
T o w a r d s an Act ive N e t w o r k A r c h i t e c t u r e

D a v i d L. T e n n e n h o u s e and D a v i d J. We the ra l l *

T e l e m e d i a , N e t w o r k s and S y s t e m s G r o u p , M I T

ABSTRACT

Active networks al low their users to inject
customized programs into the nodes of the network. An
extreme case, in which we are most interested, replaces
packets with "capsules" - program fragments that are
executed at each network router/switch they traverse.

Active architectures permit a massive increase in the
sophistication o f the computation that is performed
within the network. They will enable new applications,
especially those based on application-specific multicast,
information fusion, and other services that leverage
network-based computation and storage. Furthermore,
they will accelerate the pace o f innovation by
decoupling network services f rom the underlying
hardware and allowing new services to be loaded into
the infrastructure on demand.

In this paper, we describe our vision of an active
network architecture, outline our approach to its design,
and survey the technologies that can be brought to bear
on its implementation. We propose that the research
community mount a joint effort to develop and deploy a
wide area ActiveNet.

1. INTRODUCTION

Traditional data networks passively transport bits
from one end system to another. Ideally, the user data
is transferred opaquely, i.e., the network is insensitive
to the bits it carries and they are transferred between
end systems without modification. The role of
computation within such networks is extremely limited,
e.g., header processing in packet-switched networks
and signaling in connection-oriented networks.

Active Networks break with tradition by allowing
the network to perform customized computations on the
user data. For example, a user of an active network
could send a customized compression program to a
node within the network (e.g., a router) and request that
the node execute that program when processing their
packets. These networks are "active" in two ways:

° Switches perform computations on the user data
flowing through them.

° Individuals can inject programs into the network,
thereby tailoring the node processing to be user-
and application-specific.

We have identified several architectural approaches
to active networks. One approach, which we find

particularly interesting, replaces the passive packets of
present day architectures with active "capsules" -
miniature programs that are executed at each router
they traverse. This change in architectural perspective,
f rom pass ive packets to ac t ive capsules ,
s imultaneously addresses both of the "act ive"
properties described above. User data can be
embedded within these mini-programs, in much the
way a page's contents are embedded within a fragment
of PostScript code. Furthermore, capsules can invoke
pre-defined program methods or plant new ones within
network nodes.

Our work is motivated by both technology "push"
and user "pull". The technology "push" is the
emergence of "active" technologies, compiled and
interpreted, supporting the encapsulation, transfer,
interposition, and safe and efficient execution of
program fragments. Today, active technologies are
applied within individual end systems and above the
end-to-end network layer; for example, to allow Web
servers and clients to exchange program fragments.
Our innovation is to leverage and extend these
technologies for use within the network - in ways that
will fundamentally change today's model of what is
"in" the network.

The "pull" comes from the ad hoc collection of
firewalls, Web proxies, multicast routers, mobile
proxies, video gateways, etc. that perform user-driven
computation at nodes "within" the network. Despite
architectural injunctions against them, these nodes are
flourishing, suggesting user and management demand
for their services. We are developing the architectural
support and common programming platforms to support
the diversity and dynamic deployment requirements of
these "interposed" services. Our goal is to replace the
numerous ad hoc approaches to their implementation
with a generic capability that allows users to program
their networks.

There are three principal advantages to basing the
network architecture on the exchange of active
programs, rather than passive packets:

• Exchanging code provides a basis for adaptive
protocols, enabling richer interactions than the
exchange of fixed data formats.

• Capsules provide a means of implementing fine
grained application-specific functions at
strategic points within the network.

*(dlt,djw}@lcs.mit.edu. http://www.tns.lcs.mit.edu/. An earlier version of this paper was delivered during the
keynote session of Multimedia Computing and Networking, San Jose, CA, January 1996.

ACM SIGCOMM -5- Computer Communication Review

• The programming abstraction provides a
powerful platform for user-driven customization
of the infrastructure, allowing new services to be
deployed at a faster pace than can be sustained
by vendor driven standardization processes.

This paper presents our vision of an active network
architecture and the approach we are following towards
the deployment of an operational ActiveNet. The
active network approach opens a Pandora 's box of
safety, security, and resource allocation issues.
Although we do not present a complete design, we
identify a number of specific research issues, outline
the approach we are following towards their resolution
and identify the technologies we intend to leverage.
Our plan is to bootstrap a wide area ActiveNet using
similar techniques to those used by the prototype
MBONE, i.e., by locating platforms at strategic
locations and "tunneling" through existing transmission
facilities, such as the Internet.

In the next section we provide a description of some
of the "lead user" applications that motivate an
architecture that facilitates computation within the
network. In section 3, we provide an overview of
active networks, a high-level perspective on how we
propose to organize their platforms and an introduction
to the research issues that must be addressed. Section
4 describes the "instruction set" issues associated with
an interoperable programming model and how "active
technologies" can be leveraged to effect the safe and
efficient evaluation of capsules. We then discuss the
management of node resources, such as storage and
link bandwidth, fo l lowed by our plan for the
deployment of a research ActiveNet. We realize that
our work challenges some key assumptions that have
guided recent networking research and so the final
sections of this paper discuss the architectural and
structural questions raised by our approach.

2. LEAD USERS

Recently, there has been considerable interest in:
agent technologies, which allow mobile code to travel
from clients to servers; and in Web applets, which
allow mobile code to travel from servers to clients.
Active networks bridge this dichotomy by allowing
applications to dispatch computation to where it is
needed.

We are encouraged by the observation that a
number of lead users have pressing requirements for the
transparent interposition of computation within the
network. These include the developers of:

• Firewalls, which are typically located at
administrative boundaries.

• Web proxies and other services, such as DNS
and multicast routers, that form strategic vertices
of copy, fusion and cache "trees".

• Mobile/Nomadic gateways, placed near the
edges of the network where there are significant

discontinuities in the available bandwidth, e.g.,
the base stations of wireless networks.

These lead applications demonstrate that there is
user "pull" towards active networks. In the absence of
a coherent approach to interposition they have adopted
a variety of ad hoc strategies. In many cases the
interposed platforms present the facade of network
layer routers, but actually perform application- or user-
specific functions. Active networks will rationalize
these diverse activities by providing a uniform platform
for network-based computation.

Firewalls

Firewalls implement filters that determine which
packets should be passed transparently and which
should be blocked. Although they have a peer
re la t ionship to other routers , they imp lemen t
application- and user- specific functions, in addition to
packet routing. The need to update the firewall to
enable the use of new applications is an impediment to
their adoption. In an Active Network, this process
could be automated by allowing applications from
approved vendors to authenticate themselves to the
firewall and inject the appropriate modules into it.

Web Proxies

Web proxies are an example of an application-
specific service that is tailored to the serving and
caching of World Wide Web pages. Harvest [1]
employs a hierarchical scheme in which cache nodes
are located near the edges of the network, i.e., within
the end user organizations. This system is scalable and
could be extended by allowing nodes of the hierarchy
to be located at strategic points within the networks of
the access providers and inter-exchange carriers. An
interesting problem is the development of algorithms
and tools that automatically balance the hierarchy by
re-positioning the caches themselves, not just the
cached information. Schemes such as dynamic
hierarchical caching [2] and geographical push-caching
[3] begin to address this issue.

