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Abstract

Realizing new services on the Internet ultimately requires edge-based solutions for
both deployability and scalability. Each such solution has two fundamental aspects.
The first is the ability to accurately infer critical network parameters and processes
such as Quality of Service (QoS) mechanisms, end-to-end available bandwidth, or
the existence of a Denial of Service (DoS) activity; and the second is the ability
to effectively utilize this knowledge to build endpoint services. This thesis presents
the design, implementation, and evaluation of a series of edge-based algorithms and
protocols for efficient inference, control, and DoS resilience of the Internet from its
endpoints. The proposed solutions together form a new foundation for a robust
quality-of-service communication via a scalable edge-based architecture where the
novel functionality is added strictly at either edge routers or end hosts. In particular,
this thesis develops techniques for multi-class service inference, active probing for
available bandwidth, and end-point-based protection against DoS attacks.

The proposed multi-class service inference techniques reveal the sophisticated
multi-class network components such as service disciplines and rate limiters using
solely passive packet monitoring at the network edges. These inferences significantly
enhance the network monitoring and service validation capabilities and provide vi-

tal information for making efficient use of resources. The proposed active probing



scheme infers and utilizes only the available network bandwidth and aims to realize
a low-priority service from the network endpoints, a functionality that would other-
wise require a multi-priority or separate network. Finally, this thesis discovers and
explores two deterrent vulnerabilities of the Transmission Control Protocol (TCP),
the dominant transport protocol in today’s Internet. The first is TCP’s vulnerability
to low-rate periodic attacks that can be as harmful as the high-rate ones, yet much
harder to detect, due to their low-rate nature; the second is an extreme vulnerability
of the class of receiver-driven TCP stacks to the misbehaviors launched at the receiv-
ing endpoints which may temper with the congestion control algorithm for their own
benefit. The proposed end-point schemes significantly outperform the state-of-the-art
core-based solutions and demonstrate that counter-DoS mechanisms should be imple-
mented not only in the network core, as conventionally done, but also at the network
edge. More importantly, the thesis demonstrates that protocol performance on one
hand, and vulnerability to misbehaviors on the other, are quite often fundamentally

coupled such that both cannot be maximized simultaneously.
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Chapter 1

Introduction

The Internet has evolved from a small, well controlled, trusted network into a gigantic,
loosely controlled, and highly uncooperative infrastructure of astonishing scale and
complexity. Hence, the development and deployment of advanced services on it has
reached a crossroads: efforts to add new services in the network core have quickly
encountered scalability problems, yet new services are in critical demand and must
be rapidly and widely deployed.

Consequently, there is a quest to step back toward the original design principles of
the Internet [1] and push the advanced functionality to the network edge while imple-
menting minimum functionality at the network core. And while the design principles
and constraints are left unchanged, the expectations from the future Internet signifi-
cantly overcome a moderate single best-effort datagram service of the past: the users
demand multiple traffic classes, service differentiation, security, and QoS guarantees.
To achieve these goals, network researchers are challenged to devise sophisticated new
algorithms or improve the existing ones, yet using solely measurements obtained at
the network edge.

To implement a QoS or a transmission control from the network edge, it is essential
to make solid inferences of both static and dynamic internal network properties. For
example, to make successful capacity planning decisions, a network engineer needs
estimates of both lower (or guaranteed) and upper service bounds. Unfortunately,

the Internet’s large scale and the uncooperative nature of its hosts and networks



make direct monitoring infeasible. Moreover, Internet Service Providers (ISP) are
usually reluctant to divulge information about the internal mechanisms that they
implemented (if any) to shape or differentiate clients’ traffic.

On the other hand, to perform a solid transmission control in a wide-area network
that does not provide any explicit information about the network path, a transmission
protocol should form its own estimates of current network conditions, and then to
use them to adapt as efficiently as possible. A classic example of such estimation
and control is how TCP infers the presence of congestion along an Internet path by
observing packet losses, and either cuts its sending rate in the presence of congestion,
or increases it in the absence.

Another problem arises from the fact that the Internet is designed with an as-
sumption of a global cooperation that is increasingly invalid today: not only that
different hosts or networks of the Internet have divergent functional or economical
interests, but much worse, the Internet has become a “playground” for malicious
denial-of-service attackers of all kinds. A typical attack scenario is the one where a
malicious client disobeys congestion control rules and floods the network with traffic,
thereby denying service to well-behaving TCP-controlled flows. Hence, it is becoming
a must to develop robust end-point protocols that would have not just to target cer-
tain functionality, scalability, and efficiency, but also to explore the ”security holes”,
anticipate possible DoS attacks, and consequently define counter-measures in pres-
ence of malicious behavior. It is essential to apply the above counter-DoS measures
a priori, during the protocol design process, and before the new services become de-
ployed. Otherwise, possible vulnerabilities may soon be revealed and exploited by
unscrupulous hosts, and the overall effects may have devastating consequences.

The goal of this thesis is to design, implement, and evaluate a series of edge-based

algorithms and protocols for efficient inference and control of the Internet from its



endpoints. The proposed solutions together form a new foundation for a DoS-resilient
quality-of-service communication via a scalable edge-based architecture where the
novel functionality is added strictly at either edge routers or end hosts. In particu-
lar, this thesis focuses on three parts of the above edge-based inference and control
problem: developing algorithms and methodologies for accurate inference, charac-
terization, and classification of QoS-enhanced systems, providing globally-available
low-priority service via end-point congestion control, and building robust DoS-resilient

end-point protocols.

Inference, Characterization, and Classification of QoS-Enhanced

Systems

This thesis develops a framework for monitoring, validation, and inference of multi-
class services. It shows how passive monitoring of system arrivals and departures can
be used to detect if a class has a minimum guaranteed rate and/or a rate limiter.
Moreover, if such elements exist, this work shows how to compute their maximum
likelihood parameters. Beyond a single class, it also shows how inter-class relation-
ships can be assessed. For example, this research devises tests which infer not only
whether a service discipline is work-conserving or non-work-conserving, but also the
relationship among classes, such as weighted fair or strict priority.

In particular, the methodology uses empirical arrival and service rates measured
across multiple time scales and devises hypothesis tests for determining the most
likely service discipline among Earliest Deadline First (EDF), Weighted Fair Queuing
(WFQ,) and Strict Priority (SP). Beyond inferring the scheduler type, the method-
ology further finds the maximum likelihood estimates of the unknown scheduler pa-

rameters such as EDF delay bounds, WFQ weights, and relative SP class priorities.



This research considers a general system model that encompasses a broad class
of multi-service elements ranging from routers to web servers, yet it necessarily forgo
modeling of many of the intricacies of realistic systems (e.g., the discussion is limited
to a single bottleneck node). For inferences of the system’s multi-class characteristics,
it considers the case where internal system information, such as buffer size or link
capacity, is not available. Moreover, it is assumed that arrivals and departures of
other classes (i.e., “cross traffic”) cannot be explicitly observed and measured at the
network edge. Thus, an integral part of the technique is to first assess and statistically
characterize the service available to the traffic aggregate that is explicitly measured
at the network edge, and then determine mutual relationships among classes within

the aggregate.

Low-Priority Service via End-Point Congestion Control

This thesis further devises TCP Low Priority (TCP-LP), an end-point protocol that
achieves two-class service prioritization without any support from the network. The
key observation is that end-to-end differentiation can be achieved by having different
end-host applications employ different congestion control algorithms as dictated by
their performance objectives. Since TCP is the dominant protocol for best-effort
traffic, TCP-LP is designed to realize a low-priority service as compared to the existing
best effort service. Namely, its objective is for TCP-LP flows to utilize the bandwidth
left unused by TCP flows in a non-intrusive, or TCP-transparent, fashion. Moreover,
TCP-LP is a distributed algorithm that is realized as a sender-side modification of
the TCP protocol.

The methodology for developing TCP-LP is as follows. First, this thesis develops
a reference model to formalize the two design objectives: TCP-LP transparency to

TCP, and (TCP-like) fairness among multiple TCP-LP flows competing to share the



excess bandwidth. The reference model consists of a two level hierarchical scheduler
in which the first level provides TCP packets with strict priority over TCP-LP packets
and the second level provides fairness among microflows within each class. TCP-LP
aims to achieve this behavior in networks with non-differentiated (first-come-first-
serve) service.

Next, to approximate the reference model from a distributed end-point protocol,
TCP-LP employs two new mechanisms. First, in order to provide TCP-transparent
low-priority service, TCP-LP flows must detect oncoming congestion prior to TCP
flows. Consequently, TCP-LP uses inferences of one-way packet delays as early indi-
cations of network congestion rather than packet losses as used by TCP. A desirable
consequence of early congestion inferences via one-way delay measurements is that
they detect congestion only on the forward path (from the source to the destination)
and prevent false early congestion indications from reverse cross-traffic.

TCP-LP’s second mechanism is a novel congestion avoidance policy with three ob-
jectives: (1) quickly back off in the presence of congestion from TCP flows, (2) quickly
utilize the available excess bandwidth in the absence of sufficient TCP traffic, and (3)
achieve fairness among TCP-LP flows. To achieve these objectives, TCP-LP’s con-
gestion avoidance policy modifies the additive-increase multiplicative-decrease policy

of TCP via the addition of an inference phase and use of a modified back-off policy.

Building Robust End-Point Protocols

Finally, this thesis analyzes TCP in presence of misbehaving flows, which are one of
the major threats to adequate QoS. It first analyzes TCP’s vulnerability to low-rate
periodic attacks, and then the vulnerability of receiver-driven TCP stacks. In both

scenarios, the thesis develops counter-DoS mechanisms and analyzes their efficiency.



Low-rate TCP-targeted DoS Attacks and Counter Strategies

While TCP’s congestion control algorithm is highly robust to diverse network con-
ditions, its implicit assumption of end-system cooperation results in a well-known
vulnerability to attack by high-rate non-responsive flows. However, little is known
about low-rate denial of service attacks. This work discovers and presents low-rate
attacks that can be as harmful as the high-rate ones, yet even more dangerous due
to the fact that they are difficult for routers and counter-DoS mechanisms to detect.

In particular, the low-rate attack (named the shrew attack) consists of short,
maliciously-chosen-duration bursts of packets that repeat with a fixed, maliciously
chosen, slow-time-scale frequency. This traffic pattern is carefully designed to exploit
TCP’s deterministic retransmission timeout (RTO) mechanism: (1) the initial short-
time-scale burst creates an outage that forces TCP flows to simultaneously backoff on
the RTO time-scales; (2) the repeated RTO-periodic bursts manage to deny service to
TCP flows who continually incur loss as they try to exit the timeout state, fail to exit
timeout, and obtain near zero throughput. Hence the foundation of the shrew attack
is a null frequency at the relatively slow time-scale of approximately RTO enabling a
low average rate attack that is difficult to detect.

The thesis first explores and analytically analyzes the impact of the shrew attack
on a single TCP flow, and then generalizes the scenario and explores the impact
of aggregation and heterogeneity on the effectiveness of the attack. It shows that
even under aggregate flows with heterogeneous RTT’s, heterogeneous file sizes, differ-
ent TCP variants (New Reno, Sack, etc.), and different buffer management schemes
(drop tail, RED, etc.), similar behavior occurs albeit with different severity for dif-
ferent flows and scenarios. The reason for this is that once the first brief outage

occurs, all flows will simultaneously timeout. If their RT'Os are nearly identical, they



synchronize to the attacker’s period and enter a cycle identical to the single-flow case,
even with heterogeneous RTTs and aggregation. However, with highly variable RTT's,
the success of the shrew attack is weighted such that small RTT flows will degrade
far worse than large RTT flows, so that the attack has the effect of a high-RTT-pass
filter.

Finally, this thesis explores potential solutions to shrew attacks. While it may
appear attractive to remove the RTO mechanism all together or choose very small
RTO values, the thesis does not pursue this avenue as timeout mechanisms are fun-
damentally required to achieve high performance during periods of heavy congestion
[2]. Instead, it considers a class of randomization techniques in which flows randomly
select a value of minRTO such that they have random null frequencies. The the-
sis then develops a combination of analytical modeling and simulation to show that
such strategies can only distort and slightly mitigate TCP’s frequency response to
the shrew attack. Moreover, it devises an optimal DoS attack given that flows are

randomizing their RTOs and shows that such an attack is still quite severe.

The Vulnerability of Receiver-Driven TCP Stacks and Counter Strategies

Further, this thesis explores the vulnerability of the class of receiver-centric TCP
stacks (e.g., [3-10]) in environments with untrusted receivers which would have both
means (faster web browsing and file downloads) and incentive (open source operat-
ing systems) to temper with the congestion control algorithm for their own benefit.
First, this research anticipates and analyzes a set of possible receiver misbehaviors,
ranging from classical denial-of-service attacks, e.g., receiver request flooding, to more
moderate and consequently harder-to-detect misbehaviors. The misbehaviors are di-
vided into two classes: the first is long-time-scale misbehaviors that manipulate the

additive-increase-multiplicative-decrease (AIMD) or retransmission timeout (RTO)



parameters such that flows steal bandwidth over longer time-scales; the second class
is short-time-scale misbehaviors that forge parameters such as the initial congestion-
window size, such that these flows improve the short-file response times at the ex-
pense of well-behaved flows. The thesis develops analytical models for both classes
of misbehaviors, and shows that the receiver modifications can lead to uncooperative
flows achieving dramatically higher bandwidths and reduced latency as compared to
behaving flows.

Second, this thesis evaluates a set of state-of-the-art router- and edge-based mech-
anisms designed to detect and thwart denial-of-service attacks and other flow mis-
behaviors. Unfortunately, the finding is that some of the schemes, e.g., [11], are
completely unable to detect any receiver misbehavior, whereas others, e.g., [12], are
fundamentally limited in their ability to detect even very severe end-point misbe-
haviors. The key reason is the lack of knowledge of flows’ round-trip times, which
forces such schemes to penalize flows based on their absolute throughput, which in a
heterogeneous-RTT environment typically results in punishing short-RTT flows.

Finally, the thesis proposes and evaluates a set of sender-side mechanisms designed
to detect and thwart receiver misbehavior, yet without any help from a potentially
misbehaving receiver. The initial focus is on the long time-scales and the thesis devel-
ops a TFRC-based scheme in which senders (i) independently estimate RTT and loss
rate without any cooperation from a potentially misbehaving receiver, (ii) dynami-
cally compute the TCP-friendly rate, and (iii) detect out-of-profile behavior. While
this end-point approach at the sender-side is able to accurately detect even slight
receiver misbehaviors and strictly enforce TCP-friendliness, this research shows that
a fundamental tradeoff arises from the fact that in the absence of trust between
the sender and receiver, it becomes problematic for the sender to infer whether the

receiver is misbehaving or legitimately trying to optimize its performance with an



enhanced protocol stack. Hence, there is a need to strike a balance between per-
formance and trust — fostering innovation and deployment of enhanced TCP stacks

while also providing counter-measures against severe abuse.

1.1 Contributions

This work makes the following contributions:

e A novel methodology for inference and characterization of QoS-enhanced sys-

tems from edges.

The methodology enables the network [13] and Web-server [14] clients to ac-
curately detect the service differentiation discipline employed by the provider,
and to estimate the maximum-likelihood parameters of the class differentiation
scheme using solely passive packet monitoring at network edges. The first aspect
of thesis’ contribution here lies in the discovery that the time-scales play a key
role in inferring the internal scheduler type: short time-scales measurements are
crucial for detecting and analyzing non work-conserving elements such as rate
limiters; in contrast, long time scale measurements best reveal ”link sharing”
and weights. The second contribution comes from the fact that the methodology
treats all these phenomena occurring at different time scales in a uniform and
methodical way by using a unified abstraction of envelopes, hypothesis testing,

and maximum likelihood estimations.
o A solution to the service differentiation problem by introducing the concept of
low-priority service.

Conventional approaches to solving the service differentiation problem consider

the existing best-effort class as the low-priority class, and attempt to develop
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mechanisms that provide ”better-than-best-effort” service. In contrast, the con-
tribution of this thesis lies in the fact that it explores the opposite approach and
devises TCP-LP [15], a new algorithm to realize a low priority service (as com-
pared to the existing best effort). For example, such a differentiation scheme
can significantly reduce the response times of web connections (by up to 90%),
when long-lived bulk data transfers use TCP-LP rather than TCP. The second
contribution is the fact that TCP-LP is a distributed algorithm that uses the
concept of delay-based congestion control to approximate the low-priority ser-
vice from the network endpoints. Hence, TCP-LP requires no support from the

network, which makes it feasible, scalable, and easy to deploy.

TCP-LP implementation and experimental investigation in the Internet.

The key aspect of thesis’ contribution here lies in the development and imple-
mentation [16] of a practically applicable protocol. The source code of TCP-LP
in Linux is available at http://www.ece.rice.edu/networks/TCP-LP/. TCP-LP
is only a sender-side modification of TCP which makes it easy to deploy. More-
over, due to its low-priority nature, it is incrementally deployable and could
be successfully used by any subset of users in the Internet or enterprise net-
works. The foundation of the experimental investigation is that significant
amount of excess capacity is available in the Internet today. More importantly,
despite their low-priority nature, even longer-RT'T TCP-LP flows are able to
utilize substantial amounts of spare available bandwidth in a wide area net-
work environment. This foundation strongly supports TCP-LP’s candidacy for
the leading bulk-data transfer protocol of the future Internet. Moreover, this
thesis develops the high-speed TCP-LP (HSTCP-LP), a variant of the protocol

suitable for low-priority bulk data transfer in high-speed high-RTT networks
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17].

e Discovery and analysis of the vulnerability of end-point congestion control pro-

tocols.

Here, the thesis makes the following contributions. First, it develops the low-
rate periodic attacks against TCP flows. These attacks can be as harmful as the
high-rate ones, yet much harder to detect, due to their low-rate nature [18]. This
finding is supported with analytical modeling and simulations. Moreover, to
demonstrate the ubiquity of the low-rate attacks, the thesis presents the effects
of the limited-scale attacks performed in the parts of the Internet. Second, this
thesis discovers an extreme vulnerability of the class of receiver-driven TCP
stacks, analytically quantifies the substantial benefits that a malicious client
can achieve in terms of stolen bandwidth over long time-scales (e.g., in file- or
streaming-server scenarios) and response time improvements for short-files in
HTTP scenarios, and studies the deployability of such protocols in environments
with untrusted receivers, such as the Internet of today [19]. Finally, on a more
general level, the contribution of this thesis lies in promoting and fostering a pro-
active approach in detecting possible system vulnerabilities. Such an approach
enables us to discover and prevent new classes of denial-of-service attacks —

before they become widely exploited.

o Fundamental limitations of core-based counter-DoS solutions.

This thesis studies state-of-the-art solutions designed to detect and throttle
malicious flows in the network (e.g., [11,12,20-27]), and the contribution is
the finding of the following fundamental limitations. First, while many of
the schemes are relatively successful in detecting high-rate attacks, the core-

based schemes are highly unsuccessful in their ability to detect low-rate attacks



12

that operate on short time-scales. Moreover, any attempt to re-engineer these
schemes to operate on shorter time-scales would necessarily increase the false
alarm probability, i.e., many legitimate bursty flows would be incorrectly de-
tected as malicious [28]. Second, common to all core-based solutions is their
fundamental limitation to precisely and accurately detect the endpoint misbe-
haviors due to their lack of knowledge of the flows’ round-trip times. Hence,
the endpoints can maliciously re-tune their parameters without adverse effects,
and yet they can achieve substantial performance benefits, particularly in the

receiver-driven TCP scenarios.

Development of end-point counter-DoS solutions.

This thesis develops several counter-DoS schemes at the network endpoints.
The first is the randomization of the RTO parameter used in an attempt to
thwart the shrew attack; the second is a sender-side scheme developed to verify
the receivers’ TCP-friendliness in the receiver-driven TCP scenarios. The first
contribution here lies in reaching the understanding that counter-DoS protec-
tion mechanisms need not to be implemented exclusively in the network core,
as conventionally done, but that such mechanisms need to be included in the
end-point protocol design as well. Moreover, this thesis demonstrates that the
end-point solutions can significantly outperform the core-based solutions. How-
ever, the key contribution of this part of the thesis is the finding that protocol
performance on one hand, and vulnerability to misbehaviors on the other, are
quite often coupled such that both cannot be maximized simultaneously. Hence,
to completely defend the system in presence of such misbehaviors and attacks,

it is necessary to sacrifice system performance in their absence.



13

1.2 Dissertation Overview and Summary of Representative

Experimental Results

Chapter 2 reviews the fundamentals of the inter-class resource sharing theory and
provides background on TCP congestion control. In particular, it first gives a back-
ground on TCP’s timeout mechanism and then reviews the class of receiver-based
transport protocols.

Chapter 3 presents the framework and methodology for inference and character-
ization of QoS-enhanced systems. It first explains targeted Web server and network
scenarios, defines the measurement and inference problem, and describes the system
model. Next, it devises the maximum likelihood estimates for the system parameters
and hypothesis tests for inference of the service discipline. It further presents a large
set of simulation experiments in both networking and web-server scenarios and finds
that the technique is practically applicable. For example, in the networking experi-
ments with the majority-rule hypothesis test performed across multiple time scales,
multi-class EDF scheduling was correctly inferred 100% of the time when the class de-
lay bounds were sufficiently differentiated, and class-based fair queuing was correctly
inferred 94% of the time. Once the service discipline is known, the algorithm esti-
mated class WFQ weights within 1.4% of the correct value with 95% confidence. In
the web-server experiments, the scheme correctly classified the scheduling discipline
in more than 90% of the cases.

Chapter 4 first develops the reference model to describe TCP-LP’s design objec-
tives, and then presents the TCP-LP protocol. In the experimental part, it presents
an extensive set of ns-2 simulation experiments to study TCP-LP’s characteristics
in a variety of scenarios (single and multiple bottlenecks, short- and long-lived TCP

flows, etc.). First, in the experiments with greedy TCP flows (FTP downloads), the
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results show that TCP-LP is largely non-intrusive to TCP traffic, and that TCP
flows achieve approximately the same throughput whether or not TCP-LP flows are
present. Second, the thesis explores TCP-LP’s dynamic behavior using experiments
with artificial “square-wave” background traffic. It shows that single and aggregate
TCP-LP flows can successfully track and utilize the excess network bandwidth. Fi-
nally, in the experiments with HT'TP background traffic, the thesis shows that flows
in the best-effort class can benefit significantly from the two-class service prioritiza-
tion scheme. For example, the response times of web connections in the best-effort
class decrease by up to 90% when long-lived bulk data transfers use TCP-LP rather
than TCP.

Furthermore, Chapter 4 presents an implementation of TCP-LP in Linux and eval-
uates it both in a testbed as well as on the Internet. In the testbed, this work presents
experiments with many TCP and TCP-LP flows and shows that TCP-LP remains its
TCP-transparent property even in such large-aggregation regimes. Likewise, the In-
ternet experiments show that TCP-LP remains non-intrusive in a wide-area network
environment, while being able to utilize substantial amounts of the available spare
network bandwidth. For example, when compared to TCP, TCP-LP is able to utilize
approximately 45% of the TCP throughput on average during working-hours (8 a.m.
to 5 p.m.), and as much as 75% outside this interval.

Chapter 5 presents the low-rate denial of service attacks against TCP flows. It first
explains and models origins of the vulnerability of the timeout mechanism to low-rate
attacks. Next, it explores the impact of TCP flow aggregation and heterogeneity on
the effectiveness of the shrew attack and finally proposes and evaluates a set of core-
and end-point-based counter-DoS mechanisms intended to mitigate the effects of the
shrew attacks. In the experimental part, it presents the results of the Internet exper-

iments performed both in a local- and a wide-area environment. While necessarily
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small scale experiments (given that the expected outcome is to reduce TCP through-
put to near zero), the experiments validate the basic findings and show that even
a remote attacker (across a WAN) can dramatically reduce TCP throughput. For
example, in the WAN experiments, a remote 909 kb/sec average-rate attack consist-
ing of 100 ms bursts at the victim’s RTO time-scale reduced the victim’s throughput
from 9.8 Mb/sec to 1.2 Mb/sec.

