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ABSTRACT 

Active networks  al low their users to inject 
customized programs into the nodes of  the network. An 
extreme case, in which we are most interested, replaces 
packets with "capsules" - program fragments that are 
executed at each network router/switch they traverse. 

Active architectures permit a massive increase in the 
sophistication o f  the computation that is performed 
within the network. They will enable new applications, 
especially those based on application-specific multicast, 
information fusion, and other services that leverage 
network-based computation and storage. Furthermore, 
they will accelerate the pace o f  innovation by 
decoupling network services f rom the underlying 
hardware and allowing new services to be loaded into 
the infrastructure on demand. 

In this paper, we describe our vision of  an active 
network architecture, outline our approach to its design, 
and survey the technologies that can be brought to bear 
on its implementation. We propose that the research 
community mount a joint effort to develop and deploy a 
wide area ActiveNet. 

1. INTRODUCTION 

Traditional data networks passively transport bits 
from one end system to another. Ideally, the user data 
is transferred opaquely, i.e., the network is insensitive 
to the bits it carries and they are transferred between 
end systems without modification. The role of 
computation within such networks is extremely limited, 
e.g., header processing in packet-switched networks 
and signaling in connection-oriented networks. 

Active Networks break with tradition by allowing 
the network to perform customized computations on the 
user data. For example, a user of an active network 
could send a customized compression program to a 
node within the network (e.g., a router) and request that 
the node execute that program when processing their 
packets. These networks are "active" in two ways: 

° Switches perform computations on the user data 
flowing through them. 

° Individuals can inject programs into the network, 
thereby tailoring the node processing to be user- 
and application-specific. 

We have identified several architectural approaches 
to active networks. One approach, which we find 

particularly interesting, replaces the passive packets of 
present day architectures with active "capsules" - 
miniature programs that are executed at each router 
they traverse. This change in architectural perspective, 
f rom pass ive  packets  to ac t ive  capsules ,  
s imultaneously addresses both of  the "act ive"  
properties described above. User data can be 
embedded within these mini-programs, in much the 
way a page's contents are embedded within a fragment 
of PostScript code. Furthermore, capsules can invoke 
pre-defined program methods or plant new ones within 
network nodes. 

Our work is motivated by both technology "push" 
and user "pull". The technology "push" is the 
emergence of "active" technologies, compiled and 
interpreted, supporting the encapsulation, transfer, 
interposition, and safe and efficient execution of 
program fragments. Today, active technologies are 
applied within individual end systems and above the 
end-to-end network layer; for example, to allow Web 
servers and clients to exchange program fragments. 
Our innovation is to leverage and extend these 
technologies for use within the network - in ways that 
will fundamentally change today's model of what is 
"in" the network. 

The "pull" comes from the ad hoc collection of 
firewalls, Web proxies, multicast routers, mobile 
proxies, video gateways, etc. that perform user-driven 
computation at nodes "within" the network. Despite 
architectural injunctions against them, these nodes are 
flourishing, suggesting user and management demand 
for their services. We are developing the architectural 
support and common programming platforms to support 
the diversity and dynamic deployment requirements of 
these "interposed" services. Our goal is to replace the 
numerous ad hoc approaches to their implementation 
with a generic capability that allows users to program 
their networks. 

There are three principal advantages to basing the 
network architecture on the exchange of active 
programs, rather than passive packets: 

• Exchanging code provides a basis for adaptive 
protocols, enabling richer interactions than the 
exchange of fixed data formats. 

• Capsules provide a means of implementing fine 
grained application-specific functions at 
strategic points within the network. 
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• The programming abstraction provides a 
powerful platform for user-driven customization 
of the infrastructure, allowing new services to be 
deployed at a faster pace than can be sustained 
by vendor driven standardization processes. 

This paper presents our vision of an active network 
architecture and the approach we are following towards 
the deployment of  an operational ActiveNet. The 
active network approach opens a Pandora 's  box of 
safety, security,  and resource allocation issues. 
Although we do not present a complete design, we 
identify a number of  specific research issues, outline 
the approach we are following towards their resolution 
and identify the technologies we intend to leverage. 
Our plan is to bootstrap a wide area ActiveNet using 
similar techniques to those used by the prototype 
MBONE,  i.e., by locating platforms at strategic 
locations and "tunneling" through existing transmission 
facilities, such as the Internet. 

In the next section we provide a description of some 
of the "lead user" applications that motivate an 
architecture that facilitates computation within the 
network. In section 3, we provide an overview of 
active networks, a high-level perspective on how we 
propose to organize their platforms and an introduction 
to the research issues that must be addressed. Section 
4 describes the "instruction set" issues associated with 
an interoperable programming model and how "active 
technologies" can be leveraged to effect the safe and 
efficient evaluation of capsules. We then discuss the 
management of  node resources, such as storage and 
link bandwidth,  fo l lowed by our plan for the 
deployment of  a research ActiveNet. We realize that 
our work challenges some key assumptions that have 
guided recent networking research and so the final 
sections of  this paper discuss the architectural and 
structural questions raised by our approach. 

2. LEAD USERS 

Recently, there has been considerable interest in: 
agent technologies, which allow mobile code to travel 
from clients to servers; and in Web applets, which 
allow mobile code to travel from servers to clients. 
Active networks bridge this dichotomy by allowing 
applications to dispatch computation to where it is 
needed. 

We are encouraged by the observation that a 
number of lead users have pressing requirements for the 
transparent interposition of computation within the 
network. These include the developers of: 

• Firewalls, which are typically located at 
administrative boundaries. 

• Web proxies and other services, such as DNS 
and multicast routers, that form strategic vertices 
of copy, fusion and cache "trees". 

• Mobile/Nomadic gateways, placed near the 
edges of the network where there are significant 

discontinuities in the available bandwidth, e.g., 
the base stations of wireless networks. 

These lead applications demonstrate that there is 
user "pull" towards active networks. In the absence of 
a coherent approach to interposition they have adopted 
a variety of  ad hoc strategies. In many cases the 
interposed platforms present the facade of network 
layer routers, but actually perform application- or user- 
specific functions. Active networks will rationalize 
these diverse activities by providing a uniform platform 
for network-based computation. 

Firewalls 

Firewalls implement filters that determine which 
packets should be passed transparently and which 
should be blocked. Although they have a peer 
re la t ionship to other routers ,  they imp lemen t  
application- and user- specific functions, in addition to 
packet routing. The need to update the firewall to 
enable the use of new applications is an impediment to 
their adoption. In an Active Network, this process 
could be automated by allowing applications from 
approved vendors to authenticate themselves to the 
firewall and inject the appropriate modules into it. 