A further argument in favor of using active
technologies for web caching is that a significant
fraction of web pages are dynamically computed and
not susceptible to traditional (passive) caching. This
suggests the development of web proxy schemes that
support "active" caches that store and execute the
programs that generate web pages.

Mobile/Nomadic Computing

Interposition strategies are used by a number of
researchers addressing mobil i ty . For example ,
Kleinrock [4] describes a "nomadic router" that is
interposed between an end system and the network.
This module observes and adapts to the means by
which the end system is connected to the network, e.g.,
through a phone line in a hotel room versus through the
LAN in the home office. It might decide to perform
more file caching or link compression when the end
system is connected through a low bandwidth link

ACM SIGCOMM -6- Computer Communication Review

and/or invoke additional security, such as encryption,
when operating away from the home office.

Similarly, "nomadic agents and gateways" [4] are
nodes that support mobility. They are located at
strategic points that bridge networks with vastly
different bandwidth and reliability characteristics, such
as the junctions between wired and wireless networks.
Application-neutral work on TCP snooping [5] improves
the performance of TCP connections by retaining per-
connection state information at wireless base stations.
Application-specific services performed at gateways
include file caching and the transcoding of images [6].
The InfoPad [7] takes the process even further, by
instantiating user-specific "pad servers" supporting a
range of applications, such as voice and hand-writing
recognition, at intermediate nodes.

New Application Domains

There is an untapped reservoir of applications that
require sophisticated network-based services to support
the distribution and fusion of information. One
promising direction is the development of multi-point
communication strategies that are more flexible than
the existing IP multicast service, which performs a
very limited computation on the user data, i.e.,
copying. Application-specific multicast, for example,
would provide the mechanism to realize the quality of
service filtering suggested in [8] for video-conferencing.

Information fusion is an example of a domain that
may leverage interposed computation. Applications
such as sensor fusion, simulation and remote
manipulation, allow users to "see" composite images
constructed by fusing information obtained from a
number of sensors. Fusing data within the network
reduces the bandwidth requirements at the users, who
are located at the periphery of the network. Placing
application-specific computation near where it is
needed also addresses latency limitations by shortening
the critical feedback loops of interactive applications.

3. ACTIVE NETWORKS

In this section, we provide an overview of active
networks - highly programmable networks that perform
computations on the user data that is passing through
them. We distinguish two approaches to active
networks, discrete and integrated, depending on
whether programs and data are carried discretely, i.e.,
within separate messages, or in an integrated fashion.
We then provide a high-level description of how active
nodes might be organized and describe a node
programming model that could provide the basis for
cross-platform interoperability.

3.1 Programmable Switches - A Discrete Approach

The processing of messages may be architecturally
separated from the business of injecting programs into
the node, with a separate mechanism for each function.
Users would send their packets through such a
"programmable" node much the way they do today.

When a packet arrives, its header is examined and a
program is dispatched to operate on its contents. The
program actively processes the packet, possibly
changing its contents. A degree of customized
computation is possible because the header of the
message identifies which program should be run - so it
is possible to arrange for different programs to be
executed for different users or applications.

The separation of program execution and loading
might be valuable when it is desirable for program
loading to be carefully controlled or when the
individual programs are relatively large. This approach
is used, for example, in the Intelligent Network being
standardized by CCITT. In the Internet, program
loading could be restricted to a router's operator who is
furnished with a "back door" through which they can
dynamically load code. This back door would at
minimum authenticate the operator and might also
perform extensive checks on the code that is being
loaded. Note that allowing operators to dynamically
load code into their routers would be useful for router
extensibility purposes, even if the programs do not
perform application- or user-specific computations.

3.2 Capsules - An Integrated Approach

A more extreme view of active networks is one in
which every message is a program. Every message, or
capsule, that passes between nodes contains a program
fragment (of at least one instruction) that may include
embedded data. When a capsule arrives at an active
node, its contents are evaluated, in much the same
way that a PostScript printer interprets the contents of
each file that is sent to it.

Figure 1 provides a conceptual view of how an
active node might be organized. Bits arriving on
incoming links are processed by a mechanism that
identifies capsule boundaries, possibly using the
framing mechanisms provided by traditional link layer
protocols. The capsule's contents are dispatched to a
transient execution environment where they can safely
be evaluated. We hypothesize that programs are
composed of "primitive" instructions, that perform
basic computations on the capsule contents, and can
also invoke external "methods", which may provide
access to resources external to the transient
environment. The execution of a capsule results in the
scheduling of zero or more capsules for transmission on
the outgoing links and may change the non-transient
state of the node. The transient environment is
destroyed when capsule evaluation terminates.

3.3 Programming With Capsules

Our distinction between the discrete and integrated
approaches is one of perspective, primarily useful as a
basis for comparing two ways of thinking about
networks and their programming. In practical terms, a
network based on the integrated approach could be
programmed to emulate the discrete approach and
vice-versa. Nonetheless, we are intrigued by the

ACM SIGCOMM -7- Computer Communication Review

Figure 1. Active Node Organization

possibilities afforded by the integrated perspective,
especially with respect to new ways of leveraging
computat ion within the network. It provides a
programming language framework for thinking about
networks - a framework that could enable the synthesis
of recent results in the areas of p rogramming
environments, operating systems and networks.

In the following paragraphs we discuss some ways
in which active networks could be leveraged to support
a variety of traditional functions, such as IP packet
processing, connections, flows, routing protocols, etc.
These examples are meant to provide insight into the
"flavor" of the networks we envision and establish the
groundwork for the discussion of the programming
model and implementation technologies which follows.

In simple applications, a capsule ' s actions on
visiting a node are to compute its "next hop"
destination(s) and schedule zero or more (possibly
modified) copies of itself for transmission on selected
links. It will be necessary to provide mechanisms for
determining and naming the links on which outgoing
capsules are transmitted. In the IP protocol, this
mechanism is "built-in" to every node and individual
packets need only carry their destination address - they
need not have knowledge of the links they traverse. In
pure source routing schemes, each message carries the
identities of all of the links it traverses. We hope to
develop an intermediate approach, in which capsules
can dynamically enumerate and evaluate the paths
avai lable at a node, without requiring detailed
knowledge at the time the capsule is composed.

An important question concerns the degree to which
a capsule program can access objects, such as routing
tables, that lie beyond the transient execution
environment. In a restricted approach, capsules could
be largely self-contained. Although sufficient to
implement some interesting programs, e.g., the above-
mentioned source routing, this model is somewhat
confining. In the following paragraphs we discuss three

ways in which programs could reach beyond the
capsule's transient environment:

• Foundation Components - universally available
services implemented outside of the capsule.

• Active Storage - the ability to modify the state
that node storage is left in at the completion of
capsule execution.