Chapter 6 first analyzes the limitations of existing network-based solutions and
then proposes and evaluates a set of sender-based solutions targeted to protect the
system over long- and short-time-scales, respectively. The thesis analytically quan-
tifies the substantial benefits that a malicious client can achieve in terms of stolen
bandwidth over long time-scales and response time improvements for short-files in
HTTP scenarios, and confirms these results through simulation.

Chapter 7 concludes the dissertation and discusses some of the future work.
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Chapter 2

Background

This chapter provides a brief overview of inter-class resource sharing, which is a
starting point upon which the multi-class inference techniques are developed. Next,
it reviews the main TCP congestion control phases with an emphasis on those which

are of interest for available bandwidth inference and DoS research.

2.1 Inter-Class Resource Sharing

In a multi-class system, the service discipline defines the interclass relationships of the
service when different classes compete for resources. For example, an SP scheduler
consists of one queue per traffic class with packets from the highest priority non-empty
class serviced first. A packet in level 7 is serviced only if no packets are backlogged
in levels 1,--- ;42 — 1. Thus, with an SP scheduler, the highest priority class receives
all demanded service up to the available link capacity, and in that way is completely
isolated from other classes’ demands. In contrast, lower priority classes utilize only
remaining capacity from higher priority classes and their performance is strongly
dependent on these classes’ demands.

For WFQ, each traffic class ¢ is allocated a guaranteed capacity ¢;C such that
whenever packets from class ¢ are backlogged, the class receives service at a rate of
at least ¢;C. Unused capacity of non-backlogged classes is distributed in a weighted
fair manner among backlogged classes. For EDF, each class has an associated delay

bound so that packet j of class 7 arriving at time aé- has deadline aé- plus its delay
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bound, and the scheduler selects the packet with the smallest (earliest) deadline for
service.

The following section provides a theoretical description of such interclass relation-
ships via statistical service envelopes which provide a unifying abstraction for both

arrivals and services and incorporate a system’s behavior across time scales.

2.1.1 Statistical Service Envelopes

To characterize a flow’s rate, an associated interval length must also be specified.
However, the arrival workload (expressed in number of bits) varies in time over inter-
vals of the same length, simply due to variable source behavior. Thus, to accurately
characterize randomness of flow arrivals, this thesis applies the concept of statisti-
cal arrival envelopes to capture a flow’s variability over intervals of different length.
Denote class i’s statistical arrival envelope as B'(t), which is a sequence of random
variables that characterizes arrivals from class 7 over time intervals of duration ¢.! It
is assumed that each class arrival process is stationary and that B(t) and B’(t) are
statistically independent when 7 # j.

In [29], statistical admission control tests are developed for several multi-class
schedulers. The key technique for exploiting inter-class resource sharing is to char-
acterize a class’ available service beyond its worst-case allocation. For example, in a
WFQ server, a class with weight ¢; receives service at rate no less than ¢;C whenever
it is backlogged (>_; ¢; = 1). However, due to statistically varying demands of other
classes, the service received can be far greater than this lower bound. A statistical
service envelope S%(t) is therefore a general characterization of the service received

by class i over intervals of length ¢ for which the class is continually backlogged.

'For a particular time scale t = ¢, Bi(tl) is a random variable.
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Equations (2.1), (2.2) and (2.3) show the statistical service envelopes for SP, WFQ,

and EDF schedulers, respectively.

Sto(t) = (Ct — ZiB"(t)) (2.1)

n=1

Siwrq(t) = ¢iCt + ((1 — ¢;)Ct — ZB”(t)) (2:2)

Sion(t) = (Ct +0D; =Y B"(t -6, + 50) (2.3)
n#i

The envelopes are a function of the link capacity C, and as described above, the
other class’ input traffic, described by the arrival envelope B'(t). For SP, observe
that class i’s service is only a function of the workload in classes 1,2,--- ;4 — 1. In
contrast, for WFQ class i’s service is a function of all other classes’ traffic but is upper
bounded by Ct if all other classes are always idle and lower bounded by ¢;C if all
other classes are continuously backlogged. Finally, with EDF class 7’s service again
depends on all other class’ inputs as well as the delay bound of class i denoted by ;.
Chapter 3 shows how theoretical concepts described here can be applied in practice

to classify and infer the parameters of multiclass systems.

2.2 TCP Congestion Control

This section provides a review of TCP congestion control. It first explains basic
phases of the transmission control, and then briefly discusses the class of delay-based
congestion control protocols that are relevant for the work presented in Chapter 4.
Next, it presents background on TCP’s retransmission timeout (RTO) mechanism,
which is the key source of vulnerability to low-rate denial-of-service attacks, which

are explained and explored in Chapter 5. Finally, it provides a background on the
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class of receiver-driven TCP protocols, whose vulnerabilities are studied in detail in

Chapter 6.

2.2.1 TCP Phases and Delay-Based Congestion Control

Figure 2.1 shows a temporal view of the TCP congestion window behavior at different
stages with points on the top indicating packet losses.? Data transfer begins with
the slow-start phase in which TCP increases its sending rate exponentially until it
encounters the first loss or maximum window size. From this point on, TCP enters
the congestion-avoidance phase and uses an additive-increase multiplicative-decrease
policy to adapt to congestion. Losses are detected via either time-out from non-receipt
of an acknowledgment, or by receipt of a triple-duplicate acknowledgment. If loss
occurs and less than three duplicate ACKs are received, TCP reduces its congestion
window to one segment and waits for a period of retransmission time out (RTO),
after which the packet is resent. In the case that another time out occurs before
successfully retransmitting the packet, TCP enters the exponential-backoff phase and

doubles RTO until the packet is successfully acknowledged.

Congestion Window

e )

Slow Start Congestion Avoidance Exponential Backoff

Figure 2.1 : Behavior of TCP Congestion Control

2A detailed description of TCP can be found in [30].
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While packet losses are almost exclusively used as indications of the network
congestion, there are proposals to apply delay-based congestion control and the rep-
resentative protocols are Jain’s delay-based congestion avoidance protocol [31], Wang
et al.’s TCP/Dual [32], and Brakmo et al.’s TCP /Vegas [33]. Common to all of the
protocols is the use of roundtrip times for congestion indications (instead of packet
losses) in an effort to increase TCP throughput due to a reduced number of packet
losses and timeouts. Chapter 4 demonstrates how delay-based congestion control
mechanisms can be used to effectively implement a protocol that utilizes only the
excess network bandwidth, hence provides a strict low-priority service without any

support from the network.

2.2.2 TCP’s Timeout Mechanism

This section presents background on TCP’s retransmission timeout (RTO) mechanism
[34]. TCP detects loss via either timeout from non-receipt of ACKs, or by receipt of a
triple-duplicate ACK. If loss occurs and less than three duplicate ACKs are received,
TCP waits for a period of retransmission timeout to expire, reduces its congestion
window to one packet and resends the packet.

Selection of the timeout value requires a balance among two extremes: if set too
low, spurious retransmissions will occur when packets are incorrectly assumed lost
when in fact the data or ACKs are merely delayed. Similarly, if set too high, flows
will wait unnecessarily long to infer and recover from congestion.

To address the former factor, Allman and Paxson experimentally showed that
TCP achieves near-maximal throughput if there exists a lower bound for RTO of one
second [2]. While potentially conservative for small-RTT flows, the study found that
all flows should have a timeout value of at least 1 second in order to ensure that

congestion is cleared, thereby achieving the best performance.
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To address the latter factor, a TCP sender maintains two state variables, SRTT
(smoothed round-trip time) and RTTVAR (round-trip time variation). According
to [34], the rules governing the computation of SRTT, RTTVAR, and RTO are as
follows. Until a RTT measurement has been made for a packet sent between the
sender and receiver, the sender sets RTO to three seconds. When the first RTT
measurement R’ is made, the host sets SRTT = R’, RTI'TVAR = R’/2 and RTO =
SRTT + max(G,4RTTVAR), where G denotes the clock granularity (typically <

100 ms). When a subsequent RTT measurement R’ is made, a host sets

RTTVAR = (1 - 8) RTTVAR + 3|SRTT — R/|

and

SRTT = (1 — )SRTT + o R’

where o = 1/8 and = 1/4, as recommended in [35].

Thus, combining the two parts, a TCP sender sets its value of RTO according to
RTO = max(minRTO, SRTT + max(G,4 RTTV AR)). (2.4)

Finally, the RTO management is illustrated via a retransmission-timer timeline
in Figure 2.2. Assume that a packet with sequence number n is sent by a TCP sender
at reference time ¢ = 0, and that a retransmission timer of 1 second is initiated upon
its transmission. If packet n is lost and fewer than three duplicate ACKs are received
by the sender, the flow “times out” when the timer expires at £ = 1sec. At this
moment, the sender enters the exponential backoff phase: it reduces the congestion
window to one, doubles the RTO value to 2 seconds, retransmits the unacknowledged
packet with sequence number n, and resets the retransmission timer with this new

RTO value.
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Figure 2.2 : Behavior of the TCP retransmission timer

If the packet is lost again (not shown in Figure 2.2), exponential backoff continues
as the sender waits for the 2sec-long retransmission timer to expire. At ¢ = 3sec, the
sender doubles the RTO value to 4 seconds and repeats the process.

Alternately, if packet n is successfully retransmitted at time ¢ = 1 sec as illustrated
in Figure 2.2, its ACK will arrive to the sender at time t = 1 + RTT. At this
time, the TCP sender exits the exponential backoff phase and enters slow start,
doubling the window size to two, transmitting two new packets n + 1 and n + 2,
and resetting the retransmission timer with the current RTO value of 2sec. If the
two packets are not lost, they are acknowledged at time ¢ = 1 + 2 RTT, and SRTT,
RTTVAR and RTO are recomputed as described above. Provided that minRTO >
SRTT + max(G, 4 RTTVAR), RTO is again set to 1sec. Thus, in this scenario in
which timeouts occur but exponential backoff does not, the value of RTO deviates by
no more than RTT from minRTO for ¢ > minRTO + 2 RTT.

The above timeout mechanism, while essential for robust congestion control, pro-

vides an opportunity for low-rate DoS attacks that exploit the slow-time-scale dy-
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namics of retransmission timers. In particular, an attacker can provoke a TCP flow
to repeatedly enter a retransmission timeout state by sending high-rate, but short-
duration bursts having RTT-scale burst length, and repeating periodically at slower
RTO time-scales. The victim will be throttled to near-zero throughput while the
attacker will have low average rate making it difficult for counter-DoS mechanisms to

detect. This issue will be studied in detail in Chapter 5.

2.2.3 Receiver-Based TCP

This section reviews transport protocols that delegate some or all control functions
to receivers. For scenarios ranging from web browsing to wireless networks, the key
advantages of receiver-driven protocols are improved response times and throughput
due to exploitation of information available at the receiver. However, the fact that
some or all control functions are delegated to receivers raises a fundamental security

concern that will be studied in detail in Chapter 6.

Delegating Control Functions to Receivers

One of the first transport protocols that exploits increased receiver functionality is
Clark et al.’s NETBLT [3], which makes error recovery more efficient by placing the
data retransmission timer at the receiver. In later work, an increased set of control
functions appear at the receiver, either for performance or practical reasons (e.g., to
decrease the computation burden at the sender). For example, Sinha et al.’s WTCP
[6] calculates the sending rate at the receiver; Floyd et al.’s TFRC [4] maintains the
loss history and computes the TCP-friendly rate at the receiver; Tsaoussidis and
Zhang’s TCP-Real [8] tracks loss events and determines the data delivery rate at the
receiver; Spring et al. [7] and Mehra et al. [5] add functionality to the receiver to

control the bandwidth shares of incoming TCP flows, i.e., by adapting the receiver’s
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advertised window and delay in transmitting ack messages, the receiver is able to

control the bandwidth share on the access link according to the client’s needs.

Fully Receiver-Driven Transport Protocols

In contrast to the above protocols, all control functions are delegated to receivers in
Web Transport Protocol (WebTP) [9] and Reception Control Protocol (RCP) [10].
Hsieh et al. [10] argue that the key advantage of fully receiver-centric transport
protocols is that the receiver controls how much data can be sent, and which data
should be sent by the sender. The section below summarizes some of the performance
and functionality gains that a fully receiver-centric protocol can achieve in the large-
scale server scenarios as well as in a scenario where the mobile host acts as the receiver

for traffic from a wireline sender.

Performance Gains

This section elaborates on two of the sources of performance gains explored in [10].
The first is improved loss recovery. In particular, while TCP ack packets are resilient
to losses due to their cumulative nature, they provide little information that the sender
can use to effectively recover from losses. While TCP Sack [36] is able to recover from
losses by using three ”Sack blocks”, the effectiveness of recovery is limited to the
extend to which the sender can accurately construct the receiver buffer in a timely
fashion. Hence, heavy losses on the forward path, coupled with a lossy reverse path
(typical for wireless environments), may prevent the TCP Sack sender from accurately
constructing the receiver’s buffer state. On the contrary, the receiver has direct access
to the receive buffer, and hence can always recover from losses in an effective fashion,
without incurring the overhead inaccuracies of TCP Sack.

The second source of performance gains arise via wireless-aware congestion control.
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Namely, the wireless link typically plays a defining role in determining the character-
istics of an end-to-end path. Hence, “wireless-aware” congestion control algorithms
exploit information about the characteristics of the wireless link (e.g., loss classifi-
cation, RTT sample filtering or reasons for non-congestion related outages (handoffs
or channel blackouts)). Since the receiver is adjacent to the wireless last-hop, it has

first-hand knowledge about the above information.

Functionality Gains

The fact that receiver-centric protocol design delegates the entire protocol “intelli-
gence” to the receiver yields a number of functionality improvements. First, sender-
based TCP places all protocol state on the servers which must handle large scale
workloads (e.g., web servers). On the other hand, receiver-driven transport proto-
cols can significantly reduce the complexity of the server implementation since they
distribute the state management across the large number of clients.

Second, during periods of mobility, a mobile host with heterogeneous wireless
interfaces can benefit from the fact that the transport protocol functionality is con-
centrated at the receiver. For example, when a mobile host performs a handoff from
one access network to another, it can avoid connection disruptions due to temporary
link outage by using both interfaces simultaneously if the transport layer is able to
use multiple interfaces without suffering from performance degradation due to persis-
tent packet reordering. Furthermore, the mobile user can benefit from migrating to
a replicated server, either because the new interface has no access to the old server,

or for performance considerations.
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This section provides a brief overview of RCP, variants of which we further consider

in Chapter 6.
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Figure 2.3 : TCP functionalities at the sender and receiver

All TCP variants provide reliable in-sequence data delivery to the application,

with protocol operations consisting mainly of four mechanisms: connection manage-

ment, flow control, congestion control, and reliability. Figure 2.3 depicts a schematic

view of the interaction between sender and receiver in TCP, together with several

state variables.

8*» SND . NXT Send

N - RCV .NXT
Reliability SEG.WND e
REQ.NXT

send buffer

RCP SENDER

recv /req buffer
RegMuch  \o i poa
SEG.SEQ
SEG.DEQ
° Flow Loss/
RWND
Control Progress
SEG.REQ
SEG.DEQ
RegMuch
Il

SEG.REQ

Congestion Control |cwnp

RCP RECEIVER

Figure 2.4 : RCP functionalities at the sender and receiver
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Observe that except for connection management, which needs to be implemented
at both ends, Figure 2.4 indicates that RCP delegates all other control functions
to the receiver. Thus, either the sender or receiver can initiate connection setup,
after which the receiver becomes fully responsible for reliability, flow control, and
congestion control, using the same window-based mechanisms employed in sender-
driven TCP. Since RCP shifts the control of data transfer from the sender to receiver,
the data-ack style of message exchange in TCP is no longer applicable. Instead, to
achieve the self-clocking characteristics of TCP, RCP uses req-data exchange for data
transfer, where any data transfer from the sender is preceded with an explicit request
(req) from the receiver. Equivalently, the RCP receiver uses incoming data packets to
clock the requests for new data. In summary, RCP represents a clone of sender-side
TCP which simply transfers all important control functionalities to the receiver.

However, the fact that all control functions are delegated to receivers raises a
fundamental security concern for misbehaving receivers that will manipulate protocol
parameters (all available at the receiver) and gain significant performance benefits.
This concern is amplified by the fact that receivers would have the opportunity (open
source operating systems requiring a minor change), and incentive (faster web brows-
ing and file downloads) to perform such activities. Chapter 6 treats this issue in

depth.
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Chapter 3

Edge-Based Inference, Characterization, and
Classification of QoS-Enhanced Systems

Both research and commercial networks and web servers are increasingly able to pro-
vide minimum quality-of-service levels to traffic and application classes, e.g., [37].
Example components of such networks include QoS schedulers [38, 39], diffserv-style
service level agreements [40-43], edge-based traffic shaping and prioritizing devices,
and novel architectures and algorithms for scalable QoS management [44-46]. Simi-
lar resource management mechanisms, request scheduling policies and algorithms are
also developed for quality-of-service web servers [47-50]. However, even as both the
network’s and web-server’s infrastructure and services become increasingly sophisti-
cated, the network’s and web-server’s clients lack reciprocal tools for validation and
monitoring of the system’s QoS capabilities, and the available tools allow only the
inferences of parameters such as bottleneck link speeds or available bandwidth [51-
54]. Clients of Service Level Agreements (SLAs) will have monitoring requirements
ranging from basic validation of the SLA’s raw bandwidth to more sophisticated in-
ference of multi-class functionalities. For example, is a class rate limited (policed)?
If so, what are the rate limiter’s parameters and what is necessary to detect this?
In a multi-class environment with multiple classes within or among SLAs, what is
the inter-class relationship? Fair, weighted fair, strict priority, and with what pa-
rameters? Is resource “borrowing” across classes fully allowed or only allowed within

certain limits?
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Similar issues occur in a web server scenario. The requirements of a client of a
web hosting service range from the ability to track, assess and quantify basic service
capabilities, such as minimum rate at which user’s requests are serviced, to the ability
to assess mechanisms and parameters by which capacity is allocated to various hosted
sites. Besides clients, web hosting providers will have similar objectives in a larger
scale web-hosting environment in which a number of front-end servers use resources of
back-end servers and when different QoS mechanisms are simultaneously implemented
in the system. In such an environment, a need to quantify service and assess the inter-
class relationship arises.

Obtaining “off-line” answers to such questions can be quite trivial. In particular,
consider a system with an unknown service (suppose the system is a single router for
simplicity). To assess whether classes are rate limited, one could probe each class,
one at a time, with a high rate test sequence: the output of the system would yield
the policing parameters. Similarly, simultaneously probing at a high rate in all classes
would yield the inter-class relationships: if one class receives all of the service, the
system is strict priority (at least for that class); if weighted service is received, the
system performs a variant of weighted fair queuing.

In contrast, the “on-line” case, in which one cannot force all other traffic classes
to remain idle while experiments are performed, is quite different. Even for classes
which are under the control of the client, it may be highly undesirable to disrupt the
class with experiments such as above. For example, sending at a high rate to detect

rate-limiters may cause excessive packet losses for established sessions.

3.1 Targeted Systems and Problem Statement

This section first describes the targeted networking and web server scenarios, and

then formally defines the problem and the system model.
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3.1.1 Targeted Systems
Network Scenario

Figure 3.1(a) depicts the targeted networking scenario. In this case, measurement
modules are placed at the periphery of the network. The goal is to use passive edge-
based client measurements to infer the multi-class QoS mechanisms and parameters
employed by the network operator. With an improved understanding of the way traffic
is internally serviced, clients can better manage their use of multi-class networks.
Also, network clients can use the framework to quantatively estimate their service
when only relative performance guarantees are provided or when end-to-end service
is provided through more than one ISP. For example, if the provider guarantees that
class X will have higher priority than class Y, the framework can determine maximum
likelihood lower and upper service bounds of both classes and infer actual inter-class
relationship. Such inferences can be used by network clients to better utilize their
available bandwidth, i.e., for capacity planning. Similarly, operators or third parties
can employ the methodology to test and validate the performance and potential

performance of multiple service classes.

Front
class 1 End
Back-end
—————— > Servers
class 2
4—

(b) Web Server

Figure 3.1 : Targeted Systems
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QoS Web Servers

Figure 3.1(b) depicts a two-class distributed web server, where a passive measurement
module is depicted by a diamond. QoS functionalities in the server may include priori-
tized scheduling of incoming requests at the front-end, prioritized distribution of jobs
to back-end nodes, and operating-system mechanisms such as prioritized schedul-
ing of CPU, memory, and disk access [49]. In any case, the goal is to provide an
application-layer characterization of the system’s multi-class QoS mechanisms. For
example, weighted share of CPU resources does not guarantee the same level of dif-
ferentiation for the application, since the actual response times also depend on the
file type (static or dynamic), file size and its caching state. Also, if several QoS
mechanisms are simultaneously employed with the goal of providing weighted fair
service among different classes, the technique will estimate a class’ net “guaranteed
rate”, i.e., it’s minimum serviced request throughput. Such inferences have important

implications for both performance monitoring and resource management.

3.1.2 Problem Formulation

For inferences of the system’s multi-class characteristics, this thesis considers the case
where internal system information is not available, i.e., neither static configuration
information (such as the scheduler’s parameters) nor empirical information (such as
mean buffer length). Instead, the available information consists of the external ob-
servations from passive monitoring of requests, namely request arrival and departure
times along with request class labels and sequence numbers. In the case of web servers
(both single node and distributed), both arrivals and departures are directly observ-
able from the system’s front end (see [47,49] for a detailed description of such an
architecture). In the case of networks, packet time stamping at ingress nodes pro-

vides a mechanism to observe both arrival and departure times at the departure node
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[65]. In particular, for low speed links (e.g., up to 100 Mb/sec), tepdump can capture
and record header information at line rate [55]. For higher speed implementations,
this functionality would best be achieved with hardware support. Otherwise, the
measurement modules can communicate their collected information off-line. Below,
the multi-class service inference problem is formally defined.

Problem statement: Consider a multi-class system with an unknown scheduling
discipline fed by requests from N classes. Denote with G the number of observable
or explicitly measured classes and assume that classes 1,--- ,G are observable while
classes G + 1,--- , N are not. Denote the arrival and departure times of request j
from class i as @ and d’ respectively. Given a},ab,--- and di,ds,--- fori =1,---,G,

(a) Estimate the available service of the aggregate consisting of G classes.

(b) Assess the most likely service discipline among SP, WFQ [56], and EDF.

(c) Estimate the maximum likelihood values of the class parameters for each of
G measured traffic classes: “guaranteed rate” (¢;) in WFQ, delay bound (¢;) in EDF

and rate limiters (7;) in non-work conserving servers.

3.1.3 System Model

The general system model considered in this chapter is depicted in Figure 3.2. As in
the basic abstraction of service disciplines described in [57], it consists of two stages:
non-work-conserving elements which limit a class’ rate and a work-conserving packet
or request scheduler. For rate limiters, this thesis considers single-level leaky bucket
regulators, and for the packet scheduler, it considers SP, WFQ, and EDF, as explained
in Chapter 2.

This formulation covers a broad set of class-based scheduling elements, including
minimum guaranteed rates, maximum policed rates, weighted fairness, sorted priority,

and strict priority. While necessarily not comprehensive, it incorporates both work-
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Rate Limiters Unknown Multi-Class Server

Figure 3.2 : System Model for Multi-Service Measurement

conserving and non-work-conserving service disciplines and a number of mechanisms
for inter-class resource sharing and quality-of-service differentiation. The choice of
SP, WFQ and EDF, which belong to rate and delay-based classes of schedulers, is
made since these schedulers are both well studied and implemented in practice. Also,
it should be noted that the multi-class inference framework developed in this chapter
can be applied to any other scheduler for which one can derive a statistical service
envelope, the key inference tool that is explained in detail in the following section.

This work considers that the capacity of a multi-class system is not known and
can vary over time. In the networking scenario, this formulation covers the problem
of unknown cross-traffic, while it applies equivavalently to the web-server inference
problem, where the capacity is non-constant as the service times for different requests
vary due to different CPU service times, disk service times and variable file sizes. The
first step in the inference methodology is to assess and statistically characterize the
service available to an aggregate of all measured classes, and then determine inter-
class relationships within the aggregate.