Web Proxies 

Web proxies are an example of  an application- 
specific service that is tailored to the serving and 
caching of World Wide Web pages. Harvest  [1] 
employs a hierarchical scheme in which cache nodes 
are located near the edges of  the network, i.e., within 
the end user organizations. This system is scalable and 
could be extended by allowing nodes of  the hierarchy 
to be located at strategic points within the networks of 
the access providers and inter-exchange carriers. An 
interesting problem is the development of  algorithms 
and tools that automatically balance the hierarchy by 
re-positioning the caches themselves,  not just  the 
cached information.  Schemes such as dynamic  
hierarchical caching [2] and geographical push-caching 
[3] begin to address this issue. 

A further argument  in favor  of  using active 
technologies for web caching is that a significant 
fraction of web pages are dynamically computed and 
not susceptible to traditional (passive) caching. This 
suggests the development of  web proxy schemes that 
support "active" caches that store and execute the 
programs that generate web pages. 

Mobile/Nomadic Computing 

Interposition strategies are used by a number of  
researchers  addressing mobil i ty .  For example ,  
Kleinrock [4] describes a "nomadic router" that is 
interposed between an end system and the network. 
This module observes and adapts to the means by 
which the end system is connected to the network, e.g., 
through a phone line in a hotel room versus through the 
LAN in the home office. It might decide to perform 
more file caching or link compression when the end 
system is connected through a low bandwidth link 
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and/or invoke additional security, such as encryption, 
when operating away from the home office. 

Similarly, "nomadic agents and gateways" [4] are 
nodes that support mobility. They are located at 
strategic points that bridge networks with vastly 
different bandwidth and reliability characteristics, such 
as the junctions between wired and wireless networks. 
Application-neutral work on TCP snooping [5] improves 
the performance of TCP connections by retaining per- 
connection state information at wireless base stations. 
Application-specific services performed at gateways 
include file caching and the transcoding of images [6]. 
The InfoPad [7] takes the process even further, by 
instantiating user-specific "pad servers" supporting a 
range of applications, such as voice and hand-writing 
recognition, at intermediate nodes. 

New Application Domains 

There is an untapped reservoir of applications that 
require sophisticated network-based services to support 
the distribution and fusion of  information. One 
promising direction is the development of multi-point 
communication strategies that are more flexible than 
the existing IP multicast service, which performs a 
very limited computation on the user data, i.e., 
copying. Application-specific multicast, for example, 
would provide the mechanism to realize the quality of 
service filtering suggested in [8] for video-conferencing. 

Information fusion is an example of a domain that 
may leverage interposed computation. Applications 
such as sensor fusion, simulation and remote 
manipulation, allow users to "see" composite images 
constructed by fusing information obtained from a 
number of sensors. Fusing data within the network 
reduces the bandwidth requirements at the users, who 
are located at the periphery of the network. Placing 
application-specific computation near where it is 
needed also addresses latency limitations by shortening 
the critical feedback loops of interactive applications. 

3. ACTIVE NETWORKS 

In this section, we provide an overview of active 
networks - highly programmable networks that perform 
computations on the user data that is passing through 
them. We distinguish two approaches to active 
networks, discrete and integrated, depending on 
whether programs and data are carried discretely, i.e., 
within separate messages, or in an integrated fashion. 
We then provide a high-level description of how active 
nodes might be organized and describe a node 
programming model that could provide the basis for 
cross-platform interoperability. 

3.1 Programmable Switches - A Discrete Approach 

The processing of messages may be architecturally 
separated from the business of injecting programs into 
the node, with a separate mechanism for each function. 
Users would send their packets through such a 
"programmable" node much the way they do today. 

When a packet arrives, its header is examined and a 
program is dispatched to operate on its contents. The 
program actively processes the packet, possibly 
changing its contents. A degree of  customized 
computation is possible because the header of the 
message identifies which program should be run - so it 
is possible to arrange for different programs to be 
executed for different users or applications. 

The separation of program execution and loading 
might be valuable when it is desirable for program 
loading to be carefully controlled or when the 
individual programs are relatively large. This approach 
is used, for example, in the Intelligent Network being 
standardized by CCITT. In the Internet, program 
loading could be restricted to a router's operator who is 
furnished with a "back door" through which they can 
dynamically load code. This back door would at 
minimum authenticate the operator and might also 
perform extensive checks on the code that is being 
loaded. Note that allowing operators to dynamically 
load code into their routers would be useful for router 
extensibility purposes, even if the programs do not 
perform application- or user-specific computations. 

3.2 Capsules - An Integrated Approach 

A more extreme view of active networks is one in 
which every message is a program. Every message, or 
capsule, that passes between nodes contains a program 
fragment (of at least one instruction) that may include 
embedded data. When a capsule arrives at an active 
node, its contents are evaluated, in much the same 
way that a PostScript printer interprets the contents of 
each file that is sent to it. 

Figure 1 provides a conceptual view of how an 
active node might be organized. Bits arriving on 
incoming links are processed by a mechanism that 
identifies capsule boundaries, possibly using the 
framing mechanisms provided by traditional link layer 
protocols. The capsule's contents are dispatched to a 
transient execution environment where they can safely 
be evaluated. We hypothesize that programs are 
composed of "primitive" instructions, that perform 
basic computations on the capsule contents, and can 
also invoke external "methods", which may provide 
access to resources external  to the transient 
environment. The execution of a capsule results in the 
scheduling of zero or more capsules for transmission on 
the outgoing links and may change the non-transient 
state of the node. The transient environment is 
destroyed when capsule evaluation terminates. 

3.3 Programming With Capsules 

Our distinction between the discrete and integrated 
approaches is one of perspective, primarily useful as a 
basis for comparing two ways of thinking about 
networks and their programming. In practical terms, a 
network based on the integrated approach could be 
programmed to emulate the discrete approach and 
vice-versa. Nonetheless, we are intrigued by the 
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Figure 1. Active Node Organization 

possibilities afforded by the integrated perspective, 
especially with respect to new ways of leveraging 
computat ion within the network. It provides a 
programming language framework for thinking about 
networks - a framework that could enable the synthesis 
of  recent  results in the areas of  p rogramming  
environments, operating systems and networks. 

In the following paragraphs we discuss some ways 
in which active networks could be leveraged to support 
a variety of traditional functions, such as IP packet 
processing, connections, flows, routing protocols, etc. 
These examples are meant to provide insight into the 
"flavor" of the networks we envision and establish the 
groundwork for the discussion of the programming 
model and implementation technologies which follows. 