• Extensibility - allowing programs to define new
classes and methods.

Foundation Components
Foundat ion componen t s i m p l e m e n t external

"methods" that provide controlled access to resources
outside of the transient execution environment. A
subset of these components will reflect the "API" of
the node's run-time environment to the applications.
Other components provide a built-in class hierarchy
that serves as a base for the development of capsule
programs.

Many capsules will require access to other node-
specific information and services, such as routing
tables and the state of the node's transmission links.
Using built-in components that provide access to this
information, one could design capsules whose
evaluat ion per forms s imilar process ing to that
performed on the header of an IP datagram. Multi-cast
and option processing instructions could be included in
the capsules that require them. Whereas the traditional
IP approach calls for the code to be fixed and built into
the router, in the active case the program is flexible
and carried with the data.

For migra t ion purposes , we could develop
standardized components that implement the existing
Internet protocol types. A capsule carrying an
embedded IPv4 datagram could contain a single
instruction of the form "execute the IPv4 method on
the remainder of the payload". To put matters in
perspective, we can think of existing routers as an

ACM SIGCOMM -8- Computer Communication Review

extremely restricted subset of active nodes, in which
the capsule "program" is carried in the IP protocol type
field. The instruction set is restricted to pre-defined
methods that correspond to the known protocol type
field values and imp lemen t the s tandardized
functionality specified by the IETF.

Active Storage
It would be advantageous if capsules could leave

information behind in a node's non-transient storage.
One might open a connection by arranging for a
capsule to be executed at each node along a specific
path, and having it leave a small amount of associated
state in each node it traverses. Subsequent packets
following this path would include code that locates and
evaluates the connection state at each node.

A similar approach could be used to realize "flows"
[9], which are somewhat softer than connections.
Every capsule would include code that attempts to
locate and use its "flow" state at the nodes it traverses.
However, flow capsules are somewhat more robust than
those used during connections in that the flow state is
not essential to the capsule's successful execution. I f a
flow capsule encounters a node that has no relevant
state information, it dynamically generates the required
data, uses it for its own purposes, and leaves it behind
for the convenience of later capsules. The network
nodes can treat flow states as "soft state" values that
are cached and can be disposed of if necessary. In this
respect, flows are less demanding than connections on
the robustness of node storage. Of course, our active
connections and flows are considerably more powerful
than those of present day systems, in that the "state"
left behind is in the form of programs rather than static
table entries.

Eventually, we hope to develop new schemes that
go beyond traditional connections and flows. For
example, capsules could be programmed to rendezvous
at a node by arranging for the first arriving capsule to
set some state information and then "sleep" until the
remaining capsules have arrived. The capsules could
then engage in some joint computation, such as may
be used in sensor fusion applications or the pruning of
multi-cast trees.

Finally, we note that capsules capable of modifying
the node's storage provide a uniform mechanism for the
implementation of background node functions. Routing
protocols and table updates could be implemented in
capsules as could network management functions, such
as those provided by SNMP. Long-lived housekeeping
functions could also be implemented in this manner,
though in their case the " transient" execution
environment might survive until the node is reset.

Program Extensibility
Unless programs are short relative to the data they

encapsulate, it will prove inefficient for them to be
carried in individual messages. Accordingly, it makes
sense for the p rogramming envi ronment to be

extensible, so that capsules can "plant" uniquely
named classes and methods at nodes, for reference by
other capsules and methods. In this way, most
capsules can be concise - possibly a single instruction
that invokes a user-specific method on the remainder of
the capsule contents.

An interesting scheme would be to provide a
mechanism that dynamically resolves references to
external methods. Instead of capsules explicitly
loading methods into the non-transient storage of the
node, the node could contain a "cache" of known
external methods and be equipped with a mechanism
that allows it to locate and dynamically load methods
on demand. 1 Although such a "demand" approach
might suffer latency problems when a new application
is started, this could be offset by allowing capsules that
prime the cache when faults are anticipated.

The dist inct ion between the "expl ic i t " and
"demand" loading schemes is closely related to the
broader distinction we have made between discrete and
integrated approaches to active networks. The explicit
and discrete cases distinguish program loading as an
explicit activity that must be completed prior to usage.
In contrast, the demand and integrated cases offer
increased flexibility with respect to determination and
timing. Of course, this flexibility comes at some cost
in terms of the sophistication of the mechanisms
required to support safe and efficient loading.

3.4 Towards an Interoperable Programming Model

To be of general utility, capsules require: mobility,
so that programs can be transmitted across the network;
and portability, so that they can be loaded into a range
of platforms. This suggests the development of a
relatively small number of standardized models for the
programming of network nodes and the description and
allocation of their resources. Our objectives for such
models are that they support:

• Mobility - the ability to transfer capsules and
execute them on a range of platforms that
leverage different underlying technologies.

• Safety - the ability to restrict the resources that
capsules can access.

• Efficiency - enabling the above without
compromising network performance, at least in
the most common cases.

Traditional packet networks achieve interoperability
by standardizing the syntax and semantics of packets.
For example, Internet routers all support the agreed IP
specifications; although router implementations may

1An interesting approach to resolving cache "faults"
would be for a node to request the method from the node that
sent it the faulting capsule - forming a chain back to the
originator of the capsule who could be expected to take
ultimate responsibility for resolving the reference. Of
course, the originator might do so by demand loading the
code from their software vendor.

ACM SIGCOMM -9- Computer Communication Review

differ, they implement roughly "equivalent" programs.
In contrast, active nodes can execute many different
programs, i.e., they can perform very different
computations on the packets flowing through them.
Network interoperability is achieved at a higher level
of abst ract ion - instead of s tandardizing the
computa t ion p e r f o r m e d on every packet , we
s tandardize the computa t iona l model , i.e., the
instruction set and resources available to capsule
programs.

We find it convenient to distinguish between: issues
surrounding the representation and evaluation of the
capsules themselves ; and safe access to node
resources.

In section 4, we outline the functionality that is
required and discuss mechanisms that can be used to
support the safe and efficient execution of capsules.
We discuss how "active technologies", developed
within the programming language and operating system
communities, can be used to prevent unauthorized
access to resources that lie beyond the boundaries of
the transient execution environment into which a
capsule is dropped.

In section 5, we discuss resource management,
which is an important issue in active nodes - these
nodes are components of the shared infrastructure and
their users must be protected from each other to a
degree that is typically not required within personal
computers or even group servers. The programming
model must deal with two issues associated with node
resources: interoperability and resource management.
The interoperability requirement is for a common
model of the resources available at a node. Resource
management issues include resource allocation and
capsule authentication and authorization.

4. C A P S U L E P R O G R A M S - MOBILITY, SAFETY
AND EFFICIENCY

In this section we discuss: the languages in which
capsule programs are expressed; and mechanisms that
can support their safe and efficient execution. Our
overall approach is to evaluate each capsule within the
context of a transient execution environment whose
lifetime is the interval during which the capsule is
evaluated at a given node. Safety properties are
provided by restricting the actions that can be
performed and their scope, e.g., their access to storage
and other node resources.