A special case of the general system model that is considered throughout the
chapter is a single bottleneck multi-class networking router with fixed service capacity

C, in which all classes’ arrivals and departures are known. This thesis studies this
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special case service model for two reasons: first, for simplicity of presentation and
secondly, as a reasonable and intuitive checkpoint of the inference methodologies

applicable to a general system model with variable capacity.

3.2 Service Measurements and Concept of Envelopes

As described above, the goal is to infer the elements and parameters of the multi-
class system. In such a system, the request service discipline defines the inter-class
relationships or the service received when different classes compete for resources.
Parts 3.2.1 and 3.2.2 describe empirical arrival and service models, i.e., they explain

how the theoretical concepts described in Chapter 2 can be applied in practice.

3.2.1 Empirical Arrival Model

Here the thesis shows how statistical arrival envelopes B'(t) defined in Chapter 2
can be measured over multiple time scales using class i’s arrival request sequence.
Measurement at multiple time scales is important in this context as different system
components are most accurately detected at different time scales.

Focusing on a single class for illustration, denote the total arrivals in the interval
[s,s +t] by Als,s +t]. A traffic envelope refers to a time invariant characterization
of the arrivals as a function of interval length ¢ (see [58] for examples of deterministic
envelopes). For a measurement window [s, s + T'] and a particular interval length I}

beginning at time s + (j — 1)I, class 4’s arrival rate is given by

Ai[S —+ (j — I)Ik, S +]Ik]

i, A
RZ’ .=
k. I

for j =1,---, Ny, where Ny = |T/I;] is the number of successive intervals of length

I;, in the measurement window [s, s + 7).
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Using measured rates over different sub-intervals within the window 7', the mean
and variance of the empirical rate envelope of class ¢ for intervals of length I can be

computed as

1 &
i A Z i, A
-
7j=1
and
1 &
LA LA Bi,A\2
RV = > (R — Ry (3.2)
N, “
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Figure 3.3 : Arrival Envelopes (mean + 1.6 deviation)

Observe that the first two moments of the rate arrival envelope (e.g., RfC’A and
RV,: ’A) are simply empirical and normalized versions of the first two moments of class
i’s arrival envelope B*(I}) at time scale I;. As an example envelope, Figure 3.3(a)
shows the representation of the arrival envelope B*(t) for the Rice University CS de-
partment trace described in Section 5.4, while Figure 3.3(b) shows the reciprocate rate
envelope normalized to the interval length I, so that the y-axis is rate. Specifically,
the Figure 3.3(b) depicts RZ’A—F 1.6 RV,:’A for 50 time scales, I, = 0.01,0.02---,0.5.

It is clear that over short interval lengths, significantly more requests than the mean
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100 per second (as can be seen from the rate to which the curve in Figure b con-
verges) can arrive. It will be shown that such characteristics of the request workload,
i.e., its variability over time scales, is the key input for obtaining accurate scheduler
inferences.

Section 3.3 describes how this empirical class-based arrival rate envelope is incor-
porated into the above multi-class inference problems, and Section 5.4 experimentally

investigates applications of this traffic characterization.

3.2.2 Empirical Service Model

This section describes a general mechanism for measuring and characterizing a service
rate. Analogous to the traffic envelope, the service rate envelope is not simply a single
service bandwidth, but a statistical characterization of service across time scales.
There are two types of service rate envelopes: aggregate and class envelopes.
Aggregate service rate envelope characterizes a service rate available to an aggre-
gate of explicitly measured classes. It captures the effects of non measured cross traffic
in networks, or reveals and characterizes non-constant service capacity of a web sever.
Similarly, a class service rate envelope characterizes a service rate available to each
traffic class within the aggregate and across time scales. In both cases, this multiple-
time-scale characterization is critical to inference of diverse service components such
as maximum policed bandwidth, minimum service, and analysis of inter-class re-
source sharing relationships. Moreover, its statistical nature reflects the fact that a
class’ service can fluctuate according to the varying demands of other classes and the

mechanism by which the scheduler arbitrates this demand.
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Backlogging Condition

The empirical service rate envelope characterizes the service rate received by the flow
(either a class’ or an aggregate’s flow) as a function of the interval length over which
the flow is backlogged, where a flow is said to be backlogged whenever it has at
least one packet in the system. A traffic flow is continuously backlogged for k£ packet

transmissions in the interval [a;, d; 51 if

jtm > Qjpmt1, forall 0 <m <k —2,

for k > 2. Note that all packet transmissions are backlogged for £ = 1 in the interval
[aj,d;] (see reference [13] for an illustration of a backlogging condition).
Thus, denoting Uls, s + t] as number of flow’s bits' serviced in the backlogged

interval [s, s + t], the service rate received in [s, s + t] is simply

_Uls, s +1]

mE(r) = =2

(3.3)

Finally, the measurement for each backlogged interval is included in the measure-
ment, M if

(k—0.5) <t < (k+0.5)I. (3.4)

Measured service envelope samples M,f , both per class and aggregate, are used

in inferring the scheduling discipline as will be in detail explained in the following

section.?

!The actual units of monitoring are packets or requests. However, since these can be of different

size, the workload is represented in bits.

2Notice that for convenience, the arrival envelope is discretized in time and the service envelope
is discretized in bits. However, to perform the comparative computations of Section 3.3, both are

expressed in discrete time rates with service interpolated.
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Empirical Aggregate Service Model

Analogous to arrival traffic envelope, the aggregate service rate envelope is determined
with first two moments of its service rates across the time scales. Denote the aggregate
service rate measurements in time scale I as 6k = M,‘f, where M,‘f is measured as
explained in Section 3.2.2 for the arrival-departure sequence of the aggregate flow.
Then, using these measured rates over different sub-intervals within the window 7',
the mean and variance of the empirical aggregate rate for intervals of length I can

be computed as

_ 1 M
Ce=9r ;Ck,j (3.5)
and
1 & -
CVe= 11 ;(Ck,j—ck) (3.6)

where M) is the number of measured system rate samples in time scale Ij.

Empirical Class Service Model

In the case of the class service rate envelope, denote the service rate measurements
. . 5i,S - —o . . .
for class 7 and time scale Iy as R;” = M}, where M} is measured as explained in

Section 3.2.2 for the arrival-departure sequence of class-z flow. It should be noted
RS,
Iy,

that B2 contains normalized (on intervals of length I, i.e., ( )) samples of the
service envelope S*(Iy).

Further, note that according to 3.2.2, the measured class must be backlogged in
order to infer its service rate. However, the measured class does not require other
classes to be backlogged when monitoring its service, as this information is indirectly

revealed by fluctuations in its own measurements. Finally, observe that in the case

of the empirical aggregate service model, only the first two moments of the system



39

rate are computed, while in the case of the class service model, the measurement
vector Rés is retained. This is due to specific inference methodology, as the first two
moments of the available aggregate service rate, together with first two moments of
each class arrival rates are used for obtaining expected class service rate distributions
for different schedulers. On the other hand, empirical class service rate measurements
are used for detecting the scheduling discipline itself, as will in detail be explained in

the following section.

3.3 Service Inference

This section explains how to use both theoretically ideal and measured envelopes as
described above to characterize elements and parameters of the multi-class system.
Part 3.3.1 explains the concept of empirical service rate distributions, while Parts
3.3.2 and 3.3.3 present parameter estimation and scheduler inference methodologies.

Under a particular scheduler hypothesis, this research performs Maximum Likeli-
hood Estimations (MLEs) of the scheduler’s parameters, such as guaranteed rates in
WFQ and deadlines in EDF. Using the envelope’s ideal description of a class’ service,
this thesis then develops hypothesis tests to infer which service discipline is employed
by the system via statistical analysis of the empirical inter-class sharing relation-
ships. Finally, the MLEs of the unknown parameters under the inferred scheduler are

selected.

3.3.1 Empirical Service Distributions

This section describes the expected distributions of service for a given arrival dis-

tribution under different service disciplines. For simplicity, it considers a two-class
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system and aggregate traffic A’[s, s + ¢] with a Gaussian distribution.® Notice that
even under Gaussian arrivals, the service envelopes will be non-Gaussian due to the
non-linearities of the multi-class server. For simplicity, the section first describes the
expected service distributions for constant aggregate service rate and then generalize
the analysis for variable service rate.
Denote X} as a Gaussian random variable with mean C'I; — E:;ll RZ’AI &, variance

22—211 RVk"’AI 2 and probability density function p xi (2)-

i1 i—1

Xj~N (ka - R, ZRVk”’AIk2> .

n=1 n=1

From Equation (2.1), the probability density function of the service envelope Si =

S*(I},) under the hypothesis that the server is SP is given by

pst (@) = P(X}, < ¢iCT)8(2—¢iClie)+px; (0)I (6:CT, < x < CIy) +P(Xy > CL)d (2—Cy),
(3.7)
where I(-) is an indicator function and 4(-) is a delta function.
Similarly, denote Y}’ as a Gaussian random variable with mean CI,— > 4i RZ’AI ks

variance ) i RVk”’AI 2 and probability density function Py; (y),

Y; ~ N (ka =Y Ry RVk”’AIkQ> :

n#i n#£i

3The motivation behind the Gaussian traffic characterization is that it is very simple and accu-
rate when a large number of sources are multiplexed (via the Central Limit Theorem). In fact, it
has been shown in [26] that aggregation of even a fairly small number of traffic streams is usually
sufficient for the Gaussian characterization of the input process to accurately predict queue per-
formance. However, note that the Gaussian assumption is not necessary for traffic envelopes; see
[59] for example. Regardless, this chapter makes this assumption as it makes the solution more

computationally efficient while also retaining a high degree of accuracy.
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From Equation (2.2), the probability density function of the service envelope S; =

S%(I;) under the hypothesis that the server is WFQ is given by

P () = P(Y} < 6iCL)0(y=diCLi)+py; ()] (6:ClL <y < CLy) +P(Y{ > CLy)3(y—ClLy).
(3.8)
Finally, define the random variable Z} such that
Zi~N (ka +CD; =Y RY1L,.Y RVMI: ) .
n#i n#i
Further denote the probability density function of Z¢ by p i (2), where I, = k—|6,—0;]|

and D; is empirical mean delay. From the EDF service envelope of Equation (2.3), it

follows that the probability density function of Si under the EDF hypothesis is given

p5’" (2) = P(Z; < 0)6(2) +py; (2)I (0 < 2 < CI,) + P(Z; > CL,)6(z — CIy). (3.9)

Examples of empirical class service rate distributions for WFQ and SP servers are
presented in Figures 3.4(a) and 3.4(b). The interval length I, is 400 ms and additional
parameters such as traffic load and statistical workload characterization are given in
Section 5.4.

The observations about the figures are the following. First, the service distribution
of WFQ visibly exhibits the truncated behavior defined by Equation (3.8): this is
due to WFQ’s guaranteed rate which lower bounds the service. Second, observe that
no such “hard” lower border exists for SP without strict rate limiters on all higher
priority traffic classes. Finally, notice that upper limits on the density functions
are not evident here, as in this case, neither class reached its upper limits due to

statistical fluctuations in the demand of the other class. Also, it should be noted
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Figure 3.4 : Service Rate Histograms for WF(Q and SP

that the variance of arrival traffic plays a key role in revealing the scheduler type.
For example, as the variance of arrivals becomes larger, according to Equation (3.8),
the probability of clipping lower service bound increases. Likewise, the probability of
detecting scheduler correctly increases since the service distributions for WFQ and
EDF schedulers become statistically more differentiated.

Next, this thesis describes the expected distributions of a class’ service for a given
arrival distribution and for a given aggregate distribution. Without loss of generality,
this thesis assumes Gaussian distribution* for C). Denote the probability density
function of the aggregate service envelope in time scale I, with pc, 1, (v). Next, denote
the probability density function of a class service envelope in the same scale, but for
a given aggregate service (e.g., Equation (3.8) for WFQ), with pggH(x\Cka = y),
where SCH denotes scheduling discipline which can be SP, WFQ or EDF. Then, the

probability density function of the class service envelope is given by

4Observe that if the distribution is non-Gaussian, the pdf of the aggregate service could be

estimated and used in Equation (3.10).
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P @) = [ pen " (el = )y (3.10)
0

Observe that when the aggregate service rate is constant, i.e., when pg, 1, (y) =

6(y — CIy), then p3-H (z) = p3c ™ (x|y = C1), which is a special case treated above.
k k

3.3.2 Parameter Estimation Under Scheduler Hypothesis

This section describe how a scheduler’s parameters such as weights in WFQ and dead-
lines in EDF can be estimated under the hypothesis of a particular scheduler EDF,
WFQ, or SP. THis research employs the Generalized Likelihood Ratio Test by first
obtaining Maximum Likelihood Estimates of unknown parameters under each hypoth-
esis, and then using the likelihood ratio test. Next, it is shown how the scheduling
mechanism itself can be inferred by choosing the more likely hypothesis as the true
one. Finally, the MLEs of unknown parameters under the chosen hypothesis become

the final estimates.

SP Relative Priority Estimation

The first problem is to determine unknown class’ priorities under the hypothesis that
server is SP. Given G classes, there are G'! combinations of relative class’ priritizations
and the goal is to find the most probable one. Thus, for j =1,---,G!, denote €; as
a jth priority vector corresponding to jth priority combination, e.g., & = (1,-- -, G).
Given the observations of each class’ service in intervals of length I, the MLE is used
to determine the most likely priority vector €; as

é'j,k = argmaxﬁsp(ﬁi’slk, R%SI;C, - ,Rf’slﬂe"j’k), (3.11)
€5k
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where
PP (B L, BBy, - B I |) =
12, 530 o = RS 1) T 235 = F2ST) - TI, B35 (e = ST,
and M, N and L denote the respective sizes of Fi,lcs , ﬁis and ﬁ,fs . Thus, this
methodology employs a numerical search over all possible priority combinations, and

find the most likely one for each time scale I. The final solution €; is obtained by

using the majority rule over all time scales.

WFQ Relative Weight Estimation

The next problem is to determine each class’ unknown weight parameter under the
hypothesis that the server is WFQ. Given the observations of each class’ service in

intervals of length I, the MLE is used to estimate the unknown parameters ¢; as

(Bres Gos - 1 0) =  argmax VIR L, Ry Ly, - RS Iy, |, o+ bap)
(¢1,kz¢2,k="'=¢G,k)
(3.12)
where pWFQ(RMS I, R25 Ty, -+, RS Ii|¢1 1) is computed similarly as for the SP sce-

nario explained above. Since a closed form expression cannot be found for the MLE
in Equation (3.12), a numerical grid search is employed by maximizing the likelihood
function with respect to the unknown parameters ¢; ; in the interval [0, 1], such that
Zle ¢ir = 1. (Notice that the unknown values have known and closed borders so
that the grid numerical search is justified.) The estimate is obtained for each interval
I, independently, and the final estimate of ¢; is computed by averaging the estimates
for different time scales.

The physical interpretation of Equation (3.12) is as follows. The relative class
weight estimation can be performed only over time intervals when all classes are

backlogged since it is only during such intervals that all classes incur their lower
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bounds in service. Such intervals cause peaks at the lower clipping of the service rate
distribution and also maximize the joint distribution of Equation (3.12).

For EDF, similar expressions can be derived by applying the same methodology of
using the EDF service envelopes to compute the MLE expressions for the class delay

bounds, and performing a grid search to estimate 6.

Rate-Limiter Parameter Estimation

Thus far, this thesis considered work-conserving service disciplines. Here, the the-
sis develops a measurement methodology applicable to rate-limiters, i.e., non-work-
conserving elements which limit a flow’s arrivals to within a pre-specified constraint.
For a single token bucket with a bucket depth of one packet, the rate limiter for class
1 is characterized by an unknown rate r;. The key problem is to distinguish such a
limit on class i’s service from throughput limits due to the workloads of other traffic
classes and other mechanisms in the multi-class scheduler.

Thus, the goal is to find the maximum likelihood estimation of r; under the hy-
pothesis of a particular scheduler (inferred as above). With rate limiters, the service
envelopes of Equations (2.1), (2.2) and (2.3) have r¢ in place of C' as the maximum
service rate. Thus considering the EDF hypothesis as an example, the maximum
likelihood estimation of r; can be computed as

(f,’c,(i) = argmaxﬁEDF(R‘,lc’SIk,éi’slk, ‘.- ,ﬁg’slk\rz,éi). (3.13)
ri g

Estimation of rate limiter parameters highlights the importance of time scales.
This is illustrated in Figure 3.5, which depicts the probability that a class transmits
at the rate limiter’s bound as a function of interval length. The scenario is a two-class
class-based fair queuing scheduler with class weights of 0.5. The classes have 60 and

40 exponential on-off flows with peak rate 32kb/s. The figure shows the empirical
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probability that the aggregate traffic of class 1 transmits at its rate limit of 1 Mb/s
as a function of interval length. As shown, for short time scales this occurs quite
frequently whereas it is increasingly rare over longer time scales. While this property
is an inherent characteristic of any variable rate flow, the key point is that inference of
rate limiter parameters at long time scales is inhibited by flows becoming less and less
likely to send at peak rates for sustained periods. As a consequence, measurement of
multi-level leaky buckets, which require longer time scale measurements due to traffic
constraint functions which shape the traffic differently at different time scales (see

[60] for example) will incur higher measurement errors.
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Figure 3.5 : Probability of Transmitting at Rate Limiter Bound

3.3.3 Scheduler Inference

The above technique allows estimation of a scheduler’s parameters under the hypoth-
esis of particular scheduler. Here, the thesis shows how the scheduling policy itself
can be inferred. The key technique is to choose the hypothesis that makes the mea-
sured service observation most likely. It highlights the importance of variability of

both class arrival and aggregate service envelopes and the crucial role of time scales.
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To infer which service discipline is the most likely under the observations, this work
applies Generalized Likelihood Ratio Test (GLRT), a detection method in which esti-
mated unknown parameters are used in the likelihood ratio test. Thus, for each time

scale Iy, the scheduler hypothesis test is given by

ﬁEDF(R’Ilc,SIk)ﬁEDF(R’i,SIk) .. 'ﬁEDF(R'I(j,SIk) spF

= pry - <
PYVER(RY )PV FR(Ry 1) - - - VPR 1) wre
for EDF and WFQ hypothesis. If there are more than 2 hypothesis, then similar

(3.14)

tests are used for finding the most likely one. Since the GLRT is applied for all time
scales I, and the method should provide only one final decision about the scheduler
hypothesis, the next problem is to determine which time scales to consider in deter-
mining the most likely scheduling policy. As explained above, increased variability
of arrivals makes the service rate distributions more statistically differentiated. In
contrast, increased variability of the aggregate available service has opposite effect.
An example is given in Figure 3.6, which depicts the service rate distributions in a
QoS enabled web server with FCFS and WFQ scheduling policies implemented in
the listen queue. The curves shown in Figure 3.6 are numerically computed using
Equations (3.8) and (3.9). The interval length is 200 ms and additional simulation
parameters are given in Section 5.4. Observe that due to large variance of the aggre-
gate service rate compared to the variance of the class arrival rate (the actual ratio
in the experiment is 2.1 for 200 ms time scale), no hard lower bound is observable
in Figure 3.6 for WFQ. This is because the high variability of the aggregate service
envelope directly affects the variability of class service envelopes according to Equa-
tion (3.10). Also, observe that the curves in Figure 3.6 are almost the same, except
for the slight difference in the rates around 230 req/sec. Thus, increased variability
of the aggregate service rate makes the inference problem harder, as the service rate

distributions become statistically closer.
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Figure 3.6 : WFQ and FCFS Expected Probability Density Functions

To include this effect in the inference procedure, define a rate variance ratio vy ; =

,A

v for each class 7 and time scale I, as the measure of detection accuracy. A

decision from the particular time scale I} is included in determining the final decision

if the following rate-variance condition

Vi > (3.15)

is met for a certain threshold ¥*. Thus, the methodology chooses only those time
scales that have larger probability of correct service inference, i.e., time scales for
which service rate distributions are statistically more differentiated. The final deci-
sion is obtained using majority rule over time scales and classes that satisfied the
rate variance condition. While analytical calculation of a threshold «* for -, ; that
guarantees a desired probability of correct detection is intractable (because of non-
linearities in expected class service distributions), this work experimentally finds the
relationship between probability of correct decision and threshold using trace driven
simulation in Section 5.4. This relationship can serve as a guideline for setting the

threshold v* in practice.
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The physical interpretation of the rate variance condition is as follows: in the
network case, C'V} is the measure of the variability of unknown cross traffic. If
the variability of the cross traffic increases, the probability to correctly detect the
scheduling policy decreases. Likewise, in the web server case, if the variability of
application layer service increases (e.g., due to file size distribution or caching), the
probability to correctly detect the differentiated policy implemented either in the
listen queue or CPU decreases, because class service measurement will be “blurred”
due to this effect. Further, this illustrate challenges in providing strong capacity
guarantees in systems in which it is not possible to control all the elements of the
system that influence service times (i.e., file sizes in this particular case).

Observe that when C'V;, = 0 for all £, all time-scales are included in measurements,
which is exactly the case when aggregate capacity is constant. Another extreme case
is when RVk"’A = 0, i.e., it is not possible to infer the scheduling discipline when there

is no variability in arrivals.

3.3.4 The Algorithm Summary and Discussion

Table 3.7 summarizes the proposed methodology, which is divided into measurement,
parameter estimation and scheduler-inference procedures.

Since most of the statistical inference techniques proposed in the parameter-
estimation procedure are iterative, it may become a computational bottleneck when
the number of classes G increases. However, note that the overall algorithm can be
implemented in a computationally efficient way by decoupling measurement proce-
dure on one side from parameter-estimation and scheduler-inference procedures on
the other. For example, data can be collected within measurement windows of the
length of several seconds (see [55] for implementation details), followed by a duration

of several tens of seconds to allow computationally intensive parameter-estimation
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procedure to converge.

Also, note that the Gaussian traffic characterization substantially contributes to
computational efficiency. This is because Gaussian processes are completely specified
by their first two moments, which makes the Gaussian traffic characterization ideal
from a measurement point of view, since measuring statistics beyond the second

moment is often impractical.

3.4 Experimental Investigations

This section performs a set of simulation experiments to evaluate the effectiveness of
the multi-class inference tools described above. It studies WFQ weight estimation,
inference of the service discipline for EDF, SP, and WFQ as well as “measurable
regions”, the conditions necessary to obtain accurate estimates of WFQ weights. Ex-
periments are performed for both QoS network routers and QoS enabled web servers.

All networking simulations are performed with the ns-2 simulator with a single
router and various numbers of hosts in the topology of Figure 3.2. The link capacity
is 1.5 Mb/s and packet sizes are 500 and 100 Bytes, as specified in the various experi-
ments. The minimum interval length for measuring arrival and service envelopes is I;
= 10 msec and the maximum interval-length for measurement is 0.5 sec for a 50-point
arrival envelope. For these experiments, the measurement window 7' is varied in the
experiments from 2 to 10 sec as indicated. The simulations consider two traffic classes
and EDF, WFQ, and SP scheduling.

For the web server simulations, the simulator described in [47] (that was devel-
oped to closely approximate the behavior of OS management or CPU, memory and
caching/disk storage) is modified. A simplified model of a distributed web server is
depicted in Figure 3.8. The simulated server has a listen queue in which all incoming

requests are queued before being serviced. Upon arrival, each request is queued onto
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A. Measurement:

Denote 0 as the set of all measurement time scales. For I, € 6 compute:
1. RZ’A and RV,:’A fori=1,--- G, (Eq. (3.1) and Eq. (3.2)).
. R2S fori=1,---,G, (Eq. (3.3) and Eq. (3.4)).

Cr and CVy (Eq. (3.5) and Eq. (3.6)).