In simple applications, a capsule ' s  actions on 
visiting a node are to compute  its "next  hop" 
destination(s) and schedule zero or more (possibly 
modified) copies of itself for transmission on selected 
links. It will be necessary to provide mechanisms for 
determining and naming the links on which outgoing 
capsules are transmitted. In the IP protocol, this 
mechanism is "built-in" to every node and individual 
packets need only carry their destination address - they 
need not have knowledge of the links they traverse. In 
pure source routing schemes, each message carries the 
identities of all of the links it traverses. We hope to 
develop an intermediate approach, in which capsules 
can dynamically enumerate and evaluate the paths 
avai lable at a node, without requiring detailed 
knowledge at the time the capsule is composed. 

An important question concerns the degree to which 
a capsule program can access objects, such as routing 
tables, that lie beyond the transient  execution 
environment. In a restricted approach, capsules could 
be largely self-contained. Although sufficient to 
implement some interesting programs, e.g., the above- 
mentioned source routing, this model is somewhat 
confining. In the following paragraphs we discuss three 

ways in which programs could reach beyond the 
capsule's transient environment: 

• Foundation Components - universally available 
services implemented outside of  the capsule. 

• Active Storage - the ability to modify the state 
that node storage is left in at the completion of 
capsule execution. 

• Extensibility - allowing programs to define new 
classes and methods. 

Foundation Components 
Foundat ion  componen t s  i m p l e m e n t  external  

"methods" that provide controlled access to resources 
outside of  the transient execution environment.  A 
subset of these components will reflect the "API" of 
the node's  run-time environment to the applications. 
Other components provide a built-in class hierarchy 
that serves as a base for the development of  capsule 
programs. 

Many capsules will require access to other node- 
specific information and services, such as routing 
tables and the state of the node's  transmission links. 
Using built-in components that provide access to this 
information,  one could design capsules  whose 
evaluat ion per forms  s imilar  process ing  to that 
performed on the header of  an IP datagram. Multi-cast 
and option processing instructions could be included in 
the capsules that require them. Whereas the traditional 
IP approach calls for the code to be fixed and built into 
the router, in the active case the program is flexible 
and carried with the data. 

For migra t ion purposes ,  we could develop  
standardized components that implement the existing 
Internet protocol types. A capsule carrying an 
embedded IPv4 datagram could contain a single 
instruction of the form "execute the IPv4 method on 
the remainder of the payload". To put matters in 
perspective, we can think of existing routers as an 
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extremely restricted subset of  active nodes, in which 
the capsule "program" is carried in the IP protocol type 
field. The instruction set is restricted to pre-defined 
methods that correspond to the known protocol type 
field values  and imp lemen t  the s tandardized 
functionality specified by the IETF. 

Active Storage 
It would be advantageous if capsules could leave 

information behind in a node's  non-transient storage. 
One might open a connection by arranging for a 
capsule to be executed at each node along a specific 
path, and having it leave a small amount of associated 
state in each node it traverses. Subsequent packets 
following this path would include code that locates and 
evaluates the connection state at each node. 

A similar approach could be used to realize "flows" 
[9], which are somewhat  softer than connections. 
Every capsule would include code that attempts to 
locate and use its "flow" state at the nodes it traverses. 
However, flow capsules are somewhat more robust than 
those used during connections in that the flow state is 
not essential to the capsule's successful execution. I f  a 
flow capsule encounters a node that has no relevant 
state information, it dynamically generates the required 
data, uses it for its own purposes, and leaves it behind 
for the convenience of later capsules. The network 
nodes can treat flow states as "soft state" values that 
are cached and can be disposed of if necessary. In this 
respect, flows are less demanding than connections on 
the robustness of  node storage. Of  course, our active 
connections and flows are considerably more powerful 
than those of present day systems, in that the "state" 
left behind is in the form of programs rather than static 
table entries. 

Eventually, we hope to develop new schemes that 
go beyond traditional connections and flows. For 
example, capsules could be programmed to rendezvous 
at a node by arranging for the first arriving capsule to 
set some state information and then "sleep" until the 
remaining capsules have arrived. The capsules could 
then engage in some joint computation, such as may 
be used in sensor fusion applications or the pruning of 
multi-cast trees. 

Finally, we note that capsules capable of  modifying 
the node's storage provide a uniform mechanism for the 
implementation of background node functions. Routing 
protocols and table updates could be implemented in 
capsules as could network management functions, such 
as those provided by SNMP. Long-lived housekeeping 
functions could also be implemented in this manner, 
though in their case the " transient"  execution 
environment might survive until the node is reset. 

Program Extensibility 
Unless programs are short relative to the data they 

encapsulate, it will prove inefficient for them to be 
carried in individual messages. Accordingly, it makes 
sense for the p rogramming  envi ronment  to be 

extensible, so that capsules can "plant" uniquely 
named classes and methods at nodes, for reference by 
other capsules and methods. In this way, most 
capsules can be concise - possibly a single instruction 
that invokes a user-specific method on the remainder of 
the capsule contents. 

An interesting scheme would be to provide a 
mechanism that dynamically resolves references to 
external methods. Instead of capsules explicitly 
loading methods into the non-transient storage of the 
node, the node could contain a "cache" of known 
external methods and be equipped with a mechanism 
that allows it to locate and dynamically load methods 
on demand. 1 Although such a "demand" approach 
might suffer latency problems when a new application 
is started, this could be offset by allowing capsules that 
prime the cache when faults are anticipated. 

The dist inct ion between the "expl ic i t "  and 
"demand" loading schemes is closely related to the 
broader distinction we have made between discrete and 
integrated approaches to active networks. The explicit 
and discrete cases distinguish program loading as an 
explicit activity that must be completed prior to usage. 
In contrast, the demand and integrated cases offer 
increased flexibility with respect to determination and 
timing. Of  course, this flexibility comes at some cost 
in terms of the sophistication of the mechanisms 
required to support safe and efficient loading. 

3.4 Towards an Interoperable Programming Model 

To be of general utility, capsules require: mobility, 
so that programs can be transmitted across the network; 
and portability, so that they can be loaded into a range 
of platforms. This suggests the development of a 
relatively small number of standardized models for the 
programming of network nodes and the description and 
allocation of their resources. Our objectives for such 
models are that they support: 

• Mobility - the ability to transfer capsules and 
execute them on a range of platforms that 
leverage different underlying technologies. 