4.1 C a p s u l e P r i m i t i v e s

There is a limited set of primitive actions that
capsules can perform without straying beyond their
transient environments. These actions constitute a
restricted programming language, or instruction set,
that can perform: arithmetic and branch operations; and
manipulate stack and heap storage of the transient
environment.

The set of primitive actions will be extended
through the addition of external method invocation,
which provides access to resources beyond the
transient environment. Some of these external methods
will leverage the same primitive actions and will also
be evaluated in a closed environment, i.e., with a sharp
distinction between their self-contained actions and
their access to other methods. Others will access the
built-in "API" of the node's run-time environment or
embedded operating system. The API of active
network nodes will be distinguished by the availability
of methods that are ta i lored to the ne twork
environment, such as the efficient copying of capsules
and sophisticated control over the scheduling of
transmission resources.

For interoperability purposes all of the active nodes
along a capsule's path should be capable of evaluating
the capsule's contents. 2 There are three well known
ways of achieving this level of portability/mobility:

• Express the programs in a high-level source
language that may be interpreted at the nodes;

• Adopt a platform independent intermediate
representation, typically a byte coded "virtual"
instruction set;

• Express the programs in a platform-dependent
binary format and arrange for each capsule to
carry multiple encodings of its program - one for
each type of platform that it traverses.

We expect to leverage all three approaches.
Source encodings will p rove useful for rapid
prototyping. An intermediate representat ion may
provide a compact and relatively efficient way to
express relatively short programs. External methods
could be similarly encoded or could be expressed in a
machine dependent format. We expect that heavily
used components will be packaged in binary libraries,
e s p e c i a l l y " b o o t s t r a p " l ib ra r i e s tha t a l low
administrators to initialize newly installed or repaired
platforms.

4.2 Safe and Efficient Execution

One of the reasons that we believe it will be
possible to realize active networks is the availability of
active technologies - mechanisms that allow users to
inject customized programs into shared resources.
Active technologies are not new. However, our use of
active technologies within the network is novel - until
now the use of active technologies in networking has
been end-to-end (e.g., shipping code from servers to
clients or vice-versa). In the case of active networks,
the shared resources in question are the routers,
switches and servers that lie within the network. Our

2At each hop, a capsule could translate itself into the
language that is understood by the "next hop" node along its
path. However, this approach seems extreme - even by our
standards !

ACM SIGCOMM -10- Computer Communication Review

work will leverage and extend the presently available
technologies.

Active Technologies - Background

Active technologies have been emerging in the
fields of operating systems and programming languages
for over ten years. Early work tended to address only
one of three important issues - mobility, efficiency or
safety. PostScript is an example of an early effort that
stressed mobility over safety. Applications generate
mobile programs that are executed at printers, which
may be shared and distributed about a network.

In the field of parallel processing, "active
messages" [10, 11] stressed efficiency over mobility by
reducing the "program" to a single instruction - each
message invokes an application-specific handler
resident at the recipient. The handler provides a low
overhead mechanism for dispatching arriving
messages, so that they can be treated as self-
scheduling computations. These systems, which
targeted communication internal to a single parallel
processor complex, did not address the safety issues
relevant to shared infrastructures.

The advent of heterogeneous distributed systems
and internetworking has accelerated the pace of
research. The x-kernel [12] supports the composition of
protocol handlers by providing a regular architecture for
stacking them and by automating the dispatch process.
Other efforts [13-15] have focused on less friendly
environments by improving both the safety and
efficiency with which handlers can be implemented.
Most recently, there have been efforts to jointly
address all three issues - mobility, safety and
eff iciency - under the banners of configurable
operating systems, agents, mobile applets and other
schemes related to the World Wide Web.

Leveraging Active Technologies

Active networks will adapt and extend active
technologies for use within the network. In general,
these technologies provide for safe execution by
restricting the set of primitive actions available to
mobile programs and the scope of their operands, e.g.,
their access to storage and other resources. An
interesting question is how to organize the closures
which provide the basis for safe execution. Our starting
position is that the namespace of a capsule is restricted
to the transient environment. This containment policy
may be relaxed by initializing the closure with a
default set of foundation components that all capsules
are allowed to dispatch. Any capsule that accesses
methods outside of that space must first request that its
closure be extended by authenticating itself to a
mechanism that validates its authorization.

In the following paragraphs, we discuss the
available technologies in terms of the program
encoding approaches - source, intermediate, or
platform dependent binary - and then introduce "on-

the-fly" compilation, a complementary technology that
is also of interest.

Source Code

Safe-Tcl [16] is an example of a language that
achieves safety through interpretation of a source
program and closure of its namespace. The safety of
such a system derives from the restricted closure and
the correctness of the interpreter, which can prevent
programs from deliberately or accidentally straying
beyond the transient execution environment. The
advantage of the Tcl-based approach is that programs
are human readable and simple programs can be
composed quite quickly. Furthermore, Tcl 's character-
based representation makes it easy to design programs
that generate new source fragments. The principal
disadvantage is the overhead of source code
interpretation, which is compounded by Tcl 's encoding
of all data types as strings. An additional disadvantage
is the overall size of programs, which could be
reduced, albeit at the expense of readability, through
the use of compression.

Intermediate Code

Java [17] achieves mobility through the use of an
intermediate instruction set [18]. Traditionally, the
safe execution of intermediate code has relied on the
careful interpretation of the intermediate instruction
set. One of Java's key contributions is the observation
that a significant improvement in efficiency can be
achieved by off-loading some of the responsibility from
the interpreter. The instruction set, and its approved
usage, are designed so as to reduce the degree of
operand validation that the interpreter must perform as
each instruction is executed. In part, this is enabled by
the design of the instruction set, which precludes
certain cases that would normally have to be checked.
It is also enabled by the static inspection of code
before it is first executed, so that many of the checks
need only be performed once, typically when the
program is first loaded.

Platform-dependent (Binary) Code

The most aggressive of the active technologies
provide for the execution of platform-dependent binary
programs that, for the most part, are directly executed
by the underlying hardware. To safely execute such
program fragments, one must restrict their use of the
instruction set and address space. The traditional
operating systems approach has been to rely on fairly
heavyweight mechanisms, such as processes and
hardware-suppor ted address space protect ion.
However, there has recently been progress on two
lighter-weight approaches:

• The SPIN project [14] relies on the properties of
the Modula 3 language and a trustworthy
compiler to generate programs that will not stray
beyond a restricted environment. When a
program is presented for execution, the run-time
system verifies that the instruction sequence was

ACM SIGCOMM -11- Computer Communication Review

generated by a trusted compiler and has not been
modified.

• The approach described in [19, 20] prescribes a
set of rules that instruction sequences must
adhere to, such as restrictions on how address
arithmetic is performed. In conjunction with a
modicum of run-time support and a collection of
clever techniques, these rules define a
"sandbox" within which the program can do
what it likes, but that it may not escape from.
An important aspect of this work is that
conformance to the "rules" can be statically
verified when an instruction sequence is
presented for execution.