N

3.
B. Parameter Estimation:
4. Determine a subset of time scales 1; C 0 for which the rate-variance
condition (Eq. (3.15)) holds, fori=1,--- G.
5. SP server: for I, € ¢;,i1=1,--- G,
(a) Determine & (Eq. (3.11), using Eq. (3.7) and Eq. (3.10)).
(b) Compute 55T (Ry I, B2 Iy, -, RESIL|& 5 = €i)
6. WFQ server: for I, € ¢;,i=1,--- ,G,
(a) Determine ¢ig,--- ,bax (Eq. (3.12), using Eq. (3.8) and Eq. (3.10)).
(b) Compute pW (R, I, Ry I, -+, RESL| (b1, bak) = (Sies -+ > k)
7. EDF server: for I, € ¥;,1=1,--- G,
(a) Determine oy, ,0ay (using Eq. (3.9) and Eq. (3.10)).
(b) Compute pPPF (R I, RS L, - - -, RO I\ (61, -+ - 5 0ak) = (016 -+ 5 0ck))
C. Scheduler Inference:
8. Determine the most likely scheduler by finding maz(p°F(.), pVF2(.), pPPF(.)),
where p°F(.), pPVEFQ(.) and pEPT(.) are computed in 5(b), 6(b) and 7(b), respectively.
9. For the most likely hypothesis, determine final parameter estimates, e.g.,

- b, .
for WEQ server ¢; = %’ fori=1,---,G.

Figure 3.7 : Summary of the Measurement /Inference Algorithm
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Figure 3.8 : Distributed QoS Web Server

the listen queue or dropped if the listen queue is full. Processing a request requires
the following steps: dequeuing from the listen queue, connection establishment, disk
reads (if needed), data transmission and finally connection tear down. A transfer time
of 0.41ms per 4 KB (resulting in the peak transfer rate of 10 MB/s) is set. WFQ
scheduling in the server listen queue and CPU scheduling algorithm is implemented.
CPU differentiation is implemented such that each traffic class is guaranteed its fixed
share of CPU time as long as it is backlogged, while each request from the same class
is given a fair share of the CPU time within that class. For example, if there are 2
requests from class 1 and two other requests from class 2, and WFQ weights are 0.7
and 0.3, then each request from class 1 is given 35% of CPU time, while each request
from class 2 is given 15% of CPU time. Maximum CPU time per request is 100 ms.
The trace used in simulations is generated from the CS department server log at Rice

University. The inter-arrival times are simulated as exponential.
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3.4.1 WFQ Weight Estimation
Network Router Experiment

This section experimentally investigates the statistical properties of the WFQ weight
estimation algorithm. In this scenario, the system has from 65 to 68 exponential on-
off sources with on-rate 32kb/s and on and off periods of 0.36sec. Moreover, there
are from 25 to 28 sources of the same type for class 2. The number of flows in the
system is varied to simulate flow-level arrivals and departures which are common in
a real system. The true WFQ weights are ¢; = 0.7 and ¢ = 0.3. The packet size is
500 Bytes.

In the experiments, 50 simulation runs are performed corresponding to each data
point in Figure 3.9(a). For a particular simulation, the measurement window 7" is set
to 2, 5, or 10sec as reported on the horizontal axis. Each point on the plot indicates
the maximum likelihood estimation of ¢, (51, using the methodology of Section 3.3.

First observe that the variance of the estimator reduces with increasing measure-
ment period 7', due simply to the fact that more sample points are available with
larger T'. This is because % increases with T, where I is the length of a particular
interval. For example, with T" = 2sec, 95% of the weight estimations are within 11%
of the true value, whereas with 7' = 10sec, 95% of the weight estimations are within
1.4% of the true value. However, T should not be set arbitrarily large, as longer-time-
scale fluctuations due to flow arrivals and departures may introduce non-stationarities

which would bias the tests. While the number of flows in the system did vary in these

simulations, as defined above it is within a range of 5 to 10% of the system load.
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Figure 3.9 : WFQ Weight Estimation in a Router and a Web-Server Scenarios

QoS Web Server Experiment

This section experimentally investigates the WFQ weight estimates in the QoS en-
abled web server. It estimates relative class weights and the simulation setup consists
of two traffic classes for which CPU WFQ weights are varied from 0.5 to 0.9. This
work further performs two types of experiments. In the first one, called on-line, the
requests from two traffic classes entering and leaving the system are passively mon-
itored. The total arrival rate is 1800req/s, and the mean arrival rate of each class
is proportional to its relative CPU weight. For the relative classes weight estimates,
the inference methodology presented in this chapter is used. On the other side, this
research performs another set of experiments, called off-line, where each class is artifi-
cially probed with the arrival rate of 2500 req/s, thus making the total request arrival
rate as high as 5000 req/s and saturating the web server. Recall that the experiments
probing at a high rate in all classes yield a true inter-class relationships - lower service
bounds in this particular case. In the off-line experiments, the mean service rates for

both classes (m; and my) is measured, and the appropriate estimator for relative
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mi1
mi1+ms”

class-1 weight is q31 =

In the experiments, 10 simulation runs are performed for each WFQ weight shown
on the x-axis of Figure 3.9(b) and the averaged WFQ estimates are computed using
both on-line and off-line estimation procedures. First, observe that the results for
the on-line experiments are just slightly biased when compared to off-line case. How-
ever, the overall results confirm the accuracy of the passive monitoring estimation
methodology developed in this chapter.

Second, note that the ideal class’ CPU relative weights are not reached in the on-
line nor off-line experiments. For example, a CPU weighted share of 0.7 is revealed
as a weighted share of 0.59 in the on-line case (consider a point with coordinates (0.7;
0.59) in the x-y plane of Figure 3.9(b)). This effect is due to a preemptive nature
of CPU scheduling, i.e., the fact that the request service time does not depend only
on CPU scheduling weight, but also on the number of requests present in the system
and the CPU time required by the request. This example emphasizes an important
feature of the inference methodology developed in this thesis - it estimates net service

class parameters, as seen by users from the system edge.

3.4.2 Scheduler Inference

As described in Section 3.3, the above WFQ weight estimations can only be performed
under the hypothesis that the server is WFQ. Thus, statistical tests are necessary to

infer the scheduling mechanism itself.

Constant System Capacity

This section describes simulation experiments for scheduler inference using the same
number of sources for each class and the same packet size as in the previous net-

work router experiment. Figure 3.10 depicts the experimental probability of correct
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decision vs. time scale for the respective correct hypothesis of EDF and WFQ. In
both cases, 50 simulations are performed and the probability of correct decision is
computed as the number of correct decisions versus total number of tests for each

time scale (recall the final decision is performed by majority rule).
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Figure 3.10 : Probability of Correct Decision vs. Time Scale

For the experiments of Figure 3.10(a), the correct hypothesis is EDF with delay
bounds of §; = 20ms for class 1 and d, = 40, 60 and 80 ms for the three curves for
class 2. As indicated in the figure, EDF is correctly inferred 100% of the time at
short time scales (I up to 300 ms) while less frequently for longer interval lengths,
especially as 0, — d; decreases. Yet in all cases the probability of correct decision
is no less than 92%. The reason that the probability of correct decision decreases
as 0 — 0; decreases, is that there is less and less differentiation provided by the
scheduler, making the service envelopes statistically closer, and the inference problem
more difficult. Indeed, if §, = 4;, the scheduler is actually performing FCFS, as is
also evident from the service envelope in Equation (2.3).

Regardless, in all cases, the correct final decision is made as majority rule is

performed over different time scales, and incorrect decisions at a particular time scale
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are never frequent enough to form a majority. Also, observe that all time scales are
included in determining final decision, as C'V}, = 0, i.e., rate variance condition is
fulfilled for all k.

Figure 3.10(b) depicts the experimental results for WFQ. Observe that in this case,
the correctness ratio is quite poor on shorter time scales. This is due to the mismatch
between the fluid approximation used in the analytical model and the packet-layer
simulations. In particular, over short time intervals, the fluid approximation does not
hold and not every packet gets serviced at rate ¢,C (indeed, see [61] for a detailed
discussion of such short-time-scale unfairness). In this case, such errors impact the
final decision and the overall correctness probability is 0.94 (less than the correctness
of 1 achieved in the EDF case) as the short-time-scale errors form a majority in 6%
of the cases.

Finally notice that the relationship of the probability of correct decision and time
scale are reversed for WF(Q as compared to EDF. The reason for this is that over longer
time scales, WFQ overcomes packet level unfairness and, when flows are backlogged
for long durations, it can become quite clear (statistically) that there is a minimum
guaranteed service rate clipping the distribution of the service envelope. In contrast,
for EDF, the differences are most pronounced for small interval lengths where the

shifts in the arrival envelopes (cf. Equation (2.3)) are more prominent.

Variable System Capacity

The goal here is to explore and quantify the extent to which the system variability
influences the probability of correct scheduler inference. THe thesis performs experi-

ments with WFQ and FCFS scheduling policies® in a listen queue of a QoS enabled

SRecall that EDF scheduler with §;=0 performs FCFS.
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web server. The simulations use traces generated from the CS department server
log at Rice University. The Poisson arrival rate was 125req/s, with arrival rate of
87req/s and 38req/s for classes 1 and 2 respectively, i.e., the ratio of means of arrival
rates for traffic classes was 7:3. WFQ scheduler weights in the listen queue were set
to 0.7 and 0.3.

Figure 3.11(a) depicts the class 1 arrival rate variance envelope and aggregate
rate variance envelope for a single simulation run with the Rice CS trace. Observe
that the aggregate rate variance is larger than the class arrival rate variance for all
measured time scales. This is not surprising since the arrival process is Poisson, while
heavy tailed file size distribution cause increased variability of serviced requests over

longer time scales.
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Figure 3.11 : Rate Variance Envelope vs. Measurement Interval

Recall that a rate variance ratio is defined as a measure of detection accuracy. High
values of this ratio indicate high detection probability and vice versa. To validate this
technique, the simulation is run 10 times for different random seeds, 5 times for each
scheduler. Thus, the total number of GLRT tests is 500 (in each simulation run

there are 50 GLRT tests corresponding to 50 time scales). The percentage of correct
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scheduler detection averaged over all 500 tests is 0.53. Namely, it is 1.0 for FCFS (all
250 tests for FCFS scheduler were correct), while it is 0.06 for WFQ (only 15 out of
250 decisions were correct). This is because the aggregate rate variability is too high
compared to class arrival variability (i.e., the rate variance ratio is too small, less
than 0.6 in all cases). Thus, variations of service times due to variability of file sizes
and caching dominate the inference tests, thereby overwhelming the scheduling policy
implemented in the web server’s listen queue and making the system to statistically
appear closer to FCFS than WFQ when observed from the edge. An analogous
networking example would be the one when highly bursty cross-traffic flow, which
cannot be measured from the edge, interferes with the edge-measured traffic in the
bottleneck router. In this case again, high variance of the aggregate service envelope
would overwhelm the inference of bottleneck node’s scheduling policy.

Next, to further explore and quantify the influence of the aggregate rate envelope
variability on correct scheduler inference probability, and to be able to determine and
experiment with different values for threshold v*, the distribution of file sizes of the
trace is changed by replacing all files larger than 10 KBytes with files of 4 KBytes®.

Figure 3.11(b) depicts the class 1 arrival rate and aggregate rate variance envelopes
for a single simulation run with this changed trace. Observe that the rate arrival
variance is now larger than the aggregate rate variance for all time scales, which is
a direct consequence of the change of the file size distribution. For this setup, there
are again 10 simulations, 5 for each scheduler.

Recall from Section 3.3 that if the rate variance ratio v ; is grater than the thresh-
old ~*, the decision from particular time scale I is included in determining final de-

cision. For example, for threshold v* = 1.0 total number of GLRT tests is 500. Out

6 Alternative approach in changing rate variance ratio was to increase variability of arrivals.
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of these 500 tests, 492 fulfilled the condition that ~y;; > 1.0 for both classes 7 = 1, 2.
Further, in 305 out of this 492 tests the correct scheduler is detected. Thus, the
probability of correct scheduler detection averaged over all time scales for which the
rate variance condition is fulfilled is 0.62. However, the majority rule over those time
scales that fulfilled the rate variance ratio condition gives final correctness detection
probability of 0.9 (only once failed for WF(Q scheduler).

The probability of correct detection increases when threshold +* increases. For
example, when 7* = 2.0, the per-time-scale correctness probability increases to 0.94,
while the majority rule over time gives final correctness probability of 1.0. However,
one should not use arbitrarily large threshold values v*, as the number of time scales
for which the condition from Equation (3.15) is fulfilled decreases when v* increases.
Finally, note that reduced variability of aggregate service envelope, as compared to the

example from Figure 3.11(a), increases the probability of correct scheduler detection.

3.4.3 Measurable Region

The methodology presented in this chapter is based on passive measurements, i.e.,
no probing packets are transmitted to modify the system’s workload. However, with
passive monitoring, it is possible that other classes’ particular workloads prohibit
inference of certain network elements. For example, in the extreme case that all other
classes are idle, it is impossible to detect a guaranteed minimum rate. Similarly, the
multi-class nature of the scheduler itself would not be measurable, and only rate-
limiter parameters could be obtained. The required workload to measure a particular
network behavior is referred to as the measurable region.

Next, the thesis addresses the issue of the conditions necessary to infer lower and
upper service limits for WFQ schedulers. For the simulations, each flow has on and

off periods of 0.36sec and on-rate 32kb/s. The packet size is 100 Bytes.
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Figure 3.12 : Measurable Region for Lower Service Bounds

Figure 3.12 depicts the resulting measurable regions for WFQ weight estimates.
Each point represents the minimum number of class 1 and class 2 flows needed such
that the relative weights can be estimated within 5% of their correct value. In other
words, these curves represent the borders between measurable and non-measurable
regions. That is, if either class has fewer flows than indicated by this measurable
region, then estimation is not possible, as the conditions required for weight estimation
occur too rarely. Similarly, the scheduler inference correctness probability (not shown
in the figure) sharply decreases when the number of flows in the system drops below
the measurable region minimum.

Observe that as the weight of class 1 increases from ¢; of 0.5 to 0.7 and 0.9
(corresponding to the three curves), the curves shift to the lower right indicating that
a higher number of class 1 flows and lower number of class 2 flows are needed to infer
¢1. The reason for this is that as ¢; becomes larger, a higher traffic load in class 1 is
required to backlog class 1 sufficiently to estimate the guaranteed rate.

Finally, observe that a typical point on the curve refers to a relatively modest

resource utilization. For example, under ¢; = 0.7, at least 30 class 2 flows are required
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when 46 class 1 flows are present. This corresponds to an average system utilization
of 62%, i.e., the mean utilization must be at least 62% to perform the measurements

passively, otherwise active probing is required.

3.5 Summary

This chapter developed a scheme for clients to perform a series of hypothesis tests
across multiple time scales in order to infer the request service discipline among
class-based weighted fair queuing, earliest deadline first, and strict priority. These
inferences significantly enhance the network monitoring and service validation capa-
bilities and provide vital information for making efficient use of resources. The next
chapter will show how end-point inferences of available bandwidth can be used to
achieve a two-level service differentiation policy, yet without any support from the

network.
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Chapter 4

Low-Priority Service via End-Point Congestion
Control

This chapter devises TCP-LP (Low Priority), an end-point protocol that achieves
two-class service prioritization without any support from the network. The key obser-
vation is that end-to-end differentiation can be achieved by having different end-host
applications employ different congestion control algorithms as dictated by their per-
formance objectives. Since TCP is the dominant protocol for best-effort traffic, this
thesis designs TCP-LP to realize a low-priority service as compared to the existing
best effort service. Namely, the objective is for TCP-LP flows to utilize the bandwidth
left unused by TCP flows in a non-intrusive, or TCP-transparent, fashion. Moreover,
TCP-LP is a distributed algorithm that is realized as a sender-side modification of
the TCP protocol.

One class of applications of TCP-LP is low-priority file transfer over the Internet.
For network clients on low-speed access links, TCP-LP provides a mechanism to retain
faster response times for interactive applications using TCP, while simultaneously
making progress on background file transfers using TCP-LP. Similarly, in enterprise
networks, TCP-LP enables large file backups to proceed without impeding interactive
applications, a functionality that would otherwise require a multi-priority or separate
network. Finally, institutions often rate-limit certain applications (e.g., peer-to-peer
file sharing applications) such that they do not degrade the performance of other

applications. In contrast, TCP-LP allows low priority applications to use all excess
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capacity while also remaining transparent to TCP flows.

A second class of applications of TCP-LP is inference of available bandwidth for
network monitoring, end-point admission control [44], and performance optimization
(e.g., to select a mirror server with the highest available bandwidth). Current tech-
niques (e.g., [54, 62, 63]) estimate available bandwidth by making statistical inferences
on measurements of the delay or loss characteristics of a sequence of transmitted probe
packets. In contrast, TCP-LP is algorithmic with the goal of transmitting at the rate
of the available bandwidth. Consequently, competing TCP-LP flows obtain their
fair share of the available bandwidth, as opposed to probing flows which infer the
total available bandwidth, overestimating the fraction actually available individually
when many flows are simultaneously probing. Moreover, as the available bandwidth
changes over time, TCP-LP provides a mechanism to continuously adapt to changing

network conditions.

4.1 Reference Model and Design Objectives

The objective of TCP-LP is to use excess network bandwidth left unutilized by non
TCP-LP flows thereby making TCP-LP flows transparent to TCP and UDP flows.
This design objective is formalized in Figure 4.1(a) which depicts a two-class hier-
archical scheduling model (see [64]) that achieves the idealized system functionality.
In the reference system, there is a high-priority and low-priority class, with the for-
mer obtaining strict priority service over the latter. Within each class, service is fair
among competing flow-controlled flows. As networks do not typically employ such
scheduling mechanisms, the objective of TCP-LP is to obtain an approximation to
the reference model’s behavior via an end-point congestion control algorithm. As
depicted in Figure 4.1(b), in the actual system, all flows (high and low priority) are

multiplexed into a single first-come-first-serve queue and service approximating that
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of the reference model is obtained via the use of two different congestion control pro-
tocols, TCP and TCP-LP. In other words, TCP flows should obtain strict priority
service over TCP-LP flows, and competing TCP-LP flows should each obtain a fair

bandwidth share compared to other TCP-LP flows.!

Fair Queuing: TCPfajr

:::::E g
77777 = S Strict Priority TCP E First-Come-First-Serve
Fair Queuing: TCP -LP-fair C |:> ,,,,,, ] O_>
o ::E = e :E -
***** == TCP -LP
(a) Reference Model (b) TCP-LP Realization

Figure 4.1 : Reference Model and TCP-LP Realization

To further illustrate, consider again the system shown in Figure4.1(b). Denote
C as the link capacity, D as the aggregate rate demanded by all non-TCP-LP flows
(high priority), and n as the number of TCP-LP flows in the system, with all TCP-LP
flows having infinite demand and identical round trip times. Since the excess network
bandwidth is (C' — D)™, the goal is for each TCP-LP flow to utilize bandwidth given
by (C — D)*/n.

4.2 TCP-LP Protocol: Mechanisms and Deployment

This section develops TCP-LP, a low-priority congestion control protocol that uses the
excess bandwidth on an end-to-end path, versus the fair-rate utilized by TCP. It first

devises a mechanism for early congestion indication via inferences of one-way packet

LAs UDP flows are non-responsive, they would also be considered high priority and multiplexed

with the TCP flows.
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delays. Next, it presents TCP-LP’s congestion avoidance policy to exploit available
bandwidth while being sensitive to early congestion indicators. We then develop a
simple queueing model to study the feasibility of TCP-transparent congestion control
under heterogeneous round trip times. Finally, this section provides guidelines for

TCP-LP parameter settings.

4.2.1 Early Congestion Indication

To achieve low priority service in the presence of TCP traffic, it is necessary for TCP-
LP to infer congestion earlier than TCP. In principle, the network could provide such
early congestion indicators. For example, TCP-LP flows could use a type-of-service bit
to indicate low priority, and routers could use Early Congestion Notification (ECN)
messages [65] to inform TCP-LP flows of lesser congestion levels than TCP flows.
However, given the absence of such network support, this thesis devises an endpoint
realization of this functionality by using packet delays as early indicators for TCP-LP,
as compared to packet drops used by TCP. In this way, TCP-LP and TCP implicitly

coordinate in a distributed manner to provide the desired priority levels.

Delay Threshold

TCP-LP measures one-way packet delays and employs a simple delay threshold-based
method for early inference of congestion. Denote d; as the one-way delay of the packet
with sequence number ¢, and d,,;, and d,,.; as the minimum and maximum one-way
packet delays experienced throughout the connection’s lifetime.? Thus, d,,;, is an
estimate of the one-way propagation delay and d,,4x — dnin is an estimate of the

maximum queueing delay.

2Minimum and maximum one-way packet delays are initially estimated during the slow-start

phase and are used after the first packet loss, i.e., in the congestion avoidance phase.
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Next, denote v as the delay smoothing parameter, and sd; as the smoothed one-

way delay. An exponentially weighted moving average is computed as
sd; = (1 — y)sd;—1 + vd;. (4.1)

An early indication of congestion is inferred by a TCP-LP flow whenever the
smoothed one-way delay exceeds a threshold within the range of the minimum and

maximum delay. In other words, the early congestion indication condition is
Sdi > dmm + (dm,m — dmm)é (42)

where 0 < § < 1 denotes the threshold parameter (the setting of parameters ¢ and vy is
discussed in detail in Section 4.2.4). Thus, analogous to the way ECN uses increasing
queue sizes to alert flows of congestion before loss occurs, the above scheme infers
forthcoming congestion from the end points’ delay measurements so that TCP-LP

flows can be non-intrusive to TCP flows.

Delay Measurement

TCP-LP obtains samples of one-way packet delays using the TCP timestamp option
[66]. Each TCP packet carries two four-byte timestamp fields. A TCP-LP sender
timestamps one of these fields with its current clock value when it sends a data
packet. On the other side, the receiver echoes back this timestamp value and in
addition timestamps the ACK packet with its own current time. In this way, the
TCP-LP sender measures one-way packet delays. Note that the sender and receiver
clocks do not have to be synchronized since only the relative time difference matters.
Moreover, a drift between the two clocks is not significant here as resets of d,u,
and d,,4, on time-scales of minutes can be applied [67]. Finally, note that by using
one-way packet delay measurements instead of round-trip times, cross-traffic in the

reverse direction does not influence TCP-LP’s inference of early congestion.
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4.2.2 Congestion Avoidance Policy
Objectives

TCP-LP is an end-point algorithm that aims to emulate the functionality of the
reference-scheduling model depicted in Figure 4.1. Consider for simplicity a scenario
with one TCP-LP and one TCP flow. The reference strict priority scheduler serves
TCP-LP packets only when there are no TCP packets in the system. However,
whenever TCP packets arrive, the scheduler immediately begins service of higher
priority TCP packets.

Similarly, after serving the last packet from the TCP class, the strict priority
scheduler immediately starts serving TCP-LP packets. Note that it is impossible
to exactly achieve this behavior from the network endpoints as TCP-LP operates
on time-scales of round-trip times, while the reference scheduling model operates on
time-scales of packet transmission times. Thus, the goal is to develop a congestion

control policy that is able to approrimate the desired dynamic behavior.

Reacting to Early Congestion Indicators

TCP-LP must react quickly to early congestion indicators to achieve TCP-transparency.
However, simply decreasing the congestion window promptly to zero packets after
the receipt of an early congestion indication (as implied by the reference schedul-
ing model) unnecessarily inhibits the throughput of TCP-LP flows. This is because
a single early congestion indication cannot be considered as a reliable indication of
network congestion given the complex dynamics of cross traffic. On the other hand,
halving the congestion window of TCP-LP flows upon the congestion indication, as
recommended for ECN flows [68], would result in too slow a response to achieve TCP

transparency.
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To compromise between the two extremes, TCP-LP employs the following algo-
rithm. After receipt of the initial early congestion indication, TCP-LP halves its
congestion window and enters an inference phase by starting an inference time-out
timer. During this inference period, TCP-LP only observes responses from the net-
work, without increasing its congestion window. If it receives another early congestion
indication before the inference timer expires, this indicates the activity of cross traffic,
and TCP-LP decreases its congestion window to one packet. Thus, with persistent
congestion, it takes two round-trip times for a TCP-LP flow to decrease its window
to 1. Otherwise, after expiration of the inference timer, TCP-LP enters the additive-
increase congestion avoidance phase and increases its congestion window by one per
round-trip time (as with TCP flows in this phase).

As with router-assisted early congestion indication [68], consecutive packets from
the same flow often experience similar network congestion state. Consequently, as
suggested for ECN flows, TCP-LP also reacts to a congestion indication event at
most once per round-trip time. Thus, in order to prevent TCP-LP from over-reacting
to bursts of congestion indicated packets, TCP-LP ignores succeeding congestion
indications if the source has reacted to a previous delay-based congestion indication
or to a dropped packet in the last round-trip time.