• Safety - the ability to restrict the resources that 
capsules can access. 

• Efficiency - enabling the above without 
compromising network performance, at least in 
the most common cases. 

Traditional packet networks achieve interoperability 
by standardizing the syntax and semantics of packets. 
For example, Internet routers all support the agreed IP 
specifications; although router implementations may 

1An interesting approach to resolving cache "faults" 
would be for a node to request the method from the node that 
sent it the faulting capsule - forming a chain back to the 
originator of the capsule who could be expected to take 
ultimate responsibility for resolving the reference. Of 
course, the originator might do so by demand loading the 
code from their software vendor. 
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differ, they implement roughly "equivalent" programs. 
In contrast, active nodes can execute many different 
programs,  i.e., they can perform very different 
computations on the packets flowing through them. 
Network interoperability is achieved at a higher level 
of  abst ract ion - instead of  s tandardizing the 
computa t ion  p e r f o r m e d  on every  packet ,  we 
s tandardize the computa t iona l  model ,  i.e., the 
instruction set and resources available to capsule 
programs. 

We find it convenient to distinguish between: issues 
surrounding the representation and evaluation of the 
capsules  themselves ;  and safe access to node 
resources. 

In section 4, we outline the functionality that is 
required and discuss mechanisms that can be used to 
support the safe and efficient execution of capsules. 
We discuss how "active technologies",  developed 
within the programming language and operating system 
communities,  can be used to prevent unauthorized 
access to resources that lie beyond the boundaries of 
the transient execution environment into which a 
capsule is dropped. 

In section 5, we discuss resource management,  
which is an important issue in active nodes - these 
nodes are components of the shared infrastructure and 
their users must be protected from each other to a 
degree that is typically not required within personal 
computers or even group servers. The programming 
model must deal with two issues associated with node 
resources: interoperability and resource management. 
The interoperability requirement is for a common 
model of the resources available at a node. Resource 
management  issues include resource allocation and 
capsule authentication and authorization. 

4. C A P S U L E  P R O G R A M S  - MOBILITY,  SAFETY 
AND EFFICIENCY 

In this section we discuss: the languages in which 
capsule programs are expressed; and mechanisms that 
can support their safe and efficient execution. Our 
overall approach is to evaluate each capsule within the 
context of  a transient execution environment whose 
lifetime is the interval during which the capsule is 
evaluated at a given node. Safety properties are 
provided by restricting the actions that can be 
performed and their scope, e.g., their access to storage 
and other node resources. 

4.1 C a p s u l e  P r i m i t i v e s  

There is a limited set of primitive actions that 
capsules can perform without straying beyond their 
transient environments.  These actions constitute a 
restricted programming language, or instruction set, 
that can perform: arithmetic and branch operations; and 
manipulate stack and heap storage of the transient 
environment. 

The set of  primitive actions will be extended 
through the addition of external method invocation, 
which provides access to resources beyond the 
transient environment. Some of these external methods 
will leverage the same primitive actions and will also 
be evaluated in a closed environment, i.e., with a sharp 
distinction between their self-contained actions and 
their access to other methods. Others will access the 
built-in "API" of the node's  run-time environment or 
embedded operating system. The API of active 
network nodes will be distinguished by the availability 
of  methods that are ta i lored to the ne twork  
environment, such as the efficient copying of capsules 
and sophisticated control over  the scheduling of 
transmission resources. 

For interoperability purposes all of  the active nodes 
along a capsule's path should be capable of evaluating 
the capsule's contents. 2 There are three well known 
ways of achieving this level of portability/mobility: 

• Express the programs in a high-level source 
language that may be interpreted at the nodes; 

• Adopt a platform independent intermediate 
representation, typically a byte coded "virtual" 
instruction set; 

• Express the programs in a platform-dependent 
binary format and arrange for each capsule to 
carry multiple encodings of its program - one for 
each type of platform that it traverses. 

We expect to leverage all three approaches.  
Source encodings  will p rove  useful  for rapid 
prototyping. An intermediate representat ion may 
provide a compact  and relatively efficient way to 
express relatively short programs. External methods 
could be similarly encoded or could be expressed in a 
machine dependent format. We expect that heavily 
used components will be packaged in binary libraries, 
e s p e c i a l l y  " b o o t s t r a p "  l ib ra r i e s  tha t  a l low 
administrators to initialize newly installed or repaired 
platforms. 

4.2 Safe and Efficient Execution 

One of the reasons that we believe it will be 
possible to realize active networks is the availability of 
active technologies - mechanisms that allow users to 
inject customized programs into shared resources. 
Active technologies are not new. However, our use of 
active technologies within the network is novel - until 
now the use of active technologies in networking has 
been end-to-end (e.g., shipping code from servers to 
clients or vice-versa). In the case of active networks, 
the shared resources in question are the routers, 
switches and servers that lie within the network. Our 

2At each hop, a capsule could translate itself into the 
language that is understood by the "next hop" node along its 
path. However, this approach seems extreme - even by our 
standards ! 
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work will leverage and extend the presently available 
technologies. 

Active Technologies  - Background 

Active technologies have been emerging in the 
fields of operating systems and programming languages 
for over ten years. Early work tended to address only 
one of three important issues - mobility, efficiency or 
safety. PostScript is an example of an early effort that 
stressed mobility over safety. Applications generate 
mobile programs that are executed at printers, which 
may be shared and distributed about a network. 

In the field of  parallel processing, "active 
messages" [10, 11] stressed efficiency over mobility by 
reducing the "program" to a single instruction - each 
message invokes an application-specific handler 
resident at the recipient. The handler provides a low 
overhead mechanism for dispatching arriving 
messages, so that they can be treated as self- 
scheduling computations. These systems, which 
targeted communication internal to a single parallel 
processor complex, did not address the safety issues 
relevant to shared infrastructures. 

The advent of heterogeneous distributed systems 
and internetworking has accelerated the pace of  
research. The x-kernel [12] supports the composition of 
protocol handlers by providing a regular architecture for 
stacking them and by automating the dispatch process. 
Other efforts [13-15] have focused on less friendly 
environments by improving both the safety and 
efficiency with which handlers can be implemented. 
Most recently, there have been efforts to jointly 
address all three issues - mobility, safety and 
eff iciency - under the banners of  configurable 
operating systems, agents, mobile applets and other 
schemes related to the World Wide Web. 