In both cases, it is assumed that sophisticated
compiler technology will be used to generate "safe"
code. The distinction is whether the code is
independently validated by the receiving platform or
whether the compilers and/or vendors of programs are
trusted and authorized to "sign for" their code. 3 The
former approach improves mobility, especially across
administrative boundaries. The latter approach not
only saves the overhead of validation, but might also
allow the compiler to generate code that is more
efficient. In both cases, we would expect the directly
executable binary code to out-perform an interpreted
format.

On-the-fly Compilation

Recent work [21] has enabled "on- the- f ly"
compilation with a dialect of the C programming
language. This al lows source programs to be
automatically tailored, or even wholly generated, at
run-time. In conjunction with sandboxing, such a
technology could allow active nodes to perform their
own source-binary translations on capsules they are
processing.

On-the-fly compilation technologies may prove
crucial to the viability of our architecture. Modern IP
routers achieve reasonable performance through careful
tuning of their "fast paths", typically by optimizing a
minimal instruction sequence that processes the vast
majority of the traffic and relegates the more complex
(and less frequently used) cases to other modules. An
active node might achieve a similar performance boost
by monitoring its traffic and dynamically generating a
fast path program that streamlines the execution of the
most common capsule programs. Techniques such as
scheduling by path (found in Scout [22]) may also be
applicable.

Discussion
Variabili ty in network applications and traffic

patterns suggests that there is no right answer.
Although the performance that can be gained through
binary encodings is attractive, it comes at the cost of

3We assume the availability of appropriate authentication
and tamper-proof signature technology.

portability. Furthermore, the instruction encodings
associated with modern processors are far from
compact - these schemes might give rise to much
larger capsules than an intermediate encoding,
suggesting a trade-off between transmission bandwidth
and processing capacity. Finally, node implementors
designing for high risk environments, i.e., focusing on
safety, may prefer interpretation-driven schemes that
audit the execution of each instruction.

Our plan is to adopt a Java-like instruction set as
the basis for ActiveNet interoperabili ty and code
mobility. One of the benefits of the present IP packet
format is that it enables an "hourglass" architecture in
which a variety of upper layer protocols can operate
over a wide range of network substrates. An
intermediate instruction set will provide an analogous
hourglass that facilitates mobili ty. A range of
programming languages and compilers can be used to
generate highly mobile intermediate code that can be
executed on a wide range of hardware platforms.

Nonetheless, we believe that it will also prove
practical and attractive to provide extensions that
allow users and node implementors to leverage source
and binary technologies. The architectural trick will be
to enable these technologies, while retaining the
intermediate instruction set as a fallback point that
ensures interoperability. We have considered the
following extensions:

• Allow programmers to optimistically leverage a
source programming language, such as Safe-Tel,
in the hope that it is supported at the nodes a
capsule traverses. A node that is not equipped
with the appropriate interpreter or translator
could either demand load one or forward the
capsule to some other node that can translate it
to the intermediate representation.

• Allow "fat" capsules that carry binary encodings
(for popular platforms) alongside their
intermediate encodings.

• Have nodes track their use of external methods,
identifying candidates for binary encoding. A
node could leverage on-the-fly technology to
translate such methods locally, or it could load
platform-specific versions from elsewhere on the
network.

• The previous suggestion might be combined with
demand loading. A node can identify its platform
type whenever it requests an external method,
affording the supplier the option of returning a
binary encoding should an appropriate one be
readily available.

4.3 Summary

In this section, we have outlined our approach to
the safe and efficient evaluation of capsules. Although
it is useful to distinguish between the program
representation and its. implementation, we realize that
the two will strongly influence each other. The choice

ACM SIGCOMM -12- Computer Communication Review

of programming environment is going to preferentially
favor certain implementation strategies, and at the
same time implementat ion strategies that lead to
efficiency or greater security (or simply become more
popular) are going to influence the programming
environment.

Having identified the requirement for common
programming models, we are not suggesting that a
single model be immediately standardized. The
tensions between available programming models and
implementation technologies can sort themselves out
in the research "marketplace" as diverse experimental
systems are developed, fielded, and accepted or
rejected by users. For example, if the marketplace
identifies two or three encodings as viable, then nodes
that concurrently support all of them will emerge. As
systems evolve to incorporate the best features of their
competitors, we expect that a few schemes will
become dominant.

5. NODE RESOURCES - INTEROPERABILITY
AND SAFETY

Active networks will provide the building blocks for
a shared information infrastructure that transcends
many administrative domains. Accordingly, their
design must address a range of "sharing" issues that
are often brushed over in systems that are used in less
public environments. We focus on two of the issues
that must be addressed. For interoperability, capsule
programmers must have a shared understanding as to
what the resources are and how they are named.
Secondly, mechanisms must be provided to limit
access to scarce or sensitive resources. 4

5.1 Interoperability - Resource Specification

The complexity of a system in which every capsule
leverages a wide range of resources - each of which
must be named, have its attributes specified and be
carefully allocated - could explode quite quickly.
For tuna te ly , mos t capsules will not require
sophist icated resource models. We propose a
relatively spartan approach employing a small set of
platform independent abstractions for the physical
resources of a node: t ransmiss ion bandwidth,
processing capacity, and transient storage. Additional
flexibility is provided through longer term storage and
logical resources, used by advanced applications, such
as topo logy d i scovery , routing, and network
management.

Transmission Bandwidth

Link bandwidth is typically not considered by the
scheduling or resource al locat ion schemes of

4There may be a further requirement to control the
scheduling of some resources, such as transmission
bandwidth. There may also be requirements for resource
metering, accounting and/or auditing.

conventional operating systems. The link abstraction
must encompass the units of bandwidth allocation and
may take account of the traffic patterns that are
generated. A detailed approach could draw on the
service model [23] activities of the IETF. In some
environments, simpler schemes may be possible, e.g.,
allowing each capsule program to consume a quantity
of transmission bandwidth that is proportional to the
size of the capsule it arrived in.

Instruction Execution (CPU)

It is somewhat easier to abstract a node ' s
instruction processing resources - even multiprocessors
tend to be homogeneous and their aggregate capacity
is more or less es tabl ished through industry
benchmarks. In many cases, it will be sufficient to
assign every capsule a default allocation that guards
against runaway computations. However, the ability to
trade computation against bandwidth may be useful to
encourage, for example , compress ion prior to
transmission on low bandwidth links.

Transient Storage

The transient execution environment consumes
short term storage, which might also be limited. We
tend to think of storage capacity along two axes: the
storage utilized during specific intervals and the
duration of those intervals. The former can be
addressed by placing a default bound on the transient
s torage that can be a l located during capsule
evaluation. The latter is somewhat trickier. We
expect that most capsules will comple te their
execution quickly, i.e., in a few milliseconds or less.
However, some capsules may linger, especially those
that must rendezvous with others. This issue might be
addressed by establishing a policy that permits the
"garbage collection" of inactive capsules during times
of shortage and requires capsules that are deliberately
"sleeping" to place themselves in hibernation within
longer term active storage.