Finally, the minimum congestion window for TCP-LP flows in the inference phase
is set to 1. In this way, TCP-LP flows conservatively ensure that an excess bandwidth
of at least one packet per round-trip time is available before probing for additional

bandwidth.

Pseudo Code

Figure 4.2 shows the pseudo code for TCP-LP’s congestion avoidance policy. Denote

cwnd as congestion window size and itt: as the inference time-out timer state indica-



Variables

new-ACK: indication that ACK packet has arrived

cong_ind: congestion indication

itti: inference time-out timer indication
cwnd: congestion window

Pseudocode

1. if (new ACK == 1)

2. if (cong_ind == 1)

3. if (itti == 1)

4. cwnd = 1;

d. else

6. cwnd = cwnd/2;

7. endif

8. itt = 1;

9. else

10. if (itti 1= 1)

11. cwnd += 1/cwnd;

12. endif

13. endif

14. endif

Figure 4.2 : TCP-LP Congestion Avoidance Policy

70
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tor. It is set to one when the timer is initiated and to zero when the timer expires.
Further, Figure 4.3 illustrates a schematic view of TCP-LP’s congestion window be-
havior at different stages, where points on the top mark early congestion indications
and the inference timer period is labeled itt. For example, with the first early con-
gestion indicator, this flow enters the inference phase. It later successfully exits the
inference phase into additive increase as no further early congestion indicators occur.
On the other hand, the second early congestion indicator is followed by a second
indicator within the inference phase such that the congestion window is subsequently

set to one.

itt

Congestion Window

Time

Figure 4.3 : Behavior of TCP-LP Congestion Avoidance Phase

Preserving TCP-Transparency in Large Aggregation Regimes

A key goal of TCP-LP is to achieve non-intrusiveness to TCP flows. Thus, as ex-
plained above, TCP-LP reduces its window size to one packet per R1'T in the presence
of TCP flows. However, in scenarios with many TCP-LP flows, it becomes increas-
ingly possible for TCP-LP aggregates to impact TCP flows. For example, consider
a scenario with a hundred TCP-LP flows competing with TCP flows on a 10 Mb/s
link. If the round-trip time of the TCP-LP flows is 100 ms and the packet size is

1500 Bytes, then this TCP-LP aggregate utilizes 12% of the bandwidth, despite the
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fact that each flow sends only a single packet per RTT.? To mitigate this problem,
TCP-LP decreases the packet size to 64 Bytes whenever the window size drops below
5 packets. In this way, TCP-LP significantly decreases its impact on TCP flows in
high-aggregation regimes, yet it is still able to quickly react (after RTT) to changes
in congestion. In the above example, a hundred TCP-LP flows would then utilize

only 0.5% of the bandwidth in the presence of TCP flows.

4.2.3 Modeling TCP and TCP-LP Interactions

As described above, TCP-LP must detect congestion earlier than TCP. However, in
a heterogeneous networking environment, different flows can have different round-
trip times ranging from several msec to several sec. The thesis here explores to
what extent TCP-LP flows with large round-trip times can still infer congestion prior
to TCP flows with smaller round-trip times. Such behavior is required such that
TCP-LP flows with large round-trip times can still utilize excess network bandwidth
without hindering TCP flows with small round-trip times.

The approach is to develop a simple queueing model that characterizes TCP-LP’s
non-intrusiveness in the presence of TCP cross-traffic, and quantifies it with respect
to the threshold parameter 6. The model, illustrated in Figure 4.4, consists of a
bottleneck queue with capacity C' driven by traffic from one TCP-LP connection
with round-trip time rtt,. Moreover, the queue services (high priority) TCP cross
traffic with round-trip time denoted by rtt,. For simplicity, the cross traffic is also
modeled as originating from a single TCP connection.

Denoting the queue’s total buffer space by @), the early congestion indication

condition is satisfied whenever the queue length is greater than ()6 packets, which

3The effects of the exponential-backoff phase (that may actually decrease this percentage) are

being disregarded.
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is equivalent to condition (4.2) with v = 1 in this idealistic scenario. Further con-
sider that without congestion, the two flows are increasing their rates linearly with

constants o; and oy, packets per second respectively.*

Figure 4.4 : Simplified Model of Heterogeneous RTT Effects

In such a scenario and under a fluid flow model, it is possible to quantify the
conditions in which the TCP-LP flow will decrease its sending rate before the TCP
cross-traffic will experience packet loss. It is assumed that the queue is initially empty
and it is considered that the aggregate rate of the two flows is C' at ¢ = 0. Denote ;
and t;, as the respective times when the TCP-LP and TCP cross-traffic flow determine

that the queue is congested. For TCP-LP, this time is given by the solution to

Q(S = /tl(c + (CYl/Tttl + CYh/Ttth)t — C)dt, (43)

0
so that tl =4/ m. Slmllarly, th = ‘/m. In Equatlon (43), the

term C + (oy/rtt; + ap/rtty)t denotes the instantaneous arrival rate of the two flows
at time ¢, whereas C denotes the service rate. For the TCP-LP flow to decrease its
rate before the cross traffic experiences packet loss, it is necessary that t; + rtt; < t,

which is equivalent to

4An increase in congestion window of a packets is considered to be equal to an increase in

bandwidth of o packets per second.
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rtt; < \/ 26 (1—59). (4.4)

oy /ity + ap/rtty,
To interpret this result, consider that a;/rtt; = nay,/rtt,. For oy = ay, this means
that the TCP-LP flow’s round-trip time is n times larger than the competing TCP

flow’s round-trip. In this case, the above condition is equivalent to

ap,
nn+1) <
( ) ajrtty

2Q(1 — Vo). (4.5)

Inequality (4.5) gives an upper bound on n as a function of the cross traffic’s
round-trip time rtt,, the queue size @ (in packets) and the delay threshold 6. To
interpret this result, consider a typical queue size of () = 2.5Crtt, and increase
parameters oy = ay, = 1 packet/RTT. With the approximation that n(n + 1) & n?, it

follows that

n < V5C(1 —V5). (4.6)

Figure 4.5 depicts the relationship between the ratios of the round-trip times
n and the delay threshold ¢ for capacity C = 1.5Mb/s and average packet size
of 1kB. Observe that TCP-LP’s responsiveness rapidly decreases with increasing
delay threshold . Moreover, the figure indicates TCP-LP’s potential to achieve TCP
transparency. For example, the point (0.4, 11.25) shows that with delay threshold
0 = 0.4, a single TCP-LP connection infers congestion before the competing TCP
incurs loss, even if the TCP-LP flow’s round-trip time is 11 times larger than that of
the TCP flow. Similar conclusions can be drawn from Equation (4.5) for rtt; = rtt,

and oy # qy,.
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Figure 4.5 : Relationship between the RTT Ratio n and Threshold ¢

4.2.4 Guidelines for Parameter Settings

This section proposes guidelines for setting TCP-LP’s parameters given that the
receipt of a single packet whose smoothed one-way delay is greater than a prespecified

threshold serves as an early notification of congestion to a TCP-LP flow.

Delay Smoothing v

First, consider the delay smoothing parameter v of Equation (4.1). With large vari-
ations in network delay due to bursty cross traffic, smoothing one-way packet de-
lays is essential for preventing false early congestion indications. On the other hand
smoothing over excessively long time intervals (corresponding to small vales for )
can substantially degrade TCP-LP’s ability to detect congestion in its early stages.
To balance these two requirements, TCP-LP uses smoothing parameter v = 1/8, the

value typically used for computing the smoothed round-trip time for TCP.

Delay Threshold ¢

Next, consider the early-congestion-indication delay threshold ¢ of Equation (4.2).
The example from Figure 4.5 illustrates the advantages of small values for the thresh-

old 6 as TCP-LP’s responsiveness decreases when ¢ increases. However, the use of
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very small thresholds can substantially degrade TCP-LP’s throughput in realistic sce-
narios. This is because even very small (and frequent) bursts of cross-traffic can cause
queueing delays on a bottleneck link. TCP-LP senses these delays from the edge, and
if it uses small thresholds, frequent delay oscillations can be misinterpreted as con-
gestion indications, even in a lightly loaded network. In turn, false early congestion

indications would cause a TCP-LP flow to unnecessarily decrease its sending rate.

Figure 4.6 : Scenario with Reverse ACK Traffic

Thus, § must be set to balance increased protocol responsiveness with avoiding
false early congestion indications. To obtain the smallest value of § capable of avoiding
false indications, this research devises the following experiment with reverse traffic.
Consider a single TCP-LP flow in a single-bottleneck scenario, where different num-
bers of long-lived FTP/TCP flows operate in the reverse direction, as depicted in
Figure 4.6. Thus, the ACK packets of the TCP flow form a cross-traffic stream that
multiplexes with TCP-LP’s data traffic. The objective is to set the threshold ¢ such
that TCP-LP’s throughput does not degrade in the presence of this reference ACK
stream.

Figure 4.7 depicts TCP-LP’s normalized throughput for different values of the
threshold parameter §. Observe that even this low bit-rate cross-traffic reference
stream, which consists solely of ACK packets, can degrade TCP-LP’s throughput

substantially if the threshold is set too low. For example, as depicted in Figure 4.7,
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TCP-LP’s throughput can drop to as low as 10% of the link bandwidth if the threshold
0 is set to 0.01. However, the figure also indicates that the throughput improves with
increasing ¢, since for larger values of § TCP-LP becomes non-sensitive to pure ACK

bursts.
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Figure 4.7 : Throughput vs. Threshold §

Thus, while necessarily not comprehensive, the above experiment shows that set-
ting the threshold ¢ to the value of 0.15 is able to accurately decouple the influence
of ACK cross-traffic streams from data cross-traffic streams. In other words, while
being robust in utilizing available bandwidth in the presence of pure ACK streams,
TCP-LP retains its responsive nature in the presence of pure data or aggregation of

data and ACK streams.?

Inference Time-out itt

Finally, a similar tradeoff between congestion-responsiveness and throughput-aggressiveness

holds for the inference time-out timer parameter. With a longer inference time-out

®Numerous additional simulations (not shown) including scenarios with hundreds of flows, het-
erogeneous link capacities and multiple bottlenecks corroborate that this value represents a high
performance compromise between TCP-LP’s responsiveness and ability to prevent false congestion

indications.
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timer, TCP-LP becomes more responsive to congestion whereas a smaller inference
time-out timer causes TCP-LP to switch sooner to the more aggressive additive-
increase phase. To compromise between the two, this thesis sets ¢tt to three round-trip
times, thereby giving enough space for a TCP-LP flow to rapidly decrease its window
size in periods of persistent congestion, while at the same time allowing TCP-LP to

probe the network aggressively enough.

4.3 Simulation Preliminaries

This section describes TCL-LP /ECN, a benchmark algorithm that uses network ECN
instead of end-point delay thresholds to infer congestion. This provides means to eval-
uate the early-congestion-inference aspect of TCP-LP separately from its congestion-
control policy. It also presents the baseline simulation scenario and describes the

“square-wave” and web-like background traffic patterns.

4.3.1 TCP-LP/ECN Benchmark Algorithm

This section describes TCP-LP/ECN, a variant of TCP-LP that uses ECN for de-
tecting congestion instead of one-way packet delays. (Recall that one of the basic
design goals is to develop an end-point protocol that is able to operate without any
support from the network.) Use of router-supported early congestion indication al-
lows us to study the effectiveness of inferences from one-way packet delay to provide
early inference of congestion.

TCP-LP/ECN is simulated by modifying the implementation of RED [69] in ns-2
as follows. First, the minimum and the maximum RED thresholds are set to the value
of 6@ packets. Second, the RED gateways are configured to set the ECN bit in the
TCP-LP packet header when the average queue size exceeds 6@ as an early indication

of congestion. When a TCP-LP receiver receives a data packet with the ECN bit set
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in the packet header, the receiver sets the ECN bit in the next outgoing ACK packet.
On the other hand, packets belonging to TCP flows are neither marked nor dropped
when the queue size exceeds d@), and TCP packets are dropped only when the queue
overflows. In this way, TCP-LP/ECN emulates the distributed TCP-LP protocol
with the former using router queue measurements and the latter using end-point

delay measurements.

4.3.2 Topology and Background Traffic

As a baseline topology, this research considers many flows sharing a single congested
link as shown in Figure 4.8. The bandwidth of this link is either 1.5 Mb/s or 10 Mb/s
and it has propagation delay 20ms. The access links have capacity 100 Mb/s and
delay 2ms, so that the minimum round-trip time for flows is approximately 50 ms.
The queue size is set to 2.5 times the delay-bandwidth product. For each data point,
there are 50 simulation runs and averages are reported. Each simulation run lasts

1000sec. The ns-2 implementation of TCP-LP used here is derived by modifying

TCP /Reno.
00Mbps 100Mb
O—=> 1 O

Figure 4.8 : Single Bottleneck Simulation Scenario

To explore the dynamics of TCP-LP, this work uses on-off constant-rate flows with
equal on and off times, giving periodic “square-wave” patterns of available bandwidth

as in reference [70]. While not representative of actual traffic patterns, this scenario is
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motivated by the need to systematically explore TCP-LP’s ability to utilize the excess
bandwidth and to study its transparency and fairness properties in the presence of
dynamic background traffic. In these experiments, the available bandwidth alternates
between the full link capacity of 10 Mb/s and 3.3 Mb/s when the periodic source is
idle and active respectively. The period of oscillations is changed from one to 1000
round-trip times, i.e., from 50 ms to 50 sec.

Next, to explore TCP-LP’s behavior with web traffic, this research adopts the
model developed in [71]. In this model, clients initiate sessions from randomly chosen
web sites with several web pages downloaded from each site. Each page contains
several objects, each of which requires a TCP connection for delivery (i.e., HTTP
1.0). The inter-page and inter-object time distributions are exponential with means
of one sec and one msec, respectively. Each page consists of ten objects and the object

size is distributed according to a Pareto distribution with shape parameter 1.2.

4.4 Simulation Experiments

This section uses simulation to evaluate the performance of TCP-LP in a variety
of scenarios, including FTP, “square-wave”, and HTTP background traffic patterns,
with long and short-lived TCP flows and both single and multiple-bottleneck net-
work topologies. The goal is to explore TCP-LP’s behavior in both artificial and
realistic network environments. This thesis evaluates TCP-LP’s impact on both the
throughput and delay characteristics of competing cross-traffic. Moreover, it explores
TCP-LP’s ability to utilize the excess network bandwidth and to achieve fairness
among competing TCP-LP flows. The TCP-LP ns code and simulation scripts are
available at hittp://www.ece.rice.edu/networks/TCP-LP.
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Table 4.1 : Normalized Throughput (%)

scenario TCP | TCP vs. TCP-LP | TCP vs. TCP-LP/ECN
no reverse TCP traffic | 100 96.8 vs. 2.7 96.8 vs. 2.7
reverse TCP traffic 497 | 49.3 vs. 7.3 49.1 vs. 8

4.4.1 FTP and Reverse Background Traffic

This section first considers simultaneous FTP downloads, where one flow uses TCP-
LP and the other uses TCP. The objectives are to examine to what extent TCP-LP
can utilize excess bandwidth in the presence of greedy long-lived TCP traffic, and to
investigate the extent to which TCP-LP flows perturb TCP traffic. In addition to
this scenario, this section also presents measurements of throughput in simulations
without TCP-LP consisting of one and two TCP flows. The results are summarized
in the first row of Table 4.1. In this scenario, there is no excess capacity available for
TCP-LP, and TCP-LP slightly perturbs the TCP flows and receives a throughput of
2.7% of the link capacity for both TCP-LP and TCP-LP/ECN.

With ten FTP/TCP flows in the reverse direction, the ACKs of the forward-
direction TCP flows are delayed thereby increasing their round-trip time and ACK
losses, and decreasing their throughput. Thus, excess capacity is indeed available
for TCP-LP flows. In particular, the second row of Table 4.1 illustrates that the
throughput of the (forward) TCP flow in this case is 49.7%. With the presence of
a TCP-LP flow, the TCP flow’s throughput is only marginally reduced to 49.3%,
indicating that TCP-LP achieves nearly perfect TCP transparency while achieving
7.3% throughput.

Figure 4.9 depicts the temporal dynamics of this scenario and illustrates that
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Figure 4.9 : TCP and TCP-LP’s Congestion Window

TCP’s congestion window widely oscillates in the range between zero and 30 packets.
The window of the TCP-LP flow, also depicted, is able to track TCP’s oscillation and
increases its own window size when TCP’s window decreases, and via early congestion
inference, TCP-LP quickly backs off when the TCP flow ramps up its window size.
By the time the TCP flow’s window reaches its maximum of 30 packets, TCP-LP is

in the inference phase, waiting for the next opportunity to utilize excess bandwidth.

4.4.2 Square-wave Background Traffic

This section next explores TCP-LP’s performance in the presence of square-wave

background traffic as described in Section 4.3.2.

Square Wave Period

The first experiments here investigate TCP-LP’s ability to utilize excess bandwidth
remaining from periodic on-off flows that transmit at constant rate when “on”. Figure
4.10 depicts the bandwidth utilized by TCP, TCP-LP and TCP-LP/ECN, normalized
to 6.6 Mb/s, the average excess bandwidth left unused by the square-wave background

traffic. Each point in the figure represents the normalized bandwidth, utilized by the
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respective protocol, for a given period of the square-wave’s oscillation. For compari-

son, this work also depicts the normalized average available bandwidth curve.
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Figure 4.10 : Utilized Available Bandwidth vs. Square Wave Period

Observe that all three curves in Figure 4.10 have similar shape, and all three
protocols utilize approximately only 50% of the available bandwidth when the square-
wave period is too small (e.g., 0.2 seconds). Surprisingly, in this regime, both TCP-LP
and TCP-LP/ECN utilize more available bandwidth than TCP. This is due to the
early congestion indication and responsive congestion avoidance policy of the TCP-
LP protocol, which is able to defer access to the cross-traffic bursts (from 0 to 2/3 C

in this case) while avoiding entering the exponential-backoff phase.

Aggregation Level

Next, this section explore the impact of the number of flows under a fixed square
wave period of 6.4 sec. Figure 4.11 illustrates that with higher levels of aggregation
consisting of even 5 flows, TCP flows quickly overcome the performance problem of
Figure 4.10. On the other hand, for TCP-LP utilization increases more slowly with
aggregation level, as with a small number of flows, TCP-LP is not able to develop
large congestion windows because it senses the existence of other competing TCP-

LP flows and decreases its window accordingly. However, TCP-LP overcomes this
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problem with a larger number of multiplexed flows.
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Figure 4.11 : Utilized Available Bandwidth vs. Number of Flows

Fairness

This section studies fairness among TCP-LP flows using Jain’s fairness index [31].
The index, always between 0 and 1, is 1 if all flow throughputs are the same. If
only k of the n users receive equal throughput and the remaining n - £ users receive
zero throughput, the fairness index is k/n. The experiments here include ten flows
of the same type (TCP, TCP-LP or TCP-LP/ECN) that compete with the same

non-responsive square wave background traffic.
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Figure 4.12 : Fairness Index vs. Square Wave Period

Figure 4.12 depicts the fairness indexes of three protocols for different periods
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of square wave oscillations. First, observe that for both TCP and TCP-LP/ECN,
the fairness index is approximately equal to 1 for all periods. However, TCP-LP’s
fairness index is slightly below one for time scales of up to 400 ms. By examining the
traces, it is concluded that this originates from inaccurate estimates of the minimum
and maximum delays. In most cases, one TCP-LP flow over-estimates the minimum
delay value d,,;, due to wide and frequent oscillations of the background traffic. For
this reason, it sends more than its fair share and the fairness index drops slightly.
However, as the oscillation period increases, all flows use periods of low cross-traffic

rate to accurately estimate the minimum one-way delay.

4.4.3 HTTP Background Traffic

Here, the thesis explores TCP-LP’s behavior in an environment dominated by web-
like transactions in the scenario described in Section 4.3.2. The performance measure
of interest is the web-file retrieval (response) time, and thesis investigates TCP-LP’s
impact on this measure. As a standard of idealized performance, this research uses
the measured retrieval times in a scenario with only web-traffic present in the system.
Further, it performs multi-node experiments to study issues such as heterogeneous
round-trip times and early congestion inference with multiple bottlenecks.

This thesis presents four experiments for the topology of Figure 4.8 with a link
capacity of 1.5Mb/s. In addition to web traffic between nodes zero and one, there
is one FTP connection that operates in the same direction as the web-traffic. This
connection is a long-lived bulk transfer and is a candidate for low-priority service.
In the first three experiments, the FTP connection uses TCP-LP, TCP-LP/ECN,
and TCP. Finally, to measure web-traffic response times without any cross-traffic,
this thesis performs a fourth experiment in which no FTP traffic is generated. For

the web transactions, it measures and averages the response times for different sized
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objects.’

Impact on HTTP Response Times

To explore TCP-LP’s impact on web traffic, this thesis compares HTTP file retrieval
times with and without background TCP-LP bulk transfers.” Figure 4.13 depicts
the averaged difference between the two transfer times. For example, when TCP-LP
is used for a long-lived file transfer, the mean retrieval time for a 10kB web-file is
0.49sec. On the other hand, this retrieval time is 0.43 sec when there is no TCP-LP
file transfer, hence the point (10, 0.06) in the figure. These experiments illustrate
the non-intrusive aspect of TCP, as the long-lived TCP-LP bulk transfer flow only
slightly increases the mean web-traffic response time, with increasing transparency

achieved with larger HTTP file sizes.
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Figure 4.13 : Resp. Time Diff. (sec.) vs. File Size (kB) for HTTP Traffic

6As in [72], file sizes are grouped into 85 bins, each of which spans an interval [x,1.1x], and the

average is taken over each bin.

"In the experiments, the HTTP response-time simulations use the same sample path of file sizes

and think times.
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Impact of High vs. Low Priority Bulk Transfer

This section next shows that if the bulk transfer flow uses TCP rather than TCP-LP,
then the web response times are significantly degraded. Figure 4.14 depicts web-file
response times normalized by the response times obtained when the background file
transfer uses TCP. Because of this normalization, the curve labeled “TCP” in Figure

4.14 is a straight line with a value of one.
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Figure 4.14 : Norm. Resp. Time vs. File Size (kB) for HTTP Traffic

Observe that use of TCP-LP for bulk data transfer reduces the web traffic response
times by approximately 80% compared to TCP bulk transfer. For example, the
average response time for the 10kB file from the web-traffic stream is 2.46 sec when
web traffic multiplexes with a TCP bulk-transfer background flow. This time is
considerably larger than the 0.49 sec response time when TCP-LP is used for the bulk
data transfer. TCP-LP’s reduction in response time for web traffic occurs because
without it, the TCP bulk-transfer demands its fair share of network bandwidth when
competing with web-traffic. On the other hand, the bulk-transfer flow itself utilizes
61% of the bandwidth when TCP is used, only 10% more than when TCP-LP is used.
This result emphasizes the benefits of low prioritization of bulk data transfers over

web-traffic, which TCP-LP achieves in a distributed manner.
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4.4.4 Multiple Bottlenecks

Further, this section considers a more realistic multiple bottleneck scenario using the
topologies of Figures 4.15 and 4.18. In all experiments, links 0-1, 1-2 and 2-3 have
capacity of 1.5 Mb/s, while all the others have capacity of 100 Mb/s.

server pool(1) server pool(2) server pool(3)

wWww(2) www(3)

www(1)
O 0—0—=0—0—=O

client pool(1) client pool(2) client pool(3)

Figure 4.15 : First Topology for Multiple Bottlenecks

RTT Heterogeneity

To study TCP-LP when its round-trip time increases compared to round-trip times
of competing HTTP flows, this research considers the scenario in which the bulk file-
transfer flow traverses multiple bottlenecks as shown in Figure 4.15. There are three
server and client pools, each of which generates cross-traffic on different bottleneck
links.

