

n
R

at
io

 Ploss

RTT = 12ms
RTT = 30ms
RTT = 60ms

(a) RED

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 0 0.05 0.1 0.15 0.2 0.25

G
ai

n
R

at
io

 Ploss

RTT = 12ms
RTT = 30ms
RTT = 60ms

(b) FIFO
Fig. 4. Modeling: Gain ratio as a function of packet loss prob.

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

G
ai

n
ra

tio

Ploss

RED
FIFO

(a)

 1

 1.5

 2

 2.5

 3

 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

G
ai

n
ra

tio

Ploss

Modeling
Simulation

(b)
Fig. 5. Simulation: Gain ratio as a function of packet loss prob.

Thus, in order to perform a comparison, we proceed as
follows. By applying the ns-2’s artificial random packet loss
module, we manage to effectively control the packet loss ratio
while keeping the RTT value relatively constant. Figure 5(b)
shows the results. For packet loss ratios of up to 3.5%, the
model and simulations match well. For larger packet loss
ratios, the modeling results over-estimate simulations. This is
because we assumed that the initial RTO is set to minRTO of
1 second [2]. However, when the packet loss ratio is high, this
is not necessarily the case. For example, due to multiple packet
losses in a single RTT round, a future packet may “inherit”
a longer initial RTO, an effect that is not captured in our
modeling. Still, the gain in both scenarios remains in favor of
fully-backlogged flows.

E. Optimizing a Misbehaving Client’s Performance

The above experiments indicate that there exists a “sweet
spot,” e.g., a packet loss rate for which the misbehaving clients
can maximize their performance gain. While the optimal
point is a function of RTT and the queuing discipline at the
bottleneck, misbehaving clients may be tempted to “drive” the
system into the desired state. Our research (not shown due
to space constraints) indicates that for reasonable bandwidth-
delay products, it is possible for a client to maximize its gain
simply by launching a moderate number of additional TCP
connections.

IV. SUSTAINABLE COUNTERMEASURES

In this section, we explore ways to enhance the perfor-
mance of interactive applications without applying the fully-
backlogged approach. In other words, the challenge is to
make sustainable changes, which if applied globally, would (i)
solve the problem, yet (ii) without compromising the idea of

statistical multiplexing. Our primary goal is to increase the per-
formance of legitimate users to a level which will demotivate
misbehaving clients from converting their interactive flows into
fully-backlogged TCP connections.

A. Approach-I: Differentiated minRTO

We initially focus on the RTO parameter. Selection of the
timeout value requires a balance among two extremes: if set
too low, spurious retransmissions will occur when packets
are incorrectly assumed loss when in fact the data or ACKs
are merely delayed. Similarly, if set too high, flows will
wait unnecessarily long to infer and recover from congestion.
Allman and Paxson [15] experimentally showed that TCP
achieves near-maximal throughput in the Internet if there exists
a lower bound for RTO of one second. The study found that
all flows should have a time-out value of at least 1 second in
order to ensure that congestion is cleared, thereby achieving
the best performance.

One approach to reducing the performance degradations
experienced by application-limited flows is reducing the min-
RTO parameter exclusively for such flows. In particular, we
explore an approach in which a TCP sender is allowed to
use a lower value for minRTO, (e.g., minRTO’), when its
used congestion window size is less than a fraction of the
current congestion window size (we quantify the minRTO’ and
fraction parameters below). While it is arguable whether such
an approach can cause a congestion collapse, one argument
on its behalf is that interactive applications represent only a
small fraction of the Byte-level Internet traffic. Thus, having
a few spurious retransmissions will not degrade the network
performance to any perceptible amount. Moreover, in the
context of the congestion collapse problem, this approach can
only be better than the fully-backlogged one. Nevertheless, the

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2007 proceedings.

results we present below make such a discussion obsolete.