Active Storage

We have identified requirements for the storage of
components, such as external methods and data, that
survive the execution of individual capsules. We find
it useful to distinguish between two types of active
storage, soft and persistent. Soft storage is used to
cache objects, such as "hints", "flow state" or demand
loaded components , that do not survive the re-
initialization of a node. They can be deleted from the
store without notice and their contents regenerated or
reacquired if they are later needed. Given that this
space is easily reclaimed, limits on its allocation may
not be as important as the strategy that selects
"victims" for reclamation 5. Persistent storage provides
a longer term abstraction for information that must be
reliably stored, such as logs that are intended for

5Mechanisms such as those described in [24] might be
used to "page" soft state to/from nearby nodes.

ACM SIGCOMM -13- Computer Communication Review

accounting and auditing purposes. This storage may
also be used by appl ica t ions that implement
asynchronous mult i -cast services, such as news
distribution groups. Although this storage abstraction
will be avai lab le at most nodes, it may be
implemented by accessing replicated storage services
located elsewhere on the network. We hope to
leverage technologies such as [25] for this purpose.

Logical Resources
Although there are a relatively small number of

physical resources, a node may support a large number
of logical resources of many different types. This
suggests the need for a uniform (not necessarily global)
mechanism for naming instances of logical resources,
including dynamically created resources, such as soft
and persistently stored components. Fortunately, there
is an abundance of past work on object naming
schemes.

The class specifications of many logical resources,
such as application-specific external methods or flow
states, may be private in the sense that they need only
be known to capsules generated by the relevant
application. However , there will be a need for
interoperable class specifications for some resources,
such as routing tables. In this case, we hope to
leverage existing notations, such as those used for
SNMP Managemen t Informat ion Bases (MIBs).
Where possible, we will leverage the existing MIB
specifications themselves, which should facilitate
interoperation between the ActiveNet and the existing
Internet.

5.2 Resource Safety

The safe manipulation of node resources can be
partitioned into three types of activities:

• dynamic, yet safe, assignment of resources to
specific capsules.

• validation of user requests for resource
assignment, through authentication and
verification of their authorizations.

• automated delegation of resource authorizations.

Dynamic Assignment
Recall that our overall plan is to leverage the

closure/addressability limitations enforced by active
technologies. Resources are always represented and
accessed through external methods and the default
resources available to a capsule are included in the
closure with which it is initiated. There is a further
requirement for a mechanism that supports dynamic
resource allocation. This can be accomplished by
providing an external method that allows a program to
request the safe "extension" of its closure.

Validation
The mechan i sm per fo rming val idat ion must

authenticate the capsule source, check that it is
authorized to access the resource and (possibly) verify

that the resource request has not been tampered with.
This mechanism need only be used in conjunction with
requests for additional resources.

We assume that cryptography will provide the basis
for the validation mechanism, but we may use a
combinat ion of schemes to reduce per-capsule
overheads. For example, a public key scheme could
be used to perform an initial authentication that
establishes "soft state" that is then used by a lighter
weight per-capsule signature algorithm. We are
particularly interested in recent work on inexpensive
techniques that provide less security for individual
messages, but defend against large scale attacks [26].

Delegation
The preceding section assumed that the validation

mechanism has access to information concerning
authorizations, e.g., policy-initiated decisions as to the
resources that can be made accessible to specific users
or applications. We require a mechanism that supports
the automated delegat ion of authorizat ions, in
accordance with a straightforward model that both
implementors and administrators can reason about.
This issue was previously considered within the context
of time-sharing systems [27, 28] but we are not aware
of work that addresses delegation in as complex a
System as the ActiveNet. Work on the cascading [29]
and logic [30] of authentication, which has some of the
delegation flavor we are looking for, may provide a
starting point for further research.

Ultimately, this may be one of the most important
"open" questions with respect to active networks. We
envision an Act iveNet with as many or more
administrative domains as the Internet (which is still
growing), and administrators will be swamped if they
are expected to manually coordinate the detailed
authorization information This is another place where
complexity, in this case administrative complexity,
could overwhelm the infrastructure.

6. FROM I N T E R N E T TO A C T I V E N E T

We suggest that interested researchers pool their
talents in an effort to deploy a wide area ActiveNet.
This experimental infrastructure could be overlaid on
existing substrates, such as the Internet and the VBNS,
obviating the need for dedicated transmission facilities.
Although most of the ActiveNet nodes could be located
at participating research sites, provision should be
made to locate nodes at strategic locations not
normally accessible to researchers, e.g., the NAPs of
the Internet. If a research ActiveNet proves successful,
it could be extended to assume direct control over the
underlying transmission resources.

In assembling a collection of nodes into an
ActiveNet it will be necessary to deal with many of the
issues that have been addressed in the design of the
current Internet - topology discovery, routing, etc.
Initially, we expect to adopt the techniques used in the
Internet. However, researchers should also investigate

ACM SIGCOMM -14- Computer Communication Review

new algorithms that leverage the availability of active
nodes.

Eventually, it will be important to converge on an
interoperable programming model that will achieve for
active networks what IP standardization has for the
Internet. However, the connectivity available through
existing substrates will makes it possible to deploy a
multiplicity of programming models in parallel,
affording the research community an opportunity to
explore alternative programming models and node
implementations. It will be particularly important to
engage application developers and users in the
development of customized software components that
exercise this "architecture of architectures".

7. ARCHITECTURAL CONSIDERATIONS

Conventional network architectures separate the
upper (end-to-end) layers from the lower (hop-by-hop)
layers. The network layer bridges these domains and
enables interoperabi l i ty by providing a f ixed
application- and user- neutral service that supports the
exchange of opaque data between end systems.

Active networks challenge this traditional thinking
in a number of ways: the computations performed
within the network can be dynamically varied; they
can be user- and application-specific; and the user data
is accessible to them. We realize that this break with
tradition raises a number of important questions, some
of which are addressed in the following responsa.

How is interoperability achieved?

The key to interoperability is the network layer
service, which is at the narrow point of the "hourglass".
In the case of the Internet [9], there is a detailed
specification of the syntax and semantics of the IP
protocol, which must be implemented by all of the
routers and communicating end systems. In effect,
interoperability is supported by requiring that all of the
nodes perform "equivalent" computations on the
packets flowing through them.

In contrast, active nodes are capable of performing
many different computations (i.e., executing many
different programs) for different groups of users.
However, the nodes must all support an "equivalent"
computa t ion model . Thus, ne twork layer
interoperabili ty is based on an agreed program
encoding and computation environment instead of a
standardized packet format and fixed computation.

Architecturally, we are bumping up the level of
abstraction at which interoperability is realized. There
is still an hourglass - but the abstraction at its thinnest
point has been made programmable.

Isn't the trend towards less functionality in the
network?