Leveraging Active Technologies  

Active networks will adapt and extend active 
technologies for use within the network. In general, 
these technologies provide for safe execution by 
restricting the set of primitive actions available to 
mobile programs and the scope of their operands, e.g., 
their access to storage and other resources. An 
interesting question is how to organize the closures 
which provide the basis for safe execution. Our starting 
position is that the namespace of a capsule is restricted 
to the transient environment. This containment policy 
may be relaxed by initializing the closure with a 
default set of foundation components that all capsules 
are allowed to dispatch. Any capsule that accesses 
methods outside of that space must first request that its 
closure be extended by authenticating itself to a 
mechanism that validates its authorization. 

In the following paragraphs, we discuss the 
available technologies in terms of  the program 
encoding approaches - source, intermediate, or 
platform dependent binary - and then introduce "on- 

the-fly" compilation, a complementary technology that 
is also of interest. 

Source  Code 

Safe-Tcl [16] is an example of a language that 
achieves safety through interpretation of  a source 
program and closure of its namespace. The safety of 
such a system derives from the restricted closure and 
the correctness of the interpreter, which can prevent 
programs from deliberately or accidentally straying 
beyond the transient execution environment. The 
advantage of the Tcl-based approach is that programs 
are human readable and simple programs can be 
composed quite quickly. Furthermore, Tcl 's character- 
based representation makes it easy to design programs 
that generate new source fragments. The principal 
disadvantage is the overhead of source code 
interpretation, which is compounded by Tcl 's  encoding 
of all data types as strings. An additional disadvantage 
is the overall size of programs, which could be 
reduced, albeit at the expense of readability, through 
the use of compression. 

Intermediate Code 

Java [17] achieves mobility through the use of an 
intermediate instruction set [18]. Traditionally, the 
safe execution of intermediate code has relied on the 
careful interpretation of the intermediate instruction 
set. One of Java's key contributions is the observation 
that a significant improvement in efficiency can be 
achieved by off-loading some of the responsibility from 
the interpreter. The instruction set, and its approved 
usage, are designed so as to reduce the degree of 
operand validation that the interpreter must perform as 
each instruction is executed. In part, this is enabled by 
the design of the instruction set, which precludes 
certain cases that would normally have to be checked. 
It is also enabled by the static inspection of code 
before it is first executed, so that many of the checks 
need only be performed once, typically when the 
program is first loaded. 

Platform-dependent (Binary) Code 

The most aggressive of the active technologies 
provide for the execution of platform-dependent binary 
programs that, for the most part, are directly executed 
by the underlying hardware. To safely execute such 
program fragments, one must restrict their use of the 
instruction set and address space. The traditional 
operating systems approach has been to rely on fairly 
heavyweight mechanisms, such as processes and 
hardware-suppor ted  address space protect ion.  
However, there has recently been progress on two 
lighter-weight approaches: 

• The SPIN project [14] relies on the properties of 
the Modula 3 language and a trustworthy 
compiler to generate programs that will not stray 
beyond a restricted environment. When a 
program is presented for execution, the run-time 
system verifies that the instruction sequence was 
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generated by a trusted compiler and has not been 
modified. 

• The approach described in [19, 20] prescribes a 
set of rules that instruction sequences must 
adhere to, such as restrictions on how address 
arithmetic is performed. In conjunction with a 
modicum of run-time support and a collection of 
clever techniques, these rules define a 
"sandbox" within which the program can do 
what it likes, but that it may not escape from. 
An important aspect of this work is that 
conformance to the "rules" can be statically 
verified when an instruction sequence is 
presented for execution. 

In both cases, it is assumed that sophisticated 
compiler technology will be used to generate "safe" 
code. The distinction is whether the code is 
independently validated by the receiving platform or 
whether the compilers and/or vendors of programs are 
trusted and authorized to "sign for" their code. 3 The 
former approach improves mobility, especially across 
administrative boundaries. The latter approach not 
only saves the overhead of validation, but might also 
allow the compiler  to generate code that is more 
efficient. In both cases, we would expect the directly 
executable binary code to out-perform an interpreted 
format. 

On-the-fly Compilation 

Recent  work  [21] has enabled "on- the- f ly"  
compilation with a dialect of  the C programming 
language. This al lows source programs to be 
automatically tailored, or even wholly generated, at 
run-time. In conjunction with sandboxing, such a 
technology could allow active nodes to perform their 
own source-binary translations on capsules they are 
processing. 

On-the-fly compilation technologies may prove 
crucial to the viability of our architecture. Modern IP 
routers achieve reasonable performance through careful 
tuning of their "fast paths", typically by optimizing a 
minimal instruction sequence that processes the vast 
majority of the traffic and relegates the more complex 
(and less frequently used) cases to other modules. An 
active node might achieve a similar performance boost 
by monitoring its traffic and dynamically generating a 
fast path program that streamlines the execution of the 
most common capsule programs. Techniques such as 
scheduling by path (found in Scout [22]) may also be 
applicable. 

Discussion 
Variabili ty in network applications and traffic 

patterns suggests that there is no right answer. 
Although the performance that can be gained through 
binary encodings is attractive, it comes at the cost of 

3We assume the availability of appropriate authentication 
and tamper-proof signature technology. 

portability. Furthermore, the instruction encodings 
associated with modern processors are far from 
compact - these schemes might give rise to much 
larger capsules than an intermediate  encoding,  
suggesting a trade-off between transmission bandwidth 
and processing capacity. Finally, node implementors 
designing for high risk environments, i.e., focusing on 
safety, may prefer interpretation-driven schemes that 
audit the execution of each instruction. 

Our plan is to adopt a Java-like instruction set as 
the basis for ActiveNet interoperabili ty and code 
mobility. One of the benefits of the present IP packet 
format is that it enables an "hourglass" architecture in 
which a variety of upper layer protocols can operate 
over  a wide range of  network substrates.  An 
intermediate instruction set will provide an analogous 
hourglass that facilitates mobili ty.  A range of  
programming languages and compilers can be used to 
generate highly mobile intermediate code that can be 
executed on a wide range of hardware platforms. 

Nonetheless, we believe that it will also prove 
practical and attractive to provide extensions that 
allow users and node implementors to leverage source 
and binary technologies. The architectural trick will be 
to enable these technologies,  while retaining the 
intermediate instruction set as a fallback point that 
ensures interoperability. We have considered the 
following extensions: 

• Allow programmers to optimistically leverage a 
source programming language, such as Safe-Tel, 
in the hope that it is supported at the nodes a 
capsule traverses. A node that is not equipped 
with the appropriate interpreter or translator 
could either demand load one or forward the 
capsule to some other node that can translate it 
to the intermediate representation. 