Figure 4.16 depicts the averaged difference between HTTP file response times
with and without the presence of a bulk-transfer TCP-LP flow. Observe that de-
spite having the average round-trip time three times as large, TCP-LP retains its
non-intrusiveness to the HTTP/TCP flows. This confirms the modeling result from
Section 4.2.3, which states that TCP-LP flows are non-intrusive to TCP flows even if

their round-trip times are much larger. Also, no substantial difference is observed be-
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tween TCP-LP and TCP-LP/ECN, except that TCP-LP is slightly more responsive

for large files.

Multi-hop Bulk Transfer

Figure 4.17 depicts the response times for different sized objects from all three pools
normalized by the response times obtained when background FTP transfer uses TCP.
Observe that the benefit of prioritization reported in the single bottleneck scenario
still holds in this multiple-bottleneck scenario, although it is less pronounced. The
difference is because the long-lived TCP flow is now less intrusive to web traffic due

to its larger round-trip time.
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Multi-hop Web Traffic

This section next considers the scenario in which web traffic traverses multiple hops
and three FTP connections each traverse a single hop as depicted in Figure 4.18.
Thus, the FTP flows in this scenario play the role of “fast elephants”, a term for

long-lived flows with short round-trip times [73].

server pool client pool
O/ www \ \(5 CB ‘<O

Figure 4.18 : Second Topology for Multiple Bottlenecks

Figure 4.19 depicts the averaged difference between web file response times with
and without the three TCP-LP bulk transfers. In this scenario, the small TCP-LP
round-trip time only improves its responsiveness and non-intrusiveness to competing
web-traffic such that it becomes fully transparent to TCP. For example, the mean
response time for the 10 kB file is 0.98 sec, while it is 0.74 sec in the idealized scenario
when there are no FTP downloads in the system. This is revealed as the point (10,
0.24) for TCP-LP in Figure 4.19. Observe that the absolute difference in response
times increases three times in this scenario when compared to the single-node scenario
simply because the HTTP traffic now traverses three congested hops. However, the
per-node impact of the bulk-transfer TCP-LP flows is approximately unchanged.

Finally, for comparison, this thesis again explores the system behavior when TCP
is used for bulk data transfers. Figure 4.20 depicts the normalized response times for
HTTP file retrievals. The figure indicates that “fast TCP elephants” severely impede

the performance of web traffic that traverses multiple hops. For example, in this
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Figure 4.19 : Resp. Time Diff. (sec.) vs. File Size (kB) for HTTP Traffic

scenario, the average response time for a 10kB file from the HTTP traffic stream is
14.27 sec.

This poor performance is because many web-traffic flows experience loss of their
first packet which requires waiting for a default time-out interval of 3 sec before resend-
ing. According to the above results, each TCP flow from the web stream experiences
four to five such timeout intervals on average. An interested reader can find more de-
tails on this problem in [72]. On the other hand, the results from Figure 4.20 indicate
that simple two-class prioritization achieved by TCP-LP can successfully provide a
desirable system behavior. While TCP-LP attains 52% of the bandwidth (10% less

than TCP), it improves web-traffic response times by more than 90%.
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Table 4.2 : Normalized TCP Throughput (%) vs. Number of Flows

Number of TCP and TCP-LP flows | 1 2 5 10 15 20

Normalized TCP throughput 99.49 | 99.25 | 99.50 | 99.02 | 98.29 | 99.15

4.5 Protocol Implementation and Internet Experiments

This section first describes the implementation details of TCP-LP in Linux and ex-
plain the specific use of the TCP window-scaling and timestamping options from
[66]. Next, it examines the protocol performance on a testbed and evaluate three
important TCP-LP features. The first is non-intrusiveness to TCP traffic in large
aggregation regimes; the second is the ability of both a single TCP-LP flow and ag-
gregates to utilize the available bandwidth in the presence of highly dynamic cross
traffic; the third is fairness among TCP-LP flows. Furthermore, it presents Inter-
net measurements which are performed to evaluate the extent to which TCP-LP can
utilize excess bandwidth in the presence of greedy TCP traffic. Finally, it presents
TCP-LP’s performance during a 24-hour period in a wide-area network and explores

the impact of time-of-day effects on TCP-LP’s throughput.

4.5.1 Implementation

The implementation of TCP-LP is derived by modifying the Linux-2.4.19-web100 ker-
nel, which applies TCP Sack, and the TCP-LP source code is available at http: //www
.ece.rice.edu /networks /TCP-LP. Besides having monitoring and debugging features,
the above kernel supports the window-scaling option [66], which allows the use of
larger window sizes (about 1 GByte) and enables TCP-LP to fully utilize the avail-

able bandwidth. Note that many TCP stacks do not support this option by default,



93

such that the TCP header allocates only 16 bits for window advertisement, which
limits maximum window size to 64 kBytes.

TCP-LP also uses the TCP timestamping option from [66] for the one-way delay
measurements as explained in Section 4.2. In short, each TCP packet carries two
four-byte timestamp fields. A TCP-LP sender timestamps one of these fields with
its current clock value when it sends a data packet. On the other side, the receiver
echoes back this timestamp value and in addition timestamps the ACK packet with
its own current time. Thus, using these two values, the TCP-LP sender may measure
one-way packet delays. However, each end-system measures time (and timestamps
packet fields) in the “local unit” that corresponds to the number of clock ticks elapsed
since a reference point in time. Since the clock granularity® may be different for the
TCP-LP sender and receiver, the sender has to first estimate the receiver’s clock
granularity in order to use its timestamps for one-way delay measurements. The
TCP-LP sender performs this task by monitoring the ACK packet’s timestamp field
and measuring the number of remote ticks elapsed during the one-second period after
the connection establishment. Finally, the sender accurately estimates the receiver’s
clock granularity by choosing a value from the set of possible values (e.g., 100, 512 or
1024) that is closest to the measured number of remote clock ticks per second.

To the best of the writer’s knowledge, TCP-LP is the first TCP stack that uses
timestamping option for computing one-way delays. This option is originally devel-
oped to alleviate computation of round-trip times. Note that the use of one-way
delays is an essential requirement for low-priority transport protocols in the Internet,
as will be discussed in detail in Section 4.7. Finally, while we do not observe any prob-

lems with a drift between the sender and the receiver clocks, TCP-LP nevertheless

8 Typically 100, 512 or 1024 ticks per second.
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applies resets of d,,;, and d,;,q; on three minute intervals by default.

4.5.2 Testbed Experiments

This section reports the results obtained on a testbed at Rice University. The testbed
consists of two Linux clusters, as shown in Figure 4.8, with the difference that the
bottleneck capacity is 100 Mb/s. Regular TCP (non-TCP-LP) flows apply the Linux-
2.4.19-web100 kernel using TCP Sack.

TCP Transparency in Large Aggregation Regimes

To achieve TCP-transparent behavior in large aggregation regimes, TCP-LP reduces
its window size to one packet per RTT in the presence of TCP flows and decreases
packet size to 64 Bytes. Here. this thesis considers scenarios with many flows to
evaluate whether TCP-LP remains non-intrusive in such regimes.

This section presents experiments with simultaneous TCP and TCP-LP file trans-
fers where the number of flows in the system (both TCP and TCP-LP) increases from
one to 20, as shown in Table 4.2. The second row of the table shows aggregate TCP
throughput normalized to the throughput obtained when there are no TCP-LP flows
in the network. Observe that the influence of TCP-LP flows is indeed marginal and
that TCP throughput degrades by less than 1% on average. More importantly, ob-
serve that as the number of TCP-LP flows increases, the TCP throughput does not
degrade. According to the theoretical computations from Section 4.2.2, one would
require more than 390 TCP-LP flows in the above experiment to degrade TCP’s

throughput by more than 2%.
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Available Bandwidth Utilization

Next, this section evaluates TCP-LP’s ability to utilize the available bandwidth in the
presence of extremely dynamic cross-traffic. To this end, it performs an experiment
similar to the one from Section 4.4.2 with square-wave UDP cross-traffic oscillating
between 0 and 2/3 of the link capacity, and where the period of oscillation changes
from 50ms up to 51.2sec. The cross-traffic stream is generated using active prob-
ing software from [67]. Figure 4.21 depicts the bandwidth utilized by TCP-LP and
TCP, normalized to the average excess bandwidth left unused by the square-wave’s
oscillation.

Observe that the curves in Figure 4.21 are somewhat different from the curves in
Figure 4.10 since here no significant degradation of TCP and TCP-LP throughputs
on shorter time-scales of the background traffic is noticed. This is due to shorter
round-trip times in this scenario (the minimum RTT is 2ms) that enable both TCP
and TCP-LP flows to apply a more robust control and avoid entering the exponential-
backoff phase. Furthermore, observe that again both protocols have similar behavior,

with TCP-LP having slightly better performance on longer time-scales.
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Aggregation Level and Fairness

Finally, this section repeats the simulation experiment from Section 4.4.2 in the
testbed and explore the impact of the number of flows under a fixed square wave
period of 6.4sec. Figure 4.22 shows that TCP-LP utilization increases very quickly
(quicker than TCP) with aggregation level in this scenario. Also, it measures the fair-
ness index of ten TCP-LP flows and the results (not shown) confirm that TCP-LP

flows achieve inter-TCP-LP fairness.
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Figure 4.22 : Utilized Available Bandwidth vs. Number of Flows

4.5.3 Internet Experiments

Next, this thesis evaluates TCP-LP’s performance in the Internet. All flows in the
experiments (both TCP and TCP-LP) are originated from Rice University (Houston,
TX) and the receivers are located 14 hops away, at SLAC (Stanford, CA). The flows
traverse the Rice campus network, local and regional providers networks, and finally

the Stanford campus network.

TCP-LP and a Greedy Long-Lived TCP Flow

This section considers simultaneous FTP downloads, where one flow uses TCP-LP

and the other uses TCP. The objective is two-fold. First, to check TCP-LP’s non-
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intrusiveness property in a WAN environment. Second, to investigate to what extent
can TCP-LP utilize excess bandwidth in the presence of a greedy long-lived TCP
traffic. To obtain a time-dependent function of the utilized bandwidth, this section
performs simultaneous downloads each five minutes, and thus obtains 12 throughput
samples per hour for each of the flows.

Figure 4.23 depicts the TCP and TCP-LP throughput over a 12-hour (720 min-
utes) period.? First, observe that whenever TCP throughput is high (around 60 Mb/s),
TCP-LP throughput remains low, thus confirming its TCP-transparent property. On
the other hand, when the cross-traffic activity is strong enough (see Figure 4.23 when
the x-axis is less than 200 minutes), TCP throughput drops down significantly, yet
TCP-LP does not utilize substantially more bandwidth because it also gives priority
to cross-traffic flows. However, observe that there are times (e.g., 200 min, 300 min,
440 min), when cross-traffic can simply hinder TCP from fully utilizing the available
bandwidth (by forcing it to enter exponential backoff), yet leaving some bandwidth
unused. TCP-LP detects such moments and successfully fills these gaps in TCP
throughput. Thus, while these events are much less pronounced than in Figure 4.9
(due to the lack of reverse cross-traffic), TCP-LP demonstrates an important ability

to detect and exploit such events.

Time-of-Day Effects

Finally, this section explores the impact of time-of-day effects on TCP-LP’s through-
put. Naturally, the hypothesis is that more bandwidth is available during nights
when the network is less utilized. Furthermore, the goal is to quantify the amount

of bandwidth available to a TCP-LP flow, and to compare it to TCP throughput.

9The experiments took place during a weekend, and that is why the figure lacks time-of-day

effects.
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Figure 4.23 : TCP and TCP-LP Throughput vs. Time

To obtain the desired time-dependent functions of TCP and TCP-LP throughputs,
while mitigating the above simultaneous file transfers effects (where TCP utilizes the
entire available bandwidth), this work interchangeably measures TCP and TCP-LP
throughputs in the 5-minute intervals over a 24-hour period. In this way, totally 12
samples per hour are obtained, six for each of the flows. While necessarily not com-
prehensive (due to traffic fluctuations over short time intervals), this methodology
provides a reasonable way to independently measure TCP and TCP-LP throughputs
on the same network path.

Figure 4.24 depicts the TCP and TCP-LP throughputs measured over a 24-hour
period, starting at midnight. Note first that the time-of-day effects are clearly ob-
servable for both TCP and TCP-LP. As expected, the effects are more pronounced
for the TCP-LP flow, which gives priority to all flows on the end-to-end path, and
utilizes only the bandwidth that is left unused. On the other hand, TCP competes for
resources with the cross traffic flows, and eventually utilizes its share of bandwidth.
Figure 4.24 indicates that in the after-midnight hours (midnight to 8 a.m.) as well as
in the after-working hours (5 p.m. to midnight), TCP-LP throughput fluctuates be-
tween 50% and 100% of TCP’s throughput at the same time, utilizing approximately
75% of the TCP bandwidth on average. On the other hand, during working hours
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(8 am. - 5 p.m.), TCP-LP throughput fluctuates between 0% and 100% of TCP’s
throughput, utilizing approximately 45% of the TCP bandwidth in this interval on
average. Thus, the experiment illustrates that despite its low-priority nature, a TCP-
LP flow is able to utilize significant amounts of available bandwidth in a wide-area

network environment.

Bandwidth (Mb/s)

Time (hours)

Figure 4.24 : TCP and TCP-LP Throughput vs. Time

4.6 High-speed TCP-LP

This section provides a brief overview of HSTCP-LP [17], a variant of TCP-LP de-
veloped for low-priority bulk data transfer in high-speed high-RTT networks (i.e.,
networks operating at 622 Mb/s, 2.5 Gb/s, or 10 Gb/s and spanning several countries
or states). The key challenge in designing a low-priority protocol in such an environ-
ment is overcoming a magnified tradeoff (when compared to lower-rate links) between
the ability to utilize the available bandwidth on one hand, and to quickly backoff in
moments of congestion on the other.

HSTCP-LP is developed by merging two existing protocols: the first is High Speed
TCP [74]; and the second is TCP-LP [15]. The goal is for HSTCP-LP to inherit the
desired functionality of both, TCP-LP’s ability to give strict priority to the cross-

traffic, and HSTCP’s efficiency in utilizing the excess network bandwidth. Moreover,
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since HSTCP maintains strict fairness with current (non-high-speed) TCP implemen-
tations on low-speed links [74], it consequently enables HSTCP-LP to achieve a strict
low-priority service in a broad span of networking environments: vs. current TCP
implementations (e.g., TCP Sack) on low-speed links (in heavy or moderate packet
drop ranges), and vs. high-speed TCP implementations (e.g., HSTCP [74], Scalable
TCP [75], FAST TCP [76], BI-TCP [77], and H-TCP[78]) in high-rate networks.

On one hand, HSTCP-LP inherits two low-priority mechanisms from TCP-LP.
First, in order to provide non-intrusive low-priority service, HSTCP-LP flows must
detect oncoming congestion prior to cross-traffic flows. Consequently, HSTCP-LP
uses inferences of one-way packet delays as early indications of network congestion
rather than packet losses as used by the TCP-Sack-like cross-traffic flows. Second,
HSTCP-LP inherits TCP-LP’s congestion avoidance policy with two objectives: (1)
quickly back off in the presence of congestion from the background flows and (2)
achieve fairness among HSTCP-LP flows. On the other hand, HSTCP-LP inherits
HSTCP’s increase/decrease policy for large window sizes that enables it to quickly uti-
lize and retain the available excess bandwidth in the absence of sufficient cross-traffic.
In summary, HSTCP-LP is a TCP-LP version with HSTCP-like agile properties, or
alternatively, a HSTCP stack with built-in TCP-LP-like low-priority mechanisms.

However, HSTCP-LP is far from being a trivial fusion of the two ancestor TCP
stacks. The key challenge in designing the protocol is overcoming a magnified tradeoft
(when compared to lower-rate links) between the ability to successfully utilize the
excess bandwidth on one hand and to quickly backoff in moments of congestion on the
other. For example, the original TCP-LP backoff policy that radically reduces window
size when detecting persistent congestion (see reference [15] for details) is not entirely
applicable to a high-speed environment since it can significantly degrade HSTCP-

LP’s performance. Consequently, HSTCP-LP applies a hybrid congestion avoidance
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scheme that utilizes TCP-LP-like mechanisms only in low excess-bandwidth ranges,
and then converges toward the less-backoff-responsive HSTCP policy as the window
size increases.

The implementation of HSTCP-LP is derived by modifying the Linux-2.4-22-
web100 kernel, which by default uses the HSTCP stack. The HSTCP-LP source
code is available at http://www.ece.rice.edu/networks/TCP-LP/. This section briefly
presents the results of an extensive set of Internet experiments on fast-production
networks. In the majority of the experiments, the flows are launched from SLAC
(Stanford, CA) to UFL (Gainesville, FL), as well as from SLAC to UMICH (Ann
Arbor, MI), with the maximum achievable bandwidth on both paths being around
450 Mb/s. The experiments are performed with and without a light periodic UDP
cross traffic (the average is 10% of the maximum bandwidth) to evaluate HSTCP-
LP’s ability to utilize the excess bandwidth. Also, a HSTCP-LP flow is multiplexed
with the other TCP stacks to explore their mutual behavior.

The results show that HSTCP-LP is able to utilize significant amounts of the
excess bandwidth when there is no cross-traffic in the network or when it multiplexes
with a light periodic UDP traffic. On average, HSTCP-LP’s performance is similar to
the performance of other advanced TCP stacks, while the actual throughput varies in
the 80% - 127% range (when compared to other high-speed TCP stacks) depending
on various parameters such as the UDP cross-traffic period, the maximum window
size or the sending-interface transmission queue length (¢zglen in Linux). Next, the
experiments show that HSTCP-LP is largely non-intrusive to other high-speed TCP
stacks. HSTCP-LP consistently utilizes less bandwidth than the other stacks when
it multiplexes with them, and the level of prioritization dominantly depends on the

bottleneck-queue length: it ranges from strict low prioritization for larger bottle-
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neck queue lengths (when the maximum queuing delay'® is approximately > 50 ms)
to somewhat lighter levels of prioritization for smaller queue lengths. Finally, an
HSTCP-LP flow is multiplexed with an aggregate of TCP Sack flows in a high-speed
environment (on the SLAC-UMICH path). HSTCP-LP applies a more agile (than
TCP Sack) window increase policy, yet uses one-way packet delays for early congestion
indication. The goal is to evaluate which of the above mechanisms is more prevalent.
The experiment shows that HSTCP-LP utilizes only 4.5% of the bandwidth in this

scenario, thus confirming its low-priority nature.

4.7 TCP-LP: Related Work

The most related protocol to TCP-LP is TCP-Nice [79], which aims to provide a
system support for background file replication. TCP-LP [15] and TCP-Nice were
developed in parallel and independently from each other. TCP-Nice is designed as
an extension to TCP-Vegas [33], with a more sensitive congestion detector. It uses
an RTT-threshold-based congestion indication scheme where congestion is indicated
if more than 50% of packets encounter the RT'T-delay threshold. On the other hand,
recall that TCP-LP reacts to one-way-delay threshold-based congestion indications
and more aggressively decreases window size in times of persistent congestion. TCP-
LP’s use of one-way delays is critical because cross-traffic in the direction from the
receiver to the sender may significantly prevent TCP-Nice from utilizing excess band-
width. More precisely, if TCP-Nice’s ACK packets are persistently delayed on the
reverse path (such that the round-trip times are beyond the round-trip threshold),
TCP-Nice may achieve near zero throughput, independently from the actual amount

of excess bandwidth in the network. On the other hand, TCP-LP does not have this

10The maximum queuing delay is inferred by performing a parallel ping measurement.
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problem as it suppresses the influence of reverse cross-traffic by using one-way delay
measurements.

While no protocols other than TCP-LP and TCP-Nice provide an end-point real-
ization of a low priority service, there are related efforts in several areas. First, one of
the key TCP-LP mechanisms is the use of packet delay measurements for early con-
gestion indications. Jain’s delay-based congestion avoidance protocol [31], Wang et
al.’s TCP/Dual [32], Brakmo et al.’s TCP/Vegas [33] all use delay-based congestion
control in an effort to increase TCP throughput due to a reduced number of packet
losses and timeouts, and a reduced level of congestion over the path. The key differ-
ence between TCP-LP and RTT-based congestion control protocols is in their primary
objective. While the former aims to achieve fair-share rate allocations, TCP-LP aims
to utilize only excess bandwidth. In this context, note that Martin et al. [80] sug-
gest that RT'T-based congestion avoidance is problematic to incrementally deploy in
the Internet due to degraded throughput as compared to TCP/Reno flows. Observe
that TCP-LP does not suffer from this problem again due to its different objective:
TCP-LP targets the excess-capacity rate vs. the fair-share rate. Thus, TCP-LP is
incrementally deployable and could be successfully used by any subset of Internet
users. On the other hand, it may indeed be expected that TCP-LP shows a reduced
performance in the networks (e.g., wireless) that induce high non-congestion-based
delay variations.

Second, TCP-LP uses early congestion indication (earlier than TCP) as a basis for
achieving class differentiation. Clark and Feng [81] proposed RIO (RED with In and
Out) in which routers apply different marking/dropping functions for different classes
of flows, thereby providing service differentiation. While similar in philosophy to
TCP-LP, TCP-LP develops an end-point realization of early congestion indication for

the purpose of low-priority transfer. Consequently, TCP-LP is applicable over routers



104

and switches that provide no active queue management or service differentiation.

Third, TCP-LP relates to adaptive bandwidth allocation schemes that aim to
minimize file-transmission times using file-size-based service differentiation. Guo and
Matta [72] use RIO in core routers and a packet classifier at the edge to distin-
guish between long- and short-lived TCP flows. Yang and de Veciana [82] develop
TCP/SAReno in which the AIMD parameters dynamically depend on the remaining
file size. While TCP-LP also substantially improves file-transmission times in the
best-effort class, the key difference between TCP-LP and the above schemes is that
it provides strict low-priority service, independent of the file size.

Next, as TCP-LP targets transmitting at the rate of available bandwidth, it is
related to cross-traffic estimation algorithms which attempt to infer the available
bandwidth via probing (see reference [54] for a thorough review of such algorithms).
For example, Ribeiro et al. [62] and Alouf et al. [63] provide algorithms for estima-
tion of parameters of competing cross-traffic under multifractal and Poisson models
of cross traffic. In contrast, TCP-LP provides an adaptive estimation of available
bandwidth by continually monitoring one-way delays and dynamically tracking the
excess capacity. Similarly, Jain and Dovrolis [54] develop pathload, a delay-based
rate-adaptive probing scheme for estimating available bandwidth. The key difference
between pathload and TCP-LP is that the latter aims to utilize the available band-
width, while the former only estimates it. Moreover, TCP-LP addresses the case
of multiple flows simultaneously inferring the available bandwidth by providing each
with a fair share (according to TCP fairness), an objective that is problematic to
achieve with probes.

Finally, end-point admission control algorithms also use probes to detect if suffi-
cient bandwidth is available for real-time flows [44]. Unfortunately, such techniques

have a “thrashing” problem when many users probe simultaneously and none can
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be admitted. While TCP-LP targets a low rather than high priority class, its basic
ideas of adaptive and transparent bandwidth estimation could be applied to end-point
admission control and alleviate the thrashing condition. In general, a probing flow
should not assume that all measured available bandwidth is for itself alone, as this
bandwidth will be shared among other probing flows. As TCP-LP partitions available

bandwidth fairly among TCP-LP flows, this problem is eliminated.

4.8 Summary

This chapter presented TCP-LP, a protocol designed to achieve low-priority service
(as compared to the existing best-effort class) from the network endpoints. TCP-LP
allows low-priority applications such as bulk data transfer to utilize excess bandwidth
without significantly perturbing non-TCP-LP flows. TCP-LP is realized as a sender-
side modification of the TCP congestion control protocol and requires no functionality
from the network routers nor any other protocol changes. Moreover, TCP-LP is
incrementally deployable in the Internet. However, while the end-point congestion
control is highly robust to diverse network conditions, its implicit assumption of
end-system cooperation results in high vulnerability to malicious behavior. In the
following chapters, this thesis analyzes the resiliency of end-point congestion control

algorithms in environments with untrusted endpoints.
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Chapter 5

Low-Rate TCP-Targeted Denial of Service Attacks

While TCP’s congestion control algorithm is highly robust to diverse network con-
ditions, its implicit assumption of end-system cooperation results in a well-known
vulnerability to attack by high-rate non-responsive flows. This chapter investigates
a class of low-rate denial of service attacks which, unlike high-rate attacks, are dif-
ficult for routers and counter-DoS mechanisms to detect. Using a combination of
analytical modeling, simulations, and Internet experiments, this chapter shows that
maliciously chosen low-rate DoS traffic patterns that exploit TCP’s retransmission
timeout mechanism can throttle TCP flows to a small fraction of their ideal rate
while eluding detection. Moreover, as such attacks exploit protocol homogeneity, this
chapter studies fundamental limits of the ability of a class of randomized timeout

mechanisms to thwart such low-rate DoS attacks.