The long term trend has actually been towards
increased computation within the network. Whereas
telephony circuit switches restrict computation to call

setup time, packet switches perform computations on
the header of every packet flowing through them.
Active nodes extend the domain of computation to
include the user data.

It is the "intelligence" or control over the network-
based computation that has been migrating to the
edges, allowing users to exercise greater control over
their networks. Experience suggests that the two go
hand in hand - increasing the flexibility of the
computation performed within the network enables the
deployment of even greater computational power at the
edges.

What ' s the impact on the layered reference model?

There is presently a disconnect between what users
consider to be " inside" the network and the
prac t i t ioner ' s perspect ive, which is somewhat
restricted. For example, web browsers allow users to
interact with what they perceive to be "the network"
without distinguishing among the many routers, domain
name servers, and web servers that conspire to provide
the service. It may be time for practitioners to re-
evaluate their abstractions and start thinking about the
network at a higher level.

Current thinking concerning network architecture
has its roots in the layering of abstractions codified in
the OSI Reference Model [31]. Although the model
has proven quite useful it is showing cracks that should
be addressed:

• Services at or below the network layer are
presumed to be user- and application- neutral.

• It deals poorly with upper layer services that are
physically interposed between communicating
end points. Application relays can model these
cases, but they are far from elegant,

• It does not model the "recursion" that occurs at
the network layer, i.e., the tunneling of networks
over each other.

• The upper layers, which have never been
particularly satisfactory, are of diminished
importance, given that active technologies
enable the exchange of modules that implement
application-specific protocols.

We are not certain what form a new model might
take, but suggest that it will be more component-based
than layered [32]. It might distinguish primitive
functions, such as cell relaying and IP "fast paths",
from computationally active functions, including those
that conf igure the fast path componen t s .
Architecturally, these two types of components might
be viewed as peers rather than layered upon each other.
Such an architecture might also give rise to new
hardware activities, such as the development of
switching technology that "caches" fast paths and is
highly responsive to active capsules.

What about the end-to-end argument?
The "end-to-end argument" [33] concerns the design

of intermediaries, such as networks, that provide

ACM SIGCOMM -15- Computer Communication Review

services that cannot be made perfectly reliable. Since
users of these services must provide "end-to-end"
mechanisms that cope with failures, designers are
counseled against over-engineering the intermediaries
by adding significantly to their complexity or overhead,
i.e., by trying to make them "almost" perfectly reliable.
Instead, the des igner ' s object ive should be an
"acceptable" level of reliability that does not trigger
excessive intervention by the end-to-end mechanism.
The designer is encouraged to strike a balance by
re lying on end- to -end mechan i sms to ensure
correctness, and by leveraging simple and optimistic
m e c h a n i s m s to enhance p e r f o r m a n c e , where
appropriate.

While locating computation within the network may
appear to contradict this guideline, we note that the
argument pertains to the placement of functionality - it
does not suggest that the choice of functions that are
appropriately located within the network cannot be
application-specific. If anything, active networks allow
this guideline to be fol lowed more carefully, by
allowing applications to selectively determine the
partitioning of functionality between the end points and
intermediaries.

Why hasn't this been done before? Why try now?
The approach we are proposing synthesizes a

number of technologies: programmable node platforms,
component -based software engineering, and code
mobility. A few "programmable" networks have been
developed in the past, and suggestions for object-based
approaches to network implementation surface every
few years. However , the previous work has not
leveraged code mobility within the network, let alone
within the context of each and every capsule or packet.

A key enabler of our approach is the availability of
"active technologies" that enable safe and efficient
code mobility. The absence of these technologies
would have precluded similar projects in the past - and
their recent emergence underscores the timeliness of
the proposed effort.

8. CONCLUSIONS

In this paper we have described our vision of an
active network architecture that can be programmed by
its users. We have also called for community
participation in an effort to develop and deploy a
research ActiveNet. In the course of this presentation
we have raised a number of architectural issues and
research questions that remain to be addressed.

We expect that active networks will enable a range
of new applications in addition to the lead applications
that already rely on the interposition of customized
computation within the network. However, we believe
that this work will also have broader implications, on
how we think about networks and their protocols; and
on the infrastructure innovation process.

Programming the Network
We are apply ing a p r o g r a m m i n g language

perspective to networks and their protocols. In place of
protocol "stacks", we anticipate the development of
protocol components that can be tai lored and
composed to perform application-specific functions.
These protocol components will leverage the tools of
the modern programming trade - encapsulat ion,
polymorphism and inheritance. Within our own
research group, we are setting out to create a
"Smalltalk of networking" and are interested not just in
the "language" itself but also in the class hierarchy,
etc. that will develop around it.

Our enthusiasm is tempered by the realization that
suggest ions for ob jec t -o r ien ted approaches to
networking surface every five to ten years, and have
had little impact on mainstream research. However,
we believe that it is now time to make a large scale
effort towards their realization. The availability of
act ive technologies and lead appl icat ions - in
conjunct ion with r ising process ing power and
bandwidth - presents opportunities that were not
previously available.

Infrastructure Innovation
As the Internet grows it is increasingly difficult to

maintain, let alone accelerate, the pace of innovation.
Today, after a concept is prototyped its large scale
deployment takes about 8 years. The process involves
standardization, incorporation into vendor hardware
platforms, user procurement and installation. The
present backlog within the IETF includes multicast,
authentication and mobility extensions, RSVP and
IPv6.

Active networks will address the mismatch between
the rate at which user requirements can change, i.e.,
overnight, and the pace at which physical assets can
be deployed. They will accelerate the pace of
innovation by decoupling network services from the
underlying hardware and by allowing new services to
be demand loaded into the infrastructure. In the same
way that IP enabled a range of upper layer protocols
and transmission substrates, active networks will
facilitate the development of new network services and
hardware platforms.

Convent ional network touters are based on
proprietary hardware platforms that are bundled with
customized software. Active networks present an
opportunity to change the structure of the networking
industry, from a "mainf rame" mind-set, in which
hardware and software are bundled together, to a
"virtualized" approach in which hardware and software
innovation are decoupled [34]. A market for "shrink-
wrapped" network software will facilitate innovation
by:

• Allowing third parties to develop innovative
software without customizing their products to a
specific platform.

ACM SIGCOMM -16- Computer Communication Review

• Removing the software barrier to entry that
discourages new players from fielding innovative
hardware.

• Addressing the "chicken and egg" problem
associated with new services - vendors are
hesitant to support services before they gain user
acceptance, yet the utility of many network
services is dependent on their widespread
availability.

Furthermore, the process will be user-driven. The
widespread availability of new services will depend on
their acceptance in the marketplace, without being
delayed by vendor consensus and standardization
activities. Similarly, hardware vendors will seek
competitive advantage by optimizing their platforms to
suit changing workloads.

S u m m a r y

Active networks appear to break many of the
architectural rules that conventional wisdom holds
inviolate. However, we believe that they build on past
successes with packet approaches, such as the Internet,
and at the same time relax a number of architectural
limitations that may now be artifacts of previous
generations of hardware and software technology.