• Allow "fat" capsules that carry binary encodings 
(for popular platforms) alongside their 
intermediate encodings. 

• Have nodes track their use of external methods, 
identifying candidates for binary encoding. A 
node could leverage on-the-fly technology to 
translate such methods locally, or it could load 
platform-specific versions from elsewhere on the 
network. 

• The previous suggestion might be combined with 
demand loading. A node can identify its platform 
type whenever it requests an external method, 
affording the supplier the option of returning a 
binary encoding should an appropriate one be 
readily available. 

4.3 Summary 

In this section, we have outlined our approach to 
the safe and efficient evaluation of capsules. Although 
it is useful to distinguish between the program 
representation and its. implementation, we realize that 
the two will strongly influence each other. The choice 
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of programming environment is going to preferentially 
favor certain implementation strategies, and at the 
same time implementat ion strategies that lead to 
efficiency or greater security (or simply become more 
popular) are going to influence the programming 
environment. 

Having identified the requirement for common 
programming models, we are not suggesting that a 
single model be immediately standardized. The 
tensions between available programming models and 
implementation technologies can sort themselves out 
in the research "marketplace" as diverse experimental 
systems are developed,  fielded, and accepted or 
rejected by users. For example, if the marketplace 
identifies two or three encodings as viable, then nodes 
that concurrently support all of them will emerge. As 
systems evolve to incorporate the best features of their 
competitors,  we expect that a few schemes will 
become dominant. 

5. NODE RESOURCES - INTEROPERABILITY 
AND SAFETY 

Active networks will provide the building blocks for 
a shared information infrastructure that transcends 
many administrative domains. Accordingly, their 
design must address a range of "sharing" issues that 
are often brushed over in systems that are used in less 
public environments. We focus on two of the issues 
that must be addressed. For interoperability, capsule 
programmers must have a shared understanding as to 
what the resources are and how they are named. 
Secondly, mechanisms must be provided to limit 
access to scarce or sensitive resources. 4 

5.1 Interoperability - Resource Specification 

The complexity of a system in which every capsule 
leverages a wide range of resources - each of which 
must be named, have its attributes specified and be 
carefully allocated - could explode quite quickly. 
For tuna te ly ,  mos t  capsules  will not require  
sophist icated resource models.  We propose  a 
relatively spartan approach employing a small set of 
platform independent abstractions for the physical 
resources  of  a node: t ransmiss ion bandwidth,  
processing capacity, and transient storage. Additional 
flexibility is provided through longer term storage and 
logical resources, used by advanced applications, such 
as topo logy  d i scovery ,  routing,  and network 
management. 

Transmission Bandwidth 

Link bandwidth is typically not considered by the 
scheduling or resource  al locat ion schemes of  

4There may be a further requirement to control the 
scheduling of some resources, such as transmission 
bandwidth. There may also be requirements for resource 
metering, accounting and/or auditing. 

conventional operating systems. The link abstraction 
must encompass the units of bandwidth allocation and 
may take account of  the traffic patterns that are 
generated. A detailed approach could draw on the 
service model [23] activities of  the IETF. In some 
environments, simpler schemes may be possible, e.g., 
allowing each capsule program to consume a quantity 
of transmission bandwidth that is proportional to the 
size of the capsule it arrived in. 

Instruction Execution (CPU) 

It is somewhat  easier  to abstract  a node ' s  
instruction processing resources - even multiprocessors 
tend to be homogeneous and their aggregate capacity 
is more or less es tabl ished through industry 
benchmarks. In many cases, it will be sufficient to 
assign every capsule a default allocation that guards 
against runaway computations. However, the ability to 
trade computation against bandwidth may be useful to 
encourage,  for example ,  compress ion  prior  to 
transmission on low bandwidth links. 

Transient Storage 

The transient execution environment  consumes 
short term storage, which might also be limited. We 
tend to think of storage capacity along two axes: the 
storage utilized during specific intervals and the 
duration of those intervals. The former  can be 
addressed by placing a default bound on the transient 
s torage that can be a l located during capsule  
evaluation. The latter is somewhat  trickier. We 
expect  that most  capsules  will comple te  their 
execution quickly, i.e., in a few milliseconds or less. 
However, some capsules may linger, especially those 
that must rendezvous with others. This issue might be 
addressed by establishing a policy that permits the 
"garbage collection" of  inactive capsules during times 
of shortage and requires capsules that are deliberately 
"sleeping" to place themselves in hibernation within 
longer term active storage. 

Active Storage 

We have identified requirements for the storage of 
components, such as external methods and data, that 
survive the execution of individual capsules. We find 
it useful to distinguish between two types of  active 
storage, soft and persistent. Soft storage is used to 
cache objects, such as "hints", "flow state" or demand 
loaded components ,  that do not survive the re- 
initialization of a node. They can be deleted from the 
store without notice and their contents regenerated or 
reacquired if they are later needed. Given that this 
space is easily reclaimed, limits on its allocation may 
not be as important as the strategy that selects 
"victims" for reclamation 5. Persistent storage provides 
a longer term abstraction for information that must be 
reliably stored, such as logs that are intended for 

5Mechanisms such as those described in [24] might be 
used to "page" soft state to/from nearby nodes. 
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accounting and auditing purposes. This storage may 
also be used by appl ica t ions  that implement  
asynchronous mult i -cast  services,  such as news 
distribution groups. Although this storage abstraction 
will be avai lab le  at most  nodes, it may be 
implemented by accessing replicated storage services 
located elsewhere on the network. We hope to 
leverage technologies such as [25] for this purpose. 

Logical Resources 
Although there are a relatively small number of 

physical resources, a node may support a large number 
of  logical resources of  many different types. This 
suggests the need for a uniform (not necessarily global) 
mechanism for naming instances of logical resources, 
including dynamically created resources, such as soft 
and persistently stored components. Fortunately, there 
is an abundance of  past work on object naming 
schemes. 

The class specifications of many logical resources, 
such as application-specific external methods or flow 
states, may be private in the sense that they need only 
be known to capsules generated by the relevant 
application. However ,  there will be a need for 
interoperable class specifications for some resources, 
such as routing tables. In this case, we hope to 
leverage existing notations, such as those used for 
SNMP Managemen t  Informat ion  Bases (MIBs).  
Where possible, we will leverage the existing MIB 
specifications themselves,  which should facilitate 
interoperation between the ActiveNet and the existing 
Internet. 

5.2 Resource Safety 

The safe manipulation of node resources can be 
partitioned into three types of activities: 

• dynamic, yet safe, assignment of resources to 
specific capsules. 