5.1 DoS Origins and Modeling

This section describes how an attacker can exploit TCP’s timeout mechanism to
perform a DoS attack. Next, it explains a scenario and a system model of such
an attack. Finally, it develops a simple model for aggregate TCP throughput as a

function of the DoS traffic parameters.
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5.1.1 Origins

Recall that TCP’s timeout mechanism (explained in detail in Section 2.2.2), while es-
sential for robust congestion control, provides an opportunity for low-rate DoS attacks
that exploit the slow-time-scale dynamics of retransmission timers. In particular, an
attacker can provoke a TCP flow to repeatedly enter a retransmission timeout state
by sending high-rate, but short-duration bursts having RTT-scale burst length, and
repeating periodically at slower RTO time-scales. The victim will be throttled to
near-zero throughput while the attacker will have low average rate making it difficult
for counter-DoS mechanisms to detect.

This thesis refers to the short durations of the attacker’s loss-inducing bursts as
outages, and presents a simple but illustrative model relating the outage time-scale
(and hence attacker’s average rate) to the victim’s throughput as follows.

First, consider a single TCP flow and a single DoS stream. Assume that an
attacker creates an initial outage at time 0 via a short-duration high-rate burst. As
shown in Figure 2.2, the TCP sender will wait for a retransmission timer of 1sec to
expire and will then double its RTO. If the attacker creates a second outage between
time 1 and 1 + 2RTT, it will force TCP to wait another 2sec. By creating similar
outages at times 3, 7, 15, - - -, an attacker could deny service to the TCP flow while
transmitting at extremely low average rate.

While potentially effective for a single flow, a DoS attack on TCP aggregates in
which flows continually arrive and depart requires periodic (vs. exponentially spaced)
outages at the minRTO time-scale. Moreover, if all flows have an identical minRTO
parameter as recommended in RFC 2988 [34], the TCP flows can be forced into
continual timeouts if an attacker creates periodic outages.

Thus, this thesis considers “square wave” shrew attacks as shown in Figure 5.1
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Figure 5.1 : Square-wave DoS stream

in which the attacker transmits bursts of duration / and rate R in a deterministic
on-off pattern that has period 7. As explored below, a successful shrew attack will
have rate R large enough to induce loss (i.e., R aggregated with existing traffic must
exceed the link capacity), duration [ of scale RTT (long enough to induce timeout
but short enough to avoid detection), and period T of scale RTO (chosen such that

when flows attempt to exit timeout, they are faced with another loss).

5.1.2 Model

Consider a scenario of an attack shown in Figure 5.2(a). It consists of a single
bottleneck queue driven by n long-lived TCP flows with heterogeneous RTTs and
a single DoS flow. Denote RTT; as the roundtrip time of the i-th TCP flow, ¢ =
1,---,n. The DoS flow is a periodic square-wave DoS stream shown in Figure 5.1.
The following result relates the throughput of the TCP flows to the period of the
attack.

DoS TCP Throughput Result. Consider a periodic DoS attack with period T .
If the outage duration satisfies

(C1) U'> RTT,

and the minimum RTO satisfies
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Figure 5.2 : DoS scenario and system model

(C2) minRTO > SRTT; + 4 RTTVAR,;
for all i = 1,--- ,n, then the normalized throughput of the aggregate TCP flows is
approzimately

[ O T — minRT O
T) = : . 5.1
IO( ) I'mznrllleO'l T ( )

This result is obtained as follows. As shown in Figure 5.2(b), the periodic I-
length bursts create short I’-length outages having high packet loss.! If I reaches the
TCP flows’ RTT time-scales, i.e., I' > RTT;, for all i = 1,--- , n, then the congestion
caused by the DoS burst lasts sufficiently long to force all TCP flows to simultaneously
enter timeout. Moreover, if minRTO > SRTT; + 4RTTVAR,;, fori=1,---,n, all
TCP flows will have identical values of RTO and will thus timeout after minRTO
seconds, which is the ideal moment for an attacker to create a new outage. Thus,
in this case, despite their heterogeneous round-trip times, all TCP flows are forced
to “synchronize” to the attacker and enter timeout at (nearly) the same time, and
attempt to recover at (nearly) the same time. Thus, when exposed to outages with
period T', Equation (5.1) follows.

Equation (5.1) expresses the normalized throughput of a TCP flow under a T-

IThe relationship between ! and I’ is explored in Section 5.2.
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periodic attack: a ratio of the bandwidth achievable by the TCP flow under the
T-periodic attack, and the TCP bandwidth without any attack. For example, when
T = 1.5sec, and minRTO = 1sec, the TCP flow utilizes the available bandwidth in
the [minRTO, T'] period after each outage, such that the normalized TCP throughput
becomes (7' — minRTO)/T = 0.33. On the other hand, when 7" = 0.8 sec, only every
second outage is effective, and the TCP flow utilizes bandwidth in the [minRTO, 27
period after each effective outage in this scenario. Consequently, the normalized
throughput becomes (27" — minRTO) /2T = 0.375 according to Equation (5.1).

Note that Equation (5.1) does not model throughput losses due to the slow-start
phase, but simply assumes that TCP flows utilize all available bandwidth after exiting
the timeout phase. In other words, it is assumed that the TCP flows utilize the full
link bandwidth after the end of each retransmission timeout and the beginning of the
following outage. Observe that if the period T is chosen such that 7" > 1 4+ 2RTT,,
all TCP flows will continually enter a retransmission timeout of 1sec duration. Thus,
because Equation (5.1) assumes that RTO = minRTO for 7" > minRTO, while this
is not the case in the period (minRTO, minRTO + 2 RTT), Equation (5.1) behaves as
an upper bound in practice. In other words, periodic DoS streams are not utilizing
TCP’s exponential backoff mechanism but rather exploit repeated timeouts.

Next, consider flows that do not satisfy conditions (C1) or (C2).

DoS TCP Flow-Filtering Result. Consider a periodic DoS attack with period
T. If the outage duration I' > RTT; and minRTO > SRTT; + 4 RTTVAR; fori =
1,---,k whereas ' < RTT; or minRTO < SRTT;j+ 4 RTTVAR; for j =k+1,---,n,
then Equation (5.1) holds for flows 1,--- | k.

This result, shown similarly to that above, states that Equation (5.1) holds for
any TCP sub-aggregate for which conditions (C1) and (C2) hold. In other words, if a

shrew attack is launched on a group of flows such that only a subset satisfies the two
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conditions, that subset will obtain degraded throughput according to Equation (5.1),
whereas the remaining flows will not. The thesis refers to this as “flow filtering”,
meaning that such an attack will deny service to a subset of flows while leaving the
remainder unaffected, or even obtaining higher throughput. This issue is discussed

in detail in Section 5.3.

5.1.3 Example

This section presents a baseline set of experiments to explore TCP’s “frequency
response” to shrew attacks. It first considers the analytical model and the sce-
nario depicted in Figure 5.2 in which conditions (C1) and (C2) are satisfied and
minRTO = 1sec. The curve labeled “model” in Figure 5.3 depicts p vs. T as given
by Equation (5.1). Throughput is normalized to the link capacity, which under high
aggregation, is also the throughput that the TCP flows would obtain if no DoS attack

were present.

model (lfiow and aggredates) —
1k simulation (1 flow) ---%--- |

Throughput (normalized)

DoS Inter-burst Period (sec)

Figure 5.3 : DoS TCP throughput: model and simulation

Note that the average rate of the DoS attacker is decreasing with increasing 7" as
its average rate is given by RIl/T. However, as indicated by Equation (5.1) and Figure
5.3, the effectiveness of the attack is clearly not increasing with the attacker’s average

rate. Most critically, observe that there are two “nulls” in the frequency response in
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which TCP throughput becomes zero. In particular, p(T)) = 0 when 7" = minRTO
and 7'= minRTO/2. The physical interpretation is as follows: if the attacker creates
the minRTO-periodic outages, it will completely deny service to the TCP traffic.
Once the brief outage occurs, all flows will simultaneously timeout. When their
timeout expires after minRTO seconds and they again transmit packets, the attacker
creates another outage such that the flows backoff again. Clearly, the most attractive
period for a DoS attacker is minRTO (vs. minRTO/2), since it is the null frequency
that minimizes the DoS flow’s average rate. When T > minRTO, as the period of
the attack increases, the TCP flows obtain increasingly higher throughput in periods
between expiration of retransmission timers and the subsequent DoS outage.

Next, this section presents a set of ns simulations to compare against the model.
The experiments again consider the scenario of Figure 5.2 but with a single TCP
flow.? The TCP Sack flow has minRTO = 1 second and satisfies conditions (C1)
and (C2). More precisely, the propagation delay is 6 ms while the buffer size is set
such that the round-trip time may vary from 12ms to 132ms. The link capacity is
1.5 Mb/s, while the DoS traffic is a square-wave stream with the peak rate 1.5 Mb/s
and burst length 150 ms.

The curve labeled “simulation” in Figure 5.3 depicts the measured normalized
throughput of the TCP flow. Figure 5.3 reveals that Equation (5.1) captures the
basic frequency response of TCP to the shrew DoS attack, characterizing the general

trends and approximating the location of the two null frequencies.

2Recall that Equation (5.1) holds for any number of flows, and that TCP aggregates are simulated

in Section 5.3.
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5.2 Creating DoS Outages

This section explores the traffic patterns that attackers can use in order to create
temporary outages that induce recurring TCP timeouts. First, it studies the instan-
taneous bottleneck-queue behavior in periods when an attacker bursts packets into
the network. Next, it develops the DoS stream which minimizes the attacker’s average
rate while ensuring outages of a particular length. Finally, this section studies square-
wave DoS streams and identifies the conditions in which they accurately approximate

the optimal double-rate DoS streams.

5.2.1 Instantaneous Queue Behavior

Consider a bottleneck queue shared by a TCP flow and a DoS flow which every T
seconds bursts at a constant rate Rp,g for duration [. Denote Rrcp as the instan-
taneous rate of the TCP flow, B as the queue size, and Bj as the queue size at the
onset of an attack, assumed to occur at ¢ = 0.

Denote /; as the time that the queue becomes full such that

_ (B=By
Rpos + Rrcp — C°

(5.2)

1

After [; seconds, the queue remains full for Iy = [ — I; seconds if Rp,s + Rrcp > C.
Moreover, if Rp,s > C during the same period, this will create an outage to the
TCP flow whose loss probability will instantaneously increase significantly and force

the TCP flow to enter a retransmission timeout with high probability (see also Figure
5.2).
5.2.2 Minimum Rate DoS Streams

Suppose the attacker is limited to a peak rate of R, due to a secondary bottleneck

or the attacker’s access link rate. To avoid router-based mechanisms that detect
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high rate flows, e.g., [12], DoS attackers are interested in ways to minimally expose
their streams to detection mechanisms. To minimize the number of bytes transmitted
while ensuring outages of a particular length, an attacker should transmit a double-
rate DoS stream as depicted in Figure 5.4. To fill the buffer without help from
background traffic or the attacked flow requires Iy = B/(Rmax — C) seconds. Observe
that sending at the maximum possible rate R, minimizes /; and consequently the
number of required bytes. Once the buffer fills, the attacker should reduce its rate to
the bottleneck rate C to ensure continued loss using the lowest possible rate.

AEDOS 1

rate
L Rmax Bottleneck
$capacity C

period of the attack T

Figure 5.4 : Double-rate DoS stream

Thus, double-rate streams minimize the number of packets that need to be trans-
mitted (for a given bottleneck queue size B, bottleneck capacity C, and range of
sending rates from 0 to Rpyax) among all possible sending streams that are able to
ensure periodic outages with period 7" and length /5.

To generate double-rate DoS streams in real networks, an attacker can use a
number of existing techniques to estimate the bottleneck link capacity [51-53, 83, 84],
bottleneck-bandwidth queue size [85] and secondary bottleneck rate [86].

Regardless of the optimality of double-rate DoS streams, this thesis considers the
simpler square-wave DoS attack shown in Figure 5.1 as an approximation. First, these

streams do not require prior knowledge about the network except the bottleneck rate.



115

Second, they isolate the effect of a single time-scale periodic attack.

To study the effectiveness of the square-wave, simulation experiments are per-
formed in order to compare the two attacks’ frequency responses. As an example,
this section considers a square-wave DoS stream with peak rate 3.75Mb/s and burst
length | = 50 ms and a double-rate stream with Ry,., =10 Mb/s. For the double-rate
stream, [; is computed as B/(Ruyax — C), while [y is determined such that the num-
ber of packets sent into the network is the same for both streams. The simulation
parameters are the same as previously.

The resulting frequency responses in this example and others (not shown) are
nearly identical. Consequently, since square-wave DoS streams accurately approxi-
mate the double-rate DoS stream and do not require knowledge of network param-
eters, the square-wave DoS streams are used henceforth in both simulations and

Internet experiments.

5.3 Aggregation and Heterogeneity

This section explores the impact of TCP flow aggregation and heterogeneity on the
effectiveness of the shrew attack. First, it experiments with long-lived homogeneous-
RTT TCP traffic and explores the DoS stream’s ability to synchronize flows. Second,
it presents experiments in a heterogeneous RTT environment and explores the effect
of RTT-based filtering. Third, this section studies the impact of DoS streams on links
dominated by web traffic. Finally, it evaluates several TCP variants’ vulnerability to
shrews.

As a baseline topology (and unless otherwise indicated), this chapter considers
many TCP Sack flows sharing a single congested link with capacity 1.5Mb/s as in
Figure 5.2. The one-way propagation delay is 6 ms and the buffer size is set such that

the round-trip time varies from 12ms to 132ms. The DoS traffic is a square-wave
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stream with peak rate 1.5 Mb/s, burst duration 100 ms, and packet size 50 bytes. In
all experiments, there exists a FTP/TCP flow in the reverse direction, whose ACK
packets multiplex with TCP and DoS packets in the forward direction. For each data
point in the figures below, there are five simulation runs and averages are reported.
Each simulation run lasts 1000 sec. The ns code and simulation scripts are available

at http://www.ece.rice.edu/networks/shrew.

5.3.1 Aggregation and Flow Synchronization

The experiments of Section 5.1 illustrate that a DoS square wave can severely degrade
the throughput of a single TCP flow. Here, the thesis investigates the effectiveness
of low bit-rate DoS streams on TCP aggregates with homogeneous RTTs for five
long-lived TCP flows sharing the bottleneck.

TCP Aggregate ——

Throughput (normalized)

0 1 2 3 4 5
DoS Inter-burst Period (sec)

Figure 5.5 : DoS and aggregated TCP flows

Figure 5.5 depicts the normalized aggregate TCP throughput under the shrew
attack for different values of the period 7T. Observe that similar to the one-flow case,
the attack is highly successful so that Equation (5.1) can also model attacks on ag-
gregates. However, note that when compared to the single-flow case, the throughput
at the null 1/minRTO frequency is slightly larger in this case because the maximum

RTT of 132ms is greater than the DoS burst length of 100 ms such that a micro-flow
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may survive an outage. Also observe that an attack at frequency 2/minRTO nearly
completely eliminates the TCP traffic.

The key reasons for this behavior are twofold. First, RTO homogeneity (via min-
RTO) introduces a single vulnerable time-scale, even if flows have different RTTs (as
explored below). Second, DoS-induced synchronization occurs when the DoS outage
event causes all flows to enter timeout nearly simultaneously. Together with RTO
homogeneity, flows will also attempt to exit timeout nearly simultaneously when they
are re-attacked.

Synchronization of TCP flows was extensively explored in [87,88] and was one of
the main motivations for RED [69], whose goal is the avoidance of synchronization
of many TCP flows decreasing their window at the same time. In contrast, the
approach and scenario here are quite different, as an external malicious source (and
not TCP itself) is the source of synchronization. Consequently, mechanisms like RED

are unable to prevent DoS-initiated synchronization (see also Section 5.5).

5.3.2 RTT Heterogeneity
RTT-based Filtering

The above experiment shows that a DoS stream can significantly degrade through-
put of a TCP aggregate, provided that the outage length is long enough to force all
TCP flows to enter a retransmission timeout simultaneously. This section explores a
heterogeneous-RTT environment with the objective of showing that a flow’s vulnera-
bility to low-rate DoS attacks fundamentally depends on its RTT, with shorter-RTT
flows having increased vulnerability.

This section presents experiments with 20 long-lived TCP flows on a 10 Mb/s
link. The range of round-trip times is 20 to 460 ms [89], obtained from representative

Internet measurements [90]. These measurements are used to guide the setting of link
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propagation delays for different TCP flows.3
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Figure 5.6 : RTT-based filtering

Figure 5.6 depicts the normalized TCP throughput for each of the 20 TCP flows.
The curve labeled “no DoS” shows each flow’s throughput in the absence of an attack.
Observe that the flows re-distribute the bandwidth proportionally to 1/RTT such
that shorter-RTT flows utilize more bandwidth than the longer ones. The curve
labeled “DoS” shows each TCP flow’s throughput when they are multiplexed with
a DoS square-wave stream with peak rate 10 Mb/s, burst length 100 ms and period
1.1sec. Observe that this DoS stream filters shorter-RTT flows up to a time-scale of
approximately 180 ms, beyond which higher RTT flows are less adversely affected.
Also, observe that despite the excess capacity available due to the shrew DoS attack,
longer-RTT flows do not manage to improve their throughput.

However, in a regime with many TCP flows with heterogeneous R1Ts, the num-
ber of non-filtered flows with high RTT will increase, and they will eventually be of
sufficient number to utilize all available bandwidth left unused by the filtered smaller-
RTT flows. Thus, the total TCP throughput will increase with the aggregation level

for highly heterogeneous-RTT flows as illustrated in Figure 5.7. Unfortunately, the

3The experiments do not fit the actual CDF of this data, but uniformly distribute round-trip

times in the above range.
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Figure 5.7 : High aggregation with heterogeneous RTT

high throughput and high link utilization with many flows (e.g., greater than 90% in
the 80-flow scenario) is quite misleading, as the shorter-RTT flows have been dramat-
ically rate-limited by the attack as in Figure 5.6. Hence, one can simultaneously have

high utilization and an effective DoS attack against small- to moderate-RTT flows.

DoS Burst Length

The above experiments showed that DoS streams behave as a high-RTT-pass filter, in
which the burst length is related to the filter cut-off time-scale. This section directly

investigates the impact of burst length.

" TCcP Aggregate (20 flows) ——
DoS
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Figure 5.8 : Impact of DoS burst length

For the same parameters as above, Figure 5.8 depicts aggregate TCP through-
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put as a function of the DoS burst length. The figure shows that as the burst
length increases, the DoS mean rate increases, yet the aggregate TCP throughput
decreases much more significantly. Indeed, as the burst length increases, the RTT-
cut-off time-scale increases. In this way, flows with longer and longer RTTs are
filtered. Consequently, the number of non-filtered flows decreases such that aggre-
gate TCP throughput decreases. In other words, as the burst length increases, the
sub-aggregate for which condition (C1) holds enlarges. With a fixed number of flows,
the longer-RT'T flows are unable to utilize the available bandwidth, and the aggregate

TCP throughput decreases.

Peak Rate

Recall that the minimal-rate DoS streams studied in Section 5.2 induce outages with-
out any help from background traffic and under the assumption that the initial buffer
size By is zero. However, in practice, the buffer will also be occupied by packets from
reverse ACK traffic, UDP flows, etc. Consequently, in the presence of such back-
ground traffic, the DoS source can potentially lower its peak rate and yet maintain

an effective attack.

Throughput (normalized)

0 0.2 0.4 0.6 0.8 1
DoS Peak Rate / Link Capacity

Figure 5.9 : Impact of DoS peak rate

Consider a scenario with five flows, a DoS flow and four long-lived TCP flows. The
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link propagation delays in the simulator are set such that one TCP flow experiences
shorter RTT (fluctuates from 12 ms to 134 ms) while the other three have longer RTTs
(from 108 ms to 230 ms). Figure 5.9 depicts the throughput of the short-RTT flow
as a function of the normalized DoS peak rate varied from 0 to 1. Observe that
relatively low peak rates are sufficient to filter the short-RTT flow. For example,
a peak rate of one third of the link capacity and hence an average rate of 3.3% of
the link capacity significantly degrades the short-RTT flows’ throughput at the null
time-scale. As hypothesized above, longer-RTT flows here play the role of background
traffic and increase both By and the burst rate in periods of outages which enables
lower-than-bottleneck peak DoS rates to cause outages. This further implies that very
low rate periodic flows that operate at one of the null TCP time-scales (%RTO,
j = 1,---) are highly problematic for TCP traffic. For example, some probing

schemes periodically burst for short time intervals at high rates in an attempt to

estimate the available bandwidth on an end-to-end path [54].

5.3.3 HTTP Traffic

Thus far, this chapter considered long-lived TCP flows. Here, it studies a scenario
with flow arrival and departure dynamics and highly variable file sizes as incurred
with HTTP traffic.

This thesis adopts the model of [71] in which clients initiate sessions from randomly
chosen web sites with several web pages downloaded from each site. Each page
contains several objects, each of which requires a TCP connection for delivery (i.e.,
HTTP 1.0). The inter-page and inter-object time distributions are exponential with
respective means of 9sec and 1 msec. Each page consists of ten objects and the object
size is distributed according to a Pareto distribution with shape parameter 1.2. For

the web transactions, the response times are measured and averaged for different sized
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Figure 5.10 : Impact on HTTP flows

Figure 5.10 depicts web-file response times normalized by the response times ob-
tained when the DoS flow is not present in the system. Because of this normalization,
the curve labeled “no DoS” in Figure 5.10 is a straight line with a value of one. The
flows’ mean HTTP request arrival rate is selected such that the offered HTTP load
is 50% and near 100% for Figures 5.10(a) and 5.10(b), respectively.

On average, the file response times increased by a factor of 3.5 under 50% load
and a factor of 5 under 100% load. Figures 5.10(a) and 5.10(b) both indicate that
larger files (greater than 100 packets in this scenario) become increasingly and highly
vulnerable to the shrew attacks with the response times of files increasing by orders
of magnitude. Nevertheless, observe that some flows benefit from the shrew attack
and significantly decrease their response times. This occurs when a flow arrives into
the system between two outages and manages to transmit its entire file before the
next outage occurs.

However, note that this effect is apparent in Figures 5.10(a) and 5.10(b) for the
longer file sizes, whereas the effect is not observable for the shorter file sizes. This
is due to the HTTP file-size distribution depicted in Figure 5.11, which shows that

the number of short files is much larger than the number of longer files in a typical
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web-browsing scenario. Consequently, while many of the short HTTP files actually
manage to escape the attack and improve their response times, the response-times
average is dominantly biased by the flows that are caught by the attack and whose
response times are extremely degraded. Thus, while some flows actually benefit from
the attack, the overall impact of the shrew attack on HTTP traffic remains quite

effective.
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Figure 5.11 : HTTP file-size distribution

Next, observe that the deviation from the reference (no DoS) scenario is larger in
Figure 5.10(a) than 5.10(b). This is because the response times are approximately
100 times lower for the no-DoS scenario when the offered load is 50% as compared to
the no-DoS scenario when the system is fully utilized.

Finally, this research conducted experiments where DoS stream attack mixtures
of long- (FTP) and short-lived (HTTP) TCP flows. The results (not shown) indi-
cate that the conclusions obtained separately for FTP and HTTP traffic hold for

FTP/HTTP aggregates.