B. Approach-II: Short-term padding with dummy packets

In this approach, the goal is to improve the performance
of interactive applications by increasing the probability that
a packet loss is detected via the fast retransmit mechanism;
yet, without applying the “brute-force” fully-backlogged ap-
proach. In particular, this could be achieved by appending the
application data packet with three “tiny” (e.g., 20 Bytes each)
“dummy” packets. Indeed, RFC 3390 [19] enables setting
TCP’s initial congestion window size to 4 packets when TCP
starts a new connection or restarts a connection after a long
idle period. Thus, the three additional tiny dummy packets
should help the endpoints detect data packet losses via triple
dummy-packet-initiated duplicate ACKs.

The unique characteristic of this approach is that in ad-
dition to being implementable at the TCP layer, it could be
implemented at the application level as well. An application
should make sure that it does not send packets back to back;
otherwise, TCP will make a single 60-Byte packet and send
it to the network. Anyhow, contrary to the approaches above
and below, interactive applications could immediately deploy
this approach without requiring any kernel-level TCP changes.

1) Modeling: Here, we derive the response-time formula
for the short-term padding approach. Assume a general sce-
nario in which the minimum congestion window size param-
eter is m, such that m − 1 packets are appended to a data
packet. A timeout is invoked if two or less dummy packets
reach the receiver; more precisely, if the TCP sender gets back
two or less duplicate ACKs. Thus, the probability that the loss
indication for a data packet is a timeout is given by

Q(m) =
2∑

i=0

(
m − 1

i

)
p(m−1−i)(1 − p)i. (11)

Again, the probability that a data packet loss is detected by
the triple duplicate ACK mechanism is 1-Q. Also, as discussed
above, in case a retransmitted packet is lost again, it evokes
an RTO. Thus, by applying the same approach as in Section
III-B, the expected latency becomes

E [L′] = Q

(
1 − p

1 − 2p
− 1
)

RTO + RTT

+ p(1 − Q)
((

1 − p

1 − 2p
− 1
)

RTO + RTT

)
. (12)

Strictly speaking, Equation (12) applies only to the random
loss scenario. Indeed, under the assumption that if a packet is
lost, so are all the packets that follow in the same round, the
proposed approach is ineffective. However, our simulations
indicate that the above correlated packet loss assumption
is “too strong,” and that when a data packet is lost, the
corresponding follow-up packets are not always dropped in
FIFO routers. Hence, the proposed approach improves the
performance even in such scenarios, as we show below.

 0

 20

 40

 60

 80

 100

 120

 140

 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

E
xp

ec
te

d
la

te
nc

y
(m

s)

Ploss

Interactive conn.
Fully-backlogged conn.

Approach-I
Approach-II
Approach-III

Fig. 6. Modeling: Expected latency as a function of packet loss prob.

C. Approach-III: A Diversity Approach

In this approach, we modify a TCP sender to send a packet
k times; k is a small integer, k > 1. TCP sends k copies of a
packet without violating TCP’s congestion control mechanism.
The key idea behind this approach is that the probability that at
least one of the k copies of a packet will make it to the receiver
is high. However, if all k packets are lost, TCP undergoes
retransmission timeout and cuts down the congestion window
to one. Hence, in the following retransmission rounds, it
retransmits the packet only once.

This is a TCP-only approach; it cannot be deployed at the
application layer. For example, if two copies of a packet are
sent from the application to the TCP layer, TCP will treat
them as two different packets. Thus, if the first packet is lost
and the second one make it to the receiver, the second packet
will only be buffered at the TCP layer; it will be “pushed” to
the application layer only after the first packet is successfully
retransmitted — which in this scenario happens after one RTO
in the best case.

1) Modeling: Here, we derive the response-time formula
for the diversity approach. Denote by k the number of copies
of a packet a TCP sender generates. Then, the probability that
at least one copy of a packet is transmitted successfully exactly
after i failure rounds becomes

Ph(i) =
{

1 − pk for i = 0,
pk+i−1(1 − p) for i ≥ 1.