• validation of user requests for resource 
assignment, through authentication and 
verification of their authorizations. 

• automated delegation of resource authorizations. 

Dynamic Assignment 
Recall that our overall plan is to leverage the 

closure/addressability limitations enforced by active 
technologies. Resources are always represented and 
accessed through external methods and the default 
resources available to a capsule are included in the 
closure with which it is initiated. There is a further 
requirement for a mechanism that supports dynamic 
resource allocation. This can be accomplished by 
providing an external method that allows a program to 
request the safe "extension" of its closure. 

Validation 
The mechan i sm per fo rming  val idat ion must  

authenticate the capsule source, check that it is 
authorized to access the resource and (possibly) verify 

that the resource request has not been tampered with. 
This mechanism need only be used in conjunction with 
requests for additional resources. 

We assume that cryptography will provide the basis 
for the validation mechanism, but we may use a 
combinat ion of  schemes to reduce per-capsule  
overheads. For example, a public key scheme could 
be used to perform an initial authentication that 
establishes "soft state" that is then used by a lighter 
weight per-capsule signature algorithm. We are 
particularly interested in recent work on inexpensive 
techniques that provide less security for individual 
messages, but defend against large scale attacks [26]. 

Delegation 
The preceding section assumed that the validation 

mechanism has access to information concerning 
authorizations, e.g., policy-initiated decisions as to the 
resources that can be made accessible to specific users 
or applications. We require a mechanism that supports 
the automated delegat ion of  authorizat ions,  in 
accordance with a straightforward model that both 
implementors and administrators can reason about. 
This issue was previously considered within the context 
of time-sharing systems [27, 28] but we are not aware 
of work that addresses delegation in as complex a 
System as the ActiveNet. Work on the cascading [29] 
and logic [30] of authentication, which has some of the 
delegation flavor we are looking for, may provide a 
starting point for further research. 

Ultimately, this may be one of the most important 
"open" questions with respect to active networks. We 
envision an Act iveNet  with as many  or more 
administrative domains as the Internet (which is still 
growing), and administrators will be swamped if they 
are expected to manually coordinate the detailed 
authorization information This is another place where 
complexity, in this case administrative complexity,  
could overwhelm the infrastructure. 

6. FROM I N T E R N E T  TO A C T I V E N E T  

We suggest that interested researchers pool their 
talents in an effort to deploy a wide area ActiveNet. 
This experimental infrastructure could be overlaid on 
existing substrates, such as the Internet and the VBNS, 
obviating the need for dedicated transmission facilities. 
Although most of the ActiveNet nodes could be located 
at participating research sites, provision should be 
made to locate nodes at strategic locations not 
normally accessible to researchers, e.g., the NAPs of 
the Internet. If  a research ActiveNet proves successful, 
it could be extended to assume direct control over the 
underlying transmission resources. 

In assembling a collection of nodes into an 
ActiveNet it will be necessary to deal with many of the 
issues that have been addressed in the design of the 
current Internet - topology discovery, routing, etc. 
Initially, we expect to adopt the techniques used in the 
Internet. However, researchers should also investigate 
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new algorithms that leverage the availability of active 
nodes. 

Eventually, it will be important to converge on an 
interoperable programming model that will achieve for 
active networks what IP standardization has for the 
Internet. However, the connectivity available through 
existing substrates will makes it possible to deploy a 
multiplicity of programming models in parallel, 
affording the research community an opportunity to 
explore alternative programming models and node 
implementations. It will be particularly important to 
engage application developers and users in the 
development of customized software components that 
exercise this "architecture of architectures". 

7. ARCHITECTURAL CONSIDERATIONS 

Conventional network architectures separate the 
upper (end-to-end) layers from the lower (hop-by-hop) 
layers. The network layer bridges these domains and 
enables interoperabi l i ty  by providing a f ixed 
application- and user- neutral service that supports the 
exchange of opaque data between end systems. 

Active networks challenge this traditional thinking 
in a number of ways: the computations performed 
within the network can be dynamically varied; they 
can be user- and application-specific; and the user data 
is accessible to them. We realize that this break with 
tradition raises a number of important questions, some 
of which are addressed in the following responsa. 

How is interoperability achieved? 

The key to interoperability is the network layer 
service, which is at the narrow point of the "hourglass". 
In the case of the Internet [9], there is a detailed 
specification of the syntax and semantics of the IP 
protocol, which must be implemented by all of the 
routers and communicating end systems. In effect, 
interoperability is supported by requiring that all of the 
nodes perform "equivalent" computations on the 
packets flowing through them. 

In contrast, active nodes are capable of performing 
many different computations (i.e., executing many 
different programs) for different groups of users. 
However, the nodes must all support an "equivalent" 
computa t ion  model .  Thus,  ne twork  layer  
interoperabili ty is based on an agreed program 
encoding and computation environment instead of a 
standardized packet format and fixed computation. 

Architecturally, we are bumping up the level of 
abstraction at which interoperability is realized. There 
is still an hourglass - but the abstraction at its thinnest 
point has been made programmable. 

Isn't the trend towards less functionality in the 
network? 

The long term trend has actually been towards 
increased computation within the network. Whereas 
telephony circuit switches restrict computation to call 

setup time, packet switches perform computations on 
the header of  every packet flowing through them. 
Active nodes extend the domain of computation to 
include the user data. 

It is the "intelligence" or control over the network- 
based computation that has been migrating to the 
edges, allowing users to exercise greater control over 
their networks. Experience suggests that the two go 
hand in hand - increasing the flexibility of the 
computation performed within the network enables the 
deployment of even greater computational power at the 
edges. 

What ' s  the impact on the layered reference model? 

There is presently a disconnect between what users 
consider to be " inside" the network and the 
prac t i t ioner ' s  perspect ive,  which is somewhat  
restricted. For example, web browsers allow users to 
interact with what they perceive to be "the network" 
without distinguishing among the many routers, domain 
name servers, and web servers that conspire to provide 
the service. It may be time for practitioners to re- 
evaluate their abstractions and start thinking about the 
network at a higher level. 

Current thinking concerning network architecture 
has its roots in the layering of abstractions codified in 
the OSI Reference Model [31]. Although the model 
has proven quite useful it is showing cracks that should 
be addressed: 

• Services at or below the network layer are 
presumed to be user- and application- neutral. 

• It deals poorly with upper layer services that are 
physically interposed between communicating 
end points. Application relays can model these 
cases, but they are far from elegant, 

• It does not model the "recursion" that occurs at 
the network layer, i.e., the tunneling of networks 
over each other. 