Passive network architectures that emphasize
packet-based end-to-end communication have served
us well. However, as our lead users demonstrate,
computation within the network is already happening -
and it would be unfortunate if network architects were
the last to notice. It is now time to explore new
architectural models, such as active networks, that
incorporate interposed computation. We believe that
such efforts will enable new generations of networks
that are highly flexible and accelerate the pace of
infrastructure innovation.

ACKNOWLEDGMENTS

The authors wish to thank: Jennifer Steiner Klein,
who assisted in the drafting and technical editing of the
manuscript; Rachel Bredemeier who assisted with
layout and the bibliography; and Sun Microsystems
Laboratories, who provided "seed" funding for this
project. This work has been influenced by discussions
with a number of researchers, especially: Deborah
Estrin, Henry Fuchs, Butler Lampson, Paul Leach,
Gary Minden, Herb Schorr, Scott Shenker and Dave
Sincoskie.

REFERENCES

1. Chankhuntod, A., P.B. Danzig, and C. Neerdaels. A
Hierarchical Internet Object Cache. in Proceedings
of 1996 USENIX. 1996.

2. Blaze, M. and R. Alonso. Dynamic Hierarchical
Caching in Large-Scale Distributed File Systems. in
12th Intl. Conf. on Distributed Computing Systems.
1992. Yokohama, Japan.

3. Gwertzman, J.S. and M. Seltzer. The Case for
Geographical Push-Caching. in 1995 Workshop on
Hot Operating Systems. 1995.

4. Kleinrock, L. Nomadic Computing (Keynote
Address). in Int. Conf. on Mobile Computing and
Networking. 1995. Berkeley, CA.

5. Balakrishnan, H., et al. Improving TCP/IP
Performance over Wireless Networks, in Int. Conf.
on Mobile Computing and Networking. 1995.
Berkeley, CA.

6. Amir, E., S. McCanne, and H. Zhang. A n
Application Level Video Gateway. in A C M
Multimedia '95. 1995. San Francisco, CA.

7. Le, M.T., F. Burghardt, and J. Rabaey. Software
Architecture of the Infopad System. in Mobidata
Workshop on Mobile and Wireless Information
Systems. 1994. New Brunswick, NJ.

8. Pasquale, J.C., et al. Filter Propagation in
Dissemination Trees: Trading Off Bandwidth and
Processing in Continuous Media Networks. in 4th
Intl. Workshop on Network and Operating System
Support for Digital Audio and Video. 1993.

9. Clark, D.D. The Design Philosophy of the DARPA
Internet Protocols. in ACM Sigcomm Symposium.
1988. Stanford, CA.

10. von Eicken, T., et al. Active Messages: A
Mechanism for Integrated Communication and
Computation. in 19th Int. Syrup. on Computer
Architecture. 1992. Gold Coast, Australia.

11. Agarwal, A., et al. The MIT Alewife Machine:
Architecture and Performance. in 22nd Int. Symp. on
Computer Architecture (ISCA '95). 1995.

12. O'Malley, S.W. and L.L. Peterson, A Dynamic
Network Architecture. ACM Transactions on
Computer Systems, 1992. 10(2)p. 110-143.

13. Jones, M. Interposition Agents: Transparently
Interposing User Code at the System Interface. in
14th ACM Symp. on Operating Systems Principles.
1993. AsheviUe, NC.

14. Bershad, B., et al. Extensibility, Safety and
Performance in the SPIN Operating System. in 15th
A CM Syrup. on Operating Systems Principles. 1995.

15. Engler, D.R., M.F. Kaashoek, and J. O'Toole Jr.
Exokernel: An Operating System Architecture for
Application-Level Resource Management. in 15th
ACM Symp. on Operating Systems Principles. 1995.

16. Borenstein, N. Email with a Mind of its Own: The
Safe-Tcl Language for Enabled Mail. in IFIP
International Conference. 1994. Barcelona, Spain.

17. Gosling, J. and H. McGilton, The Java Language
Environment: A White Paper, 1995, Sun
Microsystems.

18. Gosling, J. Java Intermediate Bytecodes. in
S IGP LA N Workshop on In termedia te
Representations (IR95). 1995. San Francisco, CA.

ACM SIGCOMM -17- Computer Communication Review

19. Wahbe, R., et al. Efficient Software-Based Fault
Isolation. in 14th ACM Syrup. on Operating Systems
Principles. 1993. Asheville, NC.

20. Colusa Software, Omniware: A Universal Substrate
for Mobile Code, 1995, Colusa Software.

21. Engler, D.R., W.C. Hsieh, and M.F. Kaashoek. "C:
A Language for High-LeveL Efficient, and Machine-
Independent Dynamic Code Generation. in 23rd
Annual ACM Syrup. on Principles of Programming
Languages (to appear). 1996. St. Petersburg, FL.

22. Montz, A.B., et al., Scout: A Communications-
Oriented Operating System, 1994, Dept. of
Computer Science, University of Arizona.

23. Shenker, S., D.D. Clark, and L. Zhang. Services or
Infrastructure: Why we Need a Network Service
Model. in 1st Int'l Workshop on Community
Networking. 1994. San Francisco, CA.

24. Anderson, T.E., et al., A Case for Networks of
Workstations: NOW. IEEE Micro, 1995. 15(1) p.
54-64.

25. Liskov, B., et al. Safe and Efficient Sharing of
Persistent Objects in Thor. in SIGMOD '96. 1996.
Montreal, Canada.

26. Manasse, M.S. The Millicent Protocols for
Electronic Commerce. in 1st USENIX Workshop on
Electronic Commerce. 1995. New York, NY.

27. Bell, D.E. and L.J. LaPadula, Secure Computer
Systems: Unified Exposition and Multics
Interpretation, 1976, MITRE Corp.

28. Wilkes, M.V. and R.M. Needham, The Cambridge
CAP Computer and Its Operating System. Operating
and Programming Systems Series, ed. P.J. Denning.
1979, New York City: North Holland.

29. Sollins, K.R. Cascaded Authentication. in
Proceedings of the 1988 IEEE Symposium on
Security and Privacy. 1988. Oakland, CA.

30. Burrows, M., M. Abadi, and R. Needham, A Logic
of Authentication. ACM Transactions on Computer
Systems, 1990. 8(1) p. 18-36.

31. ISO, Information Processing Systems - Open
Systems lnterconnection - Basic Reference Model
1984, ISO.

32. Clark, D.D. and D.L. Tennenhouse. Architectural
Considerations for a New Generation of Protocols.
in ACM Sigcomm Symposium. 1990.

33. Saltzer, J.H., D.P. Reed, and D.D. Clark, End-To-
End Arguments in System Design. ACM
Transactions on Computer Systems, 1984. 2(4) p.
277-288.

34. Tennenhouse, D., et al., Virtual Infrastructure:
Putting Information Infrastructure on the
Technology Curve. Computer Networks and ISDN
Systems (to appear), 1996.

ACM SIGCOMM -18- Computer Communication Review