(13)

In particular, the probability that at least one of the k packets
in the first round successfully reaches the destination is given
by 1 − pk. For i ≥ 1, Ph(i) is given by the product of two
probabilities: (i) the probability that all k copies are lost in the
first round, and (ii) the probability that the single packet copy
is lost in all subsequent i−1 rounds, followed by a successful
transmission. Then, following the approach of Equation (3), it
could be shown that for p < 0.5, the expected response-time
latency becomes

E [L′] = pk−1RTO

(
(1 − p)
(1 − 2p)

− 1
)

+ RTT. (14)

Similarly to the above scenario, our modeling approach here
strictly applies only to random packet losses. Still, simulations
below indicate that the approach is viable in FIFO scenarios
as well.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2007 proceedings.

D. Evaluation

Here, we evaluate the effectiveness of the three approaches.
For approach-I, we set the minRTO to 500 ms, and the fraction
parameter to 1/4. Given that the minimum congestion window
is four packets [19], this enables a client to always re-send a
packet after an RTO of 500 ms. In approach-II, an application
data packet is appended with three application-level dummy
packets, each of the size of 20 Bytes. After TCP adds a 40-
Byte-long header, the dummy packet size in the network
becomes 60 Bytes. Finally, for approach-III, we set k = 2;
thus, each packet is repeated twice.

Figure 6 plots the expected latency as a function of the
packet loss ratio for the three approaches. The key observation
is that the short-term padding and diversity approaches outper-
form the fully-backlogged approach. In this way, two goals
are achieved: (i) The interactive-application clients no longer
have incentives to generate fully-backlogged flows. Indeed,
why converting to fully-backlogged when approaches-II and
-III are better? (ii) Approaches-II and -III still preserve the
idea of statistical multiplexing, as we demonstrate below.

Figure 6 also shows that despite the fact that we reduced the
minRTO parameter by a half, the response time of approach-I
is still higher than that of the fully-backlogged approach. Our
evaluations (using both Equation (3) and simulations) indicate
that reducing the minRTO parameter much more would help
outperform the fully-backlogged approach. However, such an
approach in essence converges to the approach-III (for k = 2),
and hence we refrain from showing it further.

1) Simulations: Figure 7 plots the simulation results for
the above scenarios, both for RED and FIFO routers. In
simulations, we control the packet loss by varying the intensity
of the cross traffic. In addition, we generate one of the flows
indicated in the figure: an interactive, a fully-backlogged, an
approach-II, and an approach-III flow. Figure 7(a) (the RED
case) confirms general trends shown previously in Figure
6: approaches-II and -III outperform the fully-backlogged
scenario. Moreover, as explained above (in Section III-D),
due to inheriting longer than minRTO initial timeouts, the
fully-backlogged flow experiences additional response-time
degradations for larger packet-loss ratios.

Figure 7(b) plots simulation results for the FIFO case. While
correlated packet losses, characteristic for drop-tail queues,
do affect the overall performance, the key finding remains
unchanged: both approaches-II and -III have lower response
times than the fully-backlogged approach. For example, due to
larger probability that both copies of a packet in approach-III
will get dropped at the router, its performance is not as good as
in the RED case. However, because the probability that both
packets are lost concurrently does not equal one in reality,
there still exists gain over the fully-backlogged approach. Also,
contrary to the RED scenario, it is interesting that approach-II
(padding) outperforms approach-III (diversity). Since padded
dummy packets are smaller than data packets, the likelihood
that they will get dropped at the Byte-based drop-tail queue
is smaller.

2) Overhead and Sustainability: One final issue that we
explore is overhead and sustainability. In essence, we explore
scenarios in which a given approach is widely deployed, and
evaluate (i) the performance gains over the greedy fully-
backlogged approach, and (ii) performance reductions relative
to the purely interactive, yet unsustainable, approach.

Figure 8 plots response times as a function of the number
of flows in the network, when all clients apply a given
approach indicated in the figure. Even for a moderate number
of connections, the response times increase dramatically for
the fully-backlogged approach. On the other extreme, the
purely interactive approach can support more than 350 con-
nections before the latency starts increasing. Unfortunately,
as discussed above, this state is unstable in the sense that
clients have incentives to improve their performance while
still remaining TCP friendly. Finally, the figure shows that
approaches-II and -III support a necessarily smaller number
of connections relative to the interactive scenario. However,
the key point is that both approaches provide (i) a sustainable
solution that demotivates clients from moving the system into
the fully-backlogged state; and (ii) a significantly “friendlier”
environment relative to the fully-backlogged approach.