• The upper layers, which have never been 
particularly satisfactory, are of diminished 
importance, given that active technologies 
enable the exchange of modules that implement 
application-specific protocols. 

We are not certain what form a new model might 
take, but suggest that it will be more component-based 
than layered [32]. It might distinguish primitive 
functions, such as cell relaying and IP "fast paths", 
from computationally active functions, including those 
that conf igure  the fast  path componen t s .  
Architecturally, these two types of components might 
be viewed as peers rather than layered upon each other. 
Such an architecture might also give rise to new 
hardware activities, such as the development of 
switching technology that "caches" fast paths and is 
highly responsive to active capsules. 

What about the end-to-end argument? 
The "end-to-end argument" [33] concerns the design 

of intermediaries, such as networks, that provide 
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services that cannot be made perfectly reliable. Since 
users of  these services must provide "end-to-end" 
mechanisms that cope with failures, designers are 
counseled against over-engineering the intermediaries 
by adding significantly to their complexity or overhead, 
i.e., by trying to make them "almost" perfectly reliable. 
Instead,  the des igner ' s  object ive should be an 
"acceptable" level of  reliability that does not trigger 
excessive intervention by the end-to-end mechanism. 
The designer is encouraged to strike a balance by 
re lying on end- to -end  mechan i sms  to ensure 
correctness, and by leveraging simple and optimistic 
m e c h a n i s m s  to enhance  p e r f o r m a n c e ,  where  
appropriate. 

While locating computation within the network may 
appear to contradict this guideline, we note that the 
argument pertains to the placement of functionality - it 
does not suggest that the choice of functions that are 
appropriately located within the network cannot be 
application-specific. If  anything, active networks allow 
this guideline to be fol lowed more carefully, by 
allowing applications to selectively determine the 
partitioning of functionality between the end points and 
intermediaries. 

Why hasn't this been done before? Why try now? 
The approach we are proposing synthesizes a 

number of technologies: programmable node platforms, 
component -based  software engineering, and code 
mobility. A few "programmable" networks have been 
developed in the past, and suggestions for object-based 
approaches to network implementation surface every 
few years. However ,  the previous work has not 
leveraged code mobility within the network, let alone 
within the context of each and every capsule or packet. 

A key enabler of  our approach is the availability of 
"active technologies" that enable safe and efficient 
code mobility. The absence of these technologies 
would have precluded similar projects in the past - and 
their recent emergence underscores the timeliness of  
the proposed effort. 

8. CONCLUSIONS 

In this paper we have described our vision of an 
active network architecture that can be programmed by 
its users. We have also called for community  
participation in an effort to develop and deploy a 
research ActiveNet. In the course of this presentation 
we have raised a number of architectural issues and 
research questions that remain to be addressed. 

We expect that active networks will enable a range 
of new applications in addition to the lead applications 
that already rely on the interposition of customized 
computation within the network. However, we believe 
that this work will also have broader implications, on 
how we think about networks and their protocols; and 
on the infrastructure innovation process. 

Programming the Network 
We are apply ing  a p r o g r a m m i n g  language  

perspective to networks and their protocols. In place of 
protocol "stacks", we anticipate the development of 
protocol  components  that can be tai lored and 
composed to perform application-specific functions. 
These protocol components will leverage the tools of  
the modern programming trade - encapsulat ion,  
polymorphism and inheritance. Within our own 
research group, we are setting out to create a 
"Smalltalk of networking" and are interested not just in 
the "language" itself but also in the class hierarchy, 
etc. that will develop around it. 

Our enthusiasm is tempered by the realization that 
suggest ions  for ob jec t -o r ien ted  approaches  to 
networking surface every five to ten years, and have 
had little impact on mainstream research. However, 
we believe that it is now time to make a large scale 
effort towards their realization. The availability of  
act ive technologies  and lead appl icat ions - in 
conjunct ion with r ising process ing  power  and 
bandwidth - presents opportunities that were not 
previously available. 

Infrastructure Innovation 
As the Internet grows it is increasingly difficult to 

maintain, let alone accelerate, the pace of innovation. 
Today, after a concept is prototyped its large scale 
deployment takes about 8 years. The process involves 
standardization, incorporation into vendor hardware 
platforms, user procurement and installation. The 
present backlog within the IETF includes multicast, 
authentication and mobility extensions, RSVP and 
IPv6. 

Active networks will address the mismatch between 
the rate at which user requirements can change, i.e., 
overnight, and the pace at which physical assets can 
be deployed. They will accelerate the pace of 
innovation by decoupling network services from the 
underlying hardware and by allowing new services to 
be demand loaded into the infrastructure. In the same 
way that IP enabled a range of upper layer protocols 
and transmission substrates, active networks will 
facilitate the development of new network services and 
hardware platforms. 

Convent ional  network touters  are based on 
proprietary hardware platforms that are bundled with 
customized software. Active networks present an 
opportunity to change the structure of  the networking 
industry, from a "mainf rame"  mind-set,  in which 
hardware and software are bundled together, to a 
"virtualized" approach in which hardware and software 
innovation are decoupled [34]. A market for "shrink- 
wrapped" network software will facilitate innovation 
by: 

• Allowing third parties to develop innovative 
software without customizing their products to a 
specific platform. 
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• Removing the software barrier to entry that 
discourages new players from fielding innovative 
hardware. 

• Addressing the "chicken and egg" problem 
associated with new services - vendors are 
hesitant to support services before they gain user 
acceptance, yet the utility of many network 
services is dependent on their widespread 
availability. 

Furthermore, the process will be user-driven. The 
widespread availability of new services will depend on 
their acceptance in the marketplace, without being 
delayed by vendor consensus and standardization 
activities. Similarly, hardware vendors will seek 
competitive advantage by optimizing their platforms to 
suit changing workloads. 

S u m m a r y  

Active networks appear to break many of the 
architectural rules that conventional wisdom holds 
inviolate. However, we believe that they build on past 
successes with packet approaches, such as the Internet, 
and at the same time relax a number of architectural 
limitations that may now be artifacts of previous 
generations of hardware and software technology. 

Passive network architectures that emphasize 
packet-based end-to-end communication have served 
us well. However, as our lead users demonstrate, 
computation within the network is already happening - 
and it would be unfortunate if network architects were 
the last to notice. It is now time to explore new 
architectural models, such as active networks, that 
incorporate interposed computation. We believe that 
such efforts will enable new generations of networks 
that are highly flexible and accelerate the pace of 
infrastructure innovation. 
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