Figure 8 shows that in the case of approach-III, the latency
starts increasing when the number of flows exceeds 175.
Indeed, because clients send two copies of a packet by
default, the “departure” point is approximately at one half
of the number achievable by the purely interactive approach.
Next, because the overhead for the approach-II is smaller
(3*60 Bytes relative to 540 Bytes-long data packets), it can
support a larger number of flows without increasing response
times (the “departure” point is around 250 flows).

Also, while the performance for approach-II (padding) is
approximately identical in the RED and FIFO scenarios, this
is not the case with the diversity approach. Indeed, Figure 8(a)
shows that RED’s random packet dropping has a brilliant effect
on approach-III, given that latency increases moderately with
the number of flows. Not only that the approach dramatically
outperform the fully-backlogged approach, but it even outper-
forms the pure interactive approach when there are many flows
in the system. On the contrary, due to correlated packet losses,
the latency slope is much steeper in the FIFO case.

V. CONCLUSIONS

This paper revisited the well-known problem of unfairness
between short- and long-lived TCP flows. Our first contri-
bution lies in pointing out at an imminent and a serious
implication of this problem: nothing stops clients of interactive
applications to improve their response-time performance by
generating traffic at a TCP-fair rate. The problem is imminent
because the misbehavior is hard to detect, given that flows
are TCP friendly. The problem is serious because it has the
potential to jeopardize one of the core principles that today’s
Internet is built upon — statistical multiplexing. Second, we
showed that interactive clients always have an incentive to
send at a TCP-fair rate, because the corresponding response-
time performance always outperforms the pure interactive

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2007 proceedings.

 0

 50

 100

 150

 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

La
te

nc
y

(m
s)

Ploss

Interactive conn.
Fully-backlogged conn.

Approach-II
Approach-III

(a) RED

 0

 50

 100

 150

 200

 250

 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

La
te

nc
y

(m
s)

Ploss

Interactive conn.
Fully-backlogged conn.

Approach-II
Approach-III

(b) FIFO
Fig. 7. Simulation: Latency as a function of loss rate

 0

 300

 600

 900

 1200

 1500

 1800

 2100

 50 100 150 200 250 300 350 400

La
te

nc
y

(m
s)

No. of conn.

Fully-backlogged conn.
Interactive conn.

Approach-II
Approach-III

(a) RED

 0

 300

 600

 900

 1200

 1500

 1800

 2100

 50 100 150 200 250 300 350 400

La
te

nc
y

(m
s)

No. of conn.

Fully-backlogged conn.
Interactive conn.

Approach-II
Approach-III

(b) FIFO
Fig. 8. Simulation: Number of flows vs latency: C = 1.5Mbps

approach. Moreover, we revealed that due to random packet
losses, the gain is much larger for RED routers. Finally,
we demonstrated that there exist simple, easy-to-deploy, and
sustainable solutions that are capable of effectively demoti-
vating clients from applying the greedy TCP-fair approach. In
particular, we showed that a diversity method, accompanied
with RED routers in the network, performs remarkably well.
Still, the short-term padding approach appears even more
attractive; it could be implemented at the application layer,
without requiring any TCP-level modifications.

REFERENCES

[1] L. Guo and I. Matta, “The war between mice and elephants,” in
Proceedings of IEEE ICNP ’01, Riverside, CA, Nov. 2001.

[2] V. Paxson and M. Allman, “Computing TCP’s retransmission timer,”
Nov. 2000, Internet RFC 2988.

[3] L. Le, J. Aikat, K. Jeffay, and F. Smith, “Differential congestion
notification: Taming the elephants,” in Proceedings of IEEE ICNP ’04,
Berlin, Germany, Oct. 2004.

[4] W. Noureddine and F. Tobagi, “Improving the performance of interactive
TCP applications using service differentiation,” in Proceedings of IEEE
INFOCOM ’02, New York, NY, June 2002.

[5] “Which ports are used by computer games?” http://www.u.arizona.edu/
∼trw/games/ports.htm.

[6] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and
T. Berners-Lee, “Hypertext transfer protocol - HTTP/1.1,” June 1999,
Internet RFC 2616.

[7] M. Handley, J. Padhye, and S. Floyd, “TCP congestion window valida-
tion,” June 2000, Internet RFC 2861.

[8] P. Patel, A. Whitaker, D. Wetherall, J. Lepreau, and T. Stack, “Upgrading
transport protocols with untrusted mobile code,” in Proceedings of ACM
SOSP ’03, Bolton Landing, NY, Oct. 2003.

[9] R. Mahajan, S. Floyd, and D. Wetherall, “Controlling high-bandwidth
flows at the congested router,” in Proceedings of IEEE ICNP ’01,
Riverside, CA, Nov. 2001.

[10] A. Kuzmanovic and E. Knightly, “A performance vs. trust perspective
in the design of end-point congestion control protocols,” in Proceedings
of IEEE ICNP ’04, Berlin, Germany, Oct. 2004.

[11] E. Brosh, G. Lubetzky-Sharon, and Y. Shavitt, “Spatial-temporal analysis
of passive TCP measurements,” in Proceedings of IEEE INFOCOM ’05,
Miami, FL, Mar. 2005.

[12] N. Cardwell, S. Savage, and T. Anderson, “Modeling TCP latency,” in
Proceedings of IEEE INFOCOM ’00, Tel Aviv, Israel, Mar. 2000.

[13] B. Kim and J. Lee, “Retransmission loss recovery by duplicate acknowl-
edgement counting,” IEEE Communications Letters, vol. 8, no. 1, Jan.
2004.

[14] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose, “Modeling TCP Reno
performance: A simple model and its empirical validation,” IEEE/ACM
Transactions on Networking, vol. 8, no. 2, pp. 133–145, Apr. 2000.

[15] M. Allman and V. Paxson, “On estimating end-to-end network path
properties,” in Proceedings of ACM SIGCOMM ’99, Vancouver, British
Columbia, Sept. 1999.

[16] L. Le, J. Aikat, K. Jeffay, and F. Smith, “The effects of active queue
management on Web performance,” in Proceedings of ACM SIGCOMM
’03, Karlsruhe, Germany, Aug. 2003.

[17] A. Kuzmanovic, “The power of explicit congestion notification,” in
Proceedings of ACM SIGCOMM ’05, Philadelphia, PA, Aug. 2005.

[18] M. Allman, S. Floyd, and C. Partridge, “Increasing TCP’s initial
window,” 1998, Internet RFC 2414.

[19] ——, “Increasing TCP’s initial window,” Oct. 2002, Internet RFC 3390.
[20] S. Yang and G. de Veciana, “Size-based adaptive bandwidth allocation:

Optimizing the average QoS for elastic flows,” in Proceedings of IEEE
INFOCOM ’02, New York, NY, June 2002.

[21] S. Savage, N. Cardwell, and T. Anderson, “The case for informed
transport protocols,” in Proceedings of HotOS ’99, Rio Rico, Arizona,
Mar. 1999.

[22] T. Anderson, A. Collins, A. Krishnamurthy, and J. Zahorjan, “PCP:
Efficient endpoint congestion control,” in Proceedings of NSDI ’06, San
Jose, CA, May 2006.

[23] J. Farber, “Network game traffic modeling,” in Proceedings of NetGames
’02, Braunschweig, Germany, Apr. 2002.

[24] P. Danzig and S. Jamin, “tcplib: A library of internetwork traffic
characteristics,” USC Technical Report, Computer Science Department,
1991, Report CS-SYS-91-01.

[25] F. Smith, F. Campos, K. Jeffay, and D. Ott, “What TCP/IP protocol head-
ers can tell us about the Web,” in Proceedings of ACM SIGMETRICS
’01, Cambridge, MA, June 2001.

[26] R. Morris, “TCP behavior with many flows,” in Proceedings of IEEE
ICNP ’97, Atlanta, GA, Oct. 1997.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2007 proceedings.

	Select a link below
	Return to Main Menu
	Return to Previous View