5.3.4 TCP Variants

The effectiveness of low-rate DoS attacks depends critically on the attacker’s ability

to create correlated packet losses in the system and force TCP flows to enter re-
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Figure 5.12 : TCP Reno, New Reno, Tahoe and Sack under shrew attacks

transmission timeout. While this chapter has studied the most robust TCP variant
(TCP Sack) so far, many of the existing operating systems today still use some less
advanced TCP versions. This section first provides a brief background on the work
that has been done to build more robust TCP versions and help TCP flows to survive
multiple packet losses within a single round-trip time without incurring a retransmis-
sion timeout. Then, it evaluates the performance of different TCP versions under the
shrew attack.

It is well-known that TCP Reno is the most fragile TCP variant which enters the
retransmission timeout whenever a loss happens and less than three duplicate ACKs
are received. To overcome this problem, TCP New Reno [91] changes the sender’s
behavior during Fast Recovery upon receipt of a partial ACK that acknowledges

some but not all packets that were outstanding at the start of the Fast Recovery




125

period. Further improvements are obtained by TCP Sack [36] when a large number
of packets are dropped from a window of data [92] because when a Sack receiver holds
non-contiguous data, it sends duplicate ACKs bearing the Sack option to inform the
sender of the segments that have been correctly received. A thorough analysis of the
packet drops required to force flows of a particular TCP version to enter timeout is
given in [92].

Here, the thesis evaluates the performance of TCP Reno, New Reno, Tahoe and
Sack under the shrew attack. Figures 5.12 (a)-(d) show TCP throughput for burst
lengths of 30, 50, 70 and 90 ms, respectively. Figure 5.12(a) confirms that TCP
Reno is indeed the most fragile TCP variant, while the other three versions have
better robustness to DoS. However, when the peak length increases to 50 ms, all
TCP variants obtain near zero throughput at the null frequency as shown in Figure
5.12(b). The Figure also indicates that TCP is the most vulnerable to DoS in the
1-1.2sec time-scale region. During this period, TCP flows are in slow-start and have
small window sizes such that a smaller number of packet losses are needed to force
them to enter the retransmission timeout. Finally, Figures (c)-(d) indicate that all
TCP variations obtain a throughput profile similar to Equation (5.1) when the outage
duration increases, such that more packets are lost from the window of data. Indeed,
if all packets from the window are lost, TCP has no alternative but to wait for a

retransmission timer to expire.

5.4 Internet Experiments

This section describes several DoS experiments performed on the Internet. The
scenario is depicted in Figure 5.13 and consists of a large file downloaded from a
TCP Sack sender (TCP-S) to a TCP Sack receiver (TCP-R). While the RFC 2988

[34] recommendation for the minRTO parameter is already in the so-called should
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phase,® to the best of the author’s knowledge, it is not yet being widely deployed
in the most popular operating systems. Hence, the TCP-S host is configured to
have minRTO = 1sec (by modifying the Linux-2.4.18 kernel) according to [34], and
measure TCP throughput using iperf. The shrew attack is launched from three dif-
ferent hosts using a modified version of the UDP-based active probing software from
[67] in order to send high-precision DoS streams. Three independent measurements
are performed for each experiment and the average results are reported. Both the
Linux TCP-kernel source code used in the experiments at the TCP-S side, and the
modified UDP-based software used to generate the shrew attacks are available at

hitp://www. ece.rice.edu/networks/shrew.

Figure 5.13 : DoS attack scenario

Intra-LAN Scenario. In this scenario, both the TCP sender (TCP-S) and DoS
(DoS-A) hosts are on the same 10 Mb/s Ethernet LAN on Rice University, while the
attacked host (TCP-R) is on a different 10 Mb/s Ethernet LAN, two hops away from
both TCP-S and DoS-A. The peak rate of the square-wave DoS stream is 10 Mb/s
while the burst length is 200ms. The curve labeled “Intra-LAN” in Figure 5.14

4The IETF recommendations usually specify the parameter values that (1) may, (2) should, or

(3) must be applied.
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depicts the results of these experiments. The figure indicates that a null frequency
exists at a time-scale of approximately 1.2 sec. When the attacker transmits at this
period, it has an average rate of 1.67 Mb/s. Without the DoS stream, the TCP
flow obtains 6.6 Mb/s throughput. With it, it obtains 780 kb/s throughput. Thus,
the DoS attacker can severely throttle the victim’s throughput by nearly an order of

magnitude.
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Figure 5.14 : Internet experiments

Inter-LAN Scenario. In this experiment, the TCP sender (TCP-S), DoS source
(DoS-B) and attacked host (TCP-R) are on three different LANs of the ETH (Zurich,
Switzerland) campus network. The route between the two traverses two routers and
two Ethernet switches, with simple TCP measurements revealing that the TCP and
DoS LANs are 100 Mb/s Ethernet LANs, while the attacked host is on a 10 Mb/s
Ethernet LAN. The peak rate of the square-wave DoS stream is again 10 Mb/s while
its duration is reduced as compared to the Intra-LAN Scenario to 100 ms. The curve
labeled “Inter-LAN” in Figure 5.14 depicts the frequency response of this attack. In
this case, a DoS time-scale of T' = 1.1sec is the most damaging to TCP, since here
the TCP flow achieves 800kb/s throughput, only 8.1% of the throughput it achieves
without DoS flow (9.8 Mb/s). At this time-scale, the attacker has an average rate of
909kb/s.



128

WAN Scenario. Finally, for the same TCP source/destination pair as in the
Inter-LAN Scenario, source DoS-C initiates a shrew DoS attack from a LAN at EPFL
(Lausanne, Switzerland), located eight hops away from the destination. The DoS
stream has a peak rate of 10 Mb/s and a burst duration of 100ms. The curve labeled
“WAN” shows the frequency response of these experiments and indicates a nearly
identical null located at T = 1.1sec. For this attack, the TCP flow’s throughput
is degraded to 1.2 Mb/s from 9.8 Mb/s whereas the attacker has average rate of
909kb/s. This experiment illustrates the feasibility of remote attacks. Namely, in
the WAN scenario, the DoS attacker has traversed the local provider’s network and
multiple routers and Ethernet switches before reaching its victim’s LAN. Thus, despite
potential traffic distortion that deviates the attacker’s traffic pattern from the square
wave, the attack is highly effective.

Thus, while necessarily small scale due to their (intended) adverse effects, the
experiments support the findings of the analytical model and simulation experiments.
The results indicate that effective shrew attacks can come from remote sites as well

as nearby LANs.

5.5 Counter-DoS Techniques

This section explores two classes of candidate counter-DoS mechanisms intended to
mitigate the effects of shrew attacks: (a) router-assisted, and (b) end-point mecha-
nisms. Out of many router-assisted schemes designed to detect and throttle malicious
flows in the network, this section concentrates on the mechanisms that are based on
preferential dropping of packets from malicious flows, and evaluate two representa-
tives: RED-PD and CHOKe. From the end-point counter-DoS mechanisms, this
thesis first evaluates the effect of the initial TCP congestion window size on the ef-

fectiveness of the attack, and then proposes and evaluates a counter-DoS mechanism
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in which end-points randomize their minRTO parameter.

5.5.1 Router-Assisted Mechanisms

As described above, DoS flows have low average rate, yet do send relatively high-
rate bursts for short time intervals. The key problem lies in the fact that relatively
longer time-scales are needed to detect malicious flows with high confidence, while
the shrew attack operates on relatively short time-scales. If these shorter time-scales
are used to detect malicious flows in the Internet, many legitimate bursty flows would
be incorrectly detected as malicious. This section investigates if the shrew traffic
patterns can be identified as a DoS attack by router-based algorithms.

Mechanisms for per-flow treatment at the router can be classified as scheduling
or preferential dropping. Due to implementation simplicity and other advantages
of preferential dropping over scheduling (see reference [12]), this thesis concentrates
on dropping algorithms for detection of DoS flows and/or achieving fairness among
adaptive and non-adaptive flows. Candidate algorithms include Flow Random Early
Detection (FRED) [21], CHOKe [20], Stochastic Fair Blue (SFB) [26], the scheme
of reference [24], ERUF [23], Stabilized RED (SRED) [22], dynamic buffer-limiting
scheme from [25] and RED with Preferential Dropping (RED-PD) [12]. Of these, this

thesis studies the most popular representatives: RED-PD and CHOKe.

RED-PD

RED-PD uses the packet drop history at the router to detect high-bandwidth flows
with high confidence. Flows above a configured target bandwidth are identified and
monitored by RED-PD. Packets from the monitored flows are dropped with a proba-
bility dependent on the excess sending rate of the flow. RED-PD suspends preferential

dropping when there is insufficient demand from other traffic in the output queue,
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for example, when RED’s average queue size is less than the minimum threshold.
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(a) 1 TCP Sack flow (b) 9 TCP Sack flows

Figure 5.15 : Impact of RED and RED-PD routers

The simulation experiments with one and nine TCP Sack flows, RED-PD routers,
and the topology of Figure 5.2 are performed. For one TCP flow, Figure 5.15(a)
indicates that RED-PD is not able to detect nor throttle the DoS stream. For aggre-
gated flows depicted in Figure 5.15(b), RED-PD only affects the system if the attack
occurs at a time-scale of less than 0.5 sec, i.e., only unnecessarily high-rate attacks
can be addressed. Most critically, at the null time-scale of 1.2 sec, RED-PD has no
noticeable effect on throughput as compared to RED. Thus, while RED and RED-
PD’s randomization has lessened the severity of the null, the shrew attack remains
effective overall.

Next, in the above scenario with nine TCP Sack flows, the DoS peak rate and
burst length are varied to study the conditions under which the DoS flows will become
detectable by RED-PD. The burst duration is first set to 200 ms and then the peak
rate is changed from 0.5 Mb/s to 5 Mb/s. Figure 5.16(a) indicates that RED-PD starts
detecting and throttling the square-wave stream at a peak rate of 4 Mb/s, which is
more than twice than the bottleneck rate of 1.5 Mb/s. Recall that it has been shown
in Section 5.3.2 that a peak rate of one third the bottleneck capacity and a burst

length of 100 ms can be quite dangerous for short-RTT TCP flows.
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Figure 5.16 : Detecting DoS streams

Further, the DoS peak rate is fixed to 2 Mb/s and the burst length is varied from
50ms to 450 ms. Figure 5.16(b) shows that RED-PD begins detecting the DoS flow
at 300 ms time-scales in this scenario. Recall again that much shorter burst time-
scales are sufficient to throttle not only short-RT'T flows, but the entire aggregates of
heterogeneous-RT'T TCP traffic.

Thus, Figure 5.16(b) captures the fundamental issue of time-scales: RED-PD
detects high rate flows on longer time-scales, while DoS streams operate at very
short time-scales. If these shorter time-scales are used to detect malicious flows in
the Internet, many legitimate bursty TCP flows would be incorrectly detected as
malicious. This issue is studied in depth in reference [12], which concludes that long
time-scale detection mechanisms are needed to avoid excessively high false positives.
However, there are schemes (e.g., [20,21,25,26]) that use very short time-scales to
detect high rate flows. While Mahajan et al. [12] indicate that the penalty for
their use may be quite high, this thesis nevertheless evaluates below the ability of a

representative of such schemes (CHOKe) to detect and throttle the shrew attack.

CHOKe

CHOKZe is a dropping scheme designed to throttle unresponsive or misbehaving flows

in a congested router. An incoming packet is matched against a random packet in
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the queue. If they belong to the same flow, both packets are dropped, otherwise the
incoming packet is admitted with a certain probability. The scheme tries to leverage
the fact that high-bandwidth flows are likely to have more packets in the queue, and
tries to approximate fair queuing in a scalable way. While Mahajan et al. [12] observe
that CHOKe is not likely to perform well in high aggregation regimes (see reference
[12] for details), and despite the indication that the penalty for the use of the scheme
may be quite high (especially in low-aggregation regimes and HTTP scenarios), the

main goal here is to evaluate its ability to detect the shrew attacks.
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Figure 5.17 : Impact of CHOKe routers

This section initially presents a simulation experiment with one TCP Sack flow
under the shrew attack, CHOKe router, and the topology of Figure 5.2. Figure
5.17(a) indicates that CHOKe outperforms RED-PD (compare Figures 5.15(a) and
5.17(a)) in thwarting the shrew attacks. This is exactly due to fact that CHOKe
operates on much shorter time-scales: it observes instantaneous queue behavior (and
not the drop history), and is thus able to mitigate the effectiveness of the attack
more successfully. However, observe that CHOKe in this scenario does not completely
eliminate the effectiveness of the attack, but only smooths the throughput “dip” on
the minRTO time-scale. Finally, as the number of flows increases, CHOKe (like

RED-PD) becomes more and more successful in smoothing the TCP aggregate null
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frequencies (not shown).

However, recall that Section 5.3.2 demonstrated that in heterogeneous-RTT envi-
ronments, the shrews are able to deny service to a subset of short-RTT TCP flows,
yet without bursting at high instantaneous rates. Consequently, the attacker packets
do not monopolize the buffer resources, and are thus hard to detect. This hypothesis
is evaluated below.

This section repeats the experiment from Section 5.3.2 with a CHOKe router,
to evaluate its ability to thwart the shrew attack in the flow-filtering scenario. The
experiment consists of an aggregate of long-RTT TCP flows multiplexed with a short-
RTT TCP flow. Figure 5.17(b) depicts the throughput of the short-RTT flow as a
function of the shrew inter-burst period, where the peak of the shrew burst is kept
to only 1/3 of the bottleneck link capacity. Observe that CHOKe fails to throttle
the shrew flow, because this malicious flow is hidden in the aggregate of legitimate
long-RTT TCP flows that are not significantly affected by the attack. Thus, while the
shrew flow creates periodic outages and denies service to short-RTT flows, it actu-
ally never monopolizes the buffer resources, and remains undetected by the CHOKe

router.

5.5.2 End-point Mechanisms

This section evaluates end-point-based counter-DoS mechanisms. The key idea is to
make TCP more robust to shrew attacks by applying a more careful (DoS-resilient)
protocol design. This section explores two modifications of the existing TCP param-
eters. The first is the increase of the initial window size parameter; and the second

is the randomization of the minRTO parameter.
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Increasing the Initial Window Size

The above experiments indicate that TCP flows are the most vulnerable to shrew
attacks when they have small window sizes, simply due to fact that a smaller number
of packet losses are needed to force them to enter the retransmission timeout. This
section explores if increasing the window size after exiting the retransmission time-
out (popularly known as “jump-starting” a TCP flow) may help in mitigating the
effectiveness of the attack.

The parameter of interest here is the initial window size W. The default is two
segments, whereas RFC 2414 [93] recommends increasing this parameter to a value
between two and four segments (roughly 4 kbytes) to achieve a performance improve-
ment. A number of experiments with TCP flows (with W = 4) under the shrew attack
are performed, but do no noticeable improvement in such scenarios is observed. While
increasing the initial window size parameter beyond four segments may lead to a con-
gestion collapse [93], this section nevertheless performs experiments with W = 8 and
W = 16 (not shown), for the sake of research curiosity. The only noticeable difference
is that the TCP null time scale slightly moves closer to 1sec. This happens because
a “jump-started” TCP flow utilizes the available bandwidth much faster, but unfor-
tunately the vulnerability to low-rate attacks remains. In summary, as long as the
outage length is on the time scale of the flow’s RTT, the increased number of packets

in flight doesn’t help in preventing the attack.

End-point minRTO Randomization

Since low-rate attacks exploit minRTO homogeneity, this section explores a counter-
DoS mechanism in which end-points randomize their minRTO parameter in order to
randomize their null frequencies. Here, the thesis develops a simple, yet illustrative

model of TCP throughput under such a scenario. In particular, this section considers
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a counter-DoS strategy in which TCP senders randomize their minRTO parameters
according to a uniform distribution in the range [a,b]. The objective is to compute
the TCP frequency response for a single flow with a uniformly distributed minRTO.
Moreover, some operating systems use a simple periodic timer interrupt of 500 ms
to check for timed-out connections. This implies that while the TCP flows enter
timeout at the same time, they recover uniformly over the [1,1.5]sec range. Thus,
the following analysis applies equally to such scenarios.

There are three cases according to the value of T" as compared to a and b. First,
if T > b. Then p(T) = T=EELO) where E(RTO) = (a + b)/2 so that

T

T — atb
p(T) = TQ,for T >b. (5.3)

Second, for T' € [a,b), denote k as L%J Then,

T — T_T—}-(L k-1 T T
pT) =7 Ty
b—a T b—a(i+1)T

i=1
b— kT (k +1)T — £Ltt
b—a (k+1)T

(5.4)

Equation (5.4) is derived as follows. Since only one outage at a time can cause a
TCP flow to enter retransmission timeout, this thesis first determines the probability
for each outage to cause a retransmission timeout and then multiplies it by the cor-
responding conditional expectation for the TCP throughput. In Equation (5.4), the

first term denotes TCP throughput in the scenario when the retransmission timeout

T=a denotes the prob-

is caused by the next outage after the initial one. The term =

ability that the initial RTO period has expired, which further means that the first

outage after time a will cause another RTO. The conditional expectation for TCP

. . . . T-Tfe
throughput in this scenario is —=*—, where %

denotes the expected value of the

end of the initial RTO, given that it happened between a and 7. The second term of
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Equation (5.4) denotes TCP throughput for outages i = 2,--- , k—1. The probability

for them to occur is &, and the conditional expectation of TCP throughput is %

Finally, the third term in Equation (5.4) denotes TCP throughput for the (k + 1)
outage.

Finally, when T" < a, it can be similarly shown that

[%1 T — a+b

p(T) = o TT,for k=1, (5.5)

and

(1T —a[$1T - 52

2

b—a  [2]T

k-1 T T
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> b—a(i+ )T
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b— kT (k+1)T — ¥t
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p(T) =

,for k> 2. (5.6)

Figure 5.18 shows that the above model matches well with simulations for minRTO =
uniform(1,1.2). Observe that randomizing the minRTO parameter shifts both null
time scales and amplitudes of TCP throughput on these time-scales as a function of a
and b. The longest most vulnerable time-scale now becomes 7" = b. Thus, in order to
minimize the TCP throughput, an attacker should wait for the retransmission timer
to expire, and then create an outage. Otherwise, if the outage is performed prior to
b, there is a probability that some flows’ retransmission timers have not yet expired.
In this scenario, those flows survive the outage and utilize the available bandwidth
until they are throttled by the next outage.

Because an attacker’s ideal period is T = b under minRTO randomization, this
thesis presents the following relationship between aggregate TCP throughput and the

DoS time-scale.
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Figure 5.18 : DoS under randomized RTO

Counter-DoS Randomization Result. Consider n long-lived TCP flows that
experience b-periodic outages. The normalized aggregate throughput of the n flows is
approximately

plr =) = =0 i) (5.7

The derivation is given in Appendix B.

Equation (5.7) indicates that as the number of flows n increases, the normalized
aggregate TCP throughput in the presence of T' = b time-scale DoS attacks converges
toward I”T“ Indeed, consider the case that all flows experience an outage at the same
reference time zero. When the number of flows in the system is high, a fraction of
flows’ retransmission timers will expire sufficiently near time a such that those flows
can partially recover and utilize the available bandwidth in the period from time a to
time b, when all flows will again experience an outage. For the scenario of operating
systems that use a 500 ms periodic timeout interrupt, such that a flow “times out”
uniformly in a [1,1.5] range, Equation (5.7) indicates that the TCP throughput de-
grades from 0.17 (a single TCP flow) to 0.34 (TCP aggregate with many flows) under
the 1.5sec periodic attack.

There are two apparent strategies for increasing throughput on 7" = b time-scales.

First, it appears attractive to decrease a which would significantly increase TCP
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throughput. However, recall that conservative timeout mechanisms are fundamentally
required to achieve high performance during periods of heavy congestion [2]. Second,
while increasing b also increases TCP throughput, it does so only in higher aggregation
regimes (when n is sufficiently large) and in scenarios with long-lived TCP flows.
On the other hand, increasing b is not a good option for low aggregation regimes

(when n is small) since the TCP throughput can become too low since p(T = b) =

n_b—a
n+l b °

Moreover, excessively large b could significantly degrade the throughput
of short-lived HTTP flows which form the majority traffic in today’s Internet. In
summary, minRTO randomization indeed shifts and smooths TCP’s null frequencies.
However, as a consequence of RTT heterogeneity, the fundamental tradeoff between

TCP performance and vulnerability to low-rate DoS attacks remains.

5.6 Summary

This chapter presented denial of service attacks that are able to throttle TCP flows to
a small fraction of their ideal rate while transmitting at sufficiently low average rate
to elude detection. It has been shown that by exploiting TCP’s retransmission time-
out mechanism, TCP exhibits null frequencies when multiplexed with a maliciously
chosen periodic DoS stream. Moreover, it has been demonstrated that the existing
solutions (particularly the core-based ones) are fundamentally limited in their ability
to eliminate the effectiveness of the attack. The next chapter demonstrates further

limitations of the core-based solutions in thwarting end-point misbehaviors.
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Chapter 6

Receiver-Driven Transport Protocols:
Vulnerabilities and Solutions

Recent advances in TCP congestion control design have demonstrated the ability to
significantly improve TCP performance in a variety of scenarios, ranging from high-
speed (e.g., [74,94]) to mobile and wireless networks (e.g., [95,96]). However, each
such advance introduces the following dilemma: if a user can obtain a significant
increase in throughput via an optimized congestion control algorithm, how can the
network or the other end point distinguish among (i) users with optimized protocol
stacks, (ii) “cheater’s” that have modified protocol stacks that maximize their own
throughput without regard to fairness or network stability, and (iii) attackers that
seek only to transmit at a high rate in order to deny service to others. More precisely,
the question becomes how can misbehavior be detected in the presence of widely
variable protocol performance profiles? And most importantly, protocol innovations
often introduce novel security challenges, which, if not considered a prior:, may have
devastating consequences once such innovations become deployed.

TCP variants that are widely deployed today are sender-centric protocols in which
the sender performs important functions such as congestion control and reliability,
whereas the receiver has minimum functionality via transmission of acknowledgements
to the sender. Yet, as demonstrated in Chapter 2, it is becoming evident that increas-
ing the functionality of receivers can significantly improve TCP performance [3-8].

Indeed, a key breakthrough in this design philosophy is represented by fully receiver-
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centric protocols in which all control functions are delegated to receivers [9,10]. The
benefits that are being established for this innovative design include improved TCP
throughput (see Section 2.2.3 for details) and an array of other performance enhance-
ments: (i) improved loss recovery; (ii) more robust congestion control; (iii) improved
power management for mobile devices; (iv) a solution to the handoff problem in wire-
less networks; (v) improved behavior of network-specific congestion control; (vi) easy
migration to a replicated server during handoffs; (vii) improved bandwidth aggrega-
tion; and (viii) improved web response times.

However, both sender- and receiver-centric protocols implicitly rely on the assump-
tion that both endpoints cooperate in determining the proper rate at which to send
data, an assumption that is increasingly invalid today. With sender-centric TCP-like
congestion control, the sending endpoint may misbehave by disobeying the appropri-
ate congestion control algorithms and send data more quickly. Fortunately, the lack
of a strong incentive for selfish Internet users to do so (uploading vs. downloading)
appears to be the main guard against such misbehavior. Moreover, while it has been
discovered that misbehaving receivers can perform DoS attacks or steal bandwidth
even with sender-centric protocols [97], it has been shown that it is possible to modify
TCP to entirely eliminate this undesirable behavior [97, 98].

On the other hand, receiver-centric congestion control presents a perfect match for
a misbehaving user: the receiving endpoint performs all congestion control functions,
and has both the incentive (faster web browsing and file downloads) and the opportu-
nity (open source operating systems) to exploit protocol vulnerabilities. This chapter
explores the tradeoffs and tensions between performance and trust for receiver-centric
transport protocols. In particular, given the above benefits (i)-(viii), and clear vul-
nerabilities, the goal is to evaluate whether it is possible for HT'TP, file, and streaming

servers in the Internet to deploy receiver centric transport protocols while striking a
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balance between performance enhancements and protection against misbehavior. This
chapter focuses on the class of receiver-driven protocols because their deployment
introduces a set of novel security challenges that can have devastating effects on the
widely-deployed HT'TP, file, and streaming servers in the Internet. Moreover, it shows
that none of the existing solutions are able to efficiently protect the servers from such

receiver misbehaviors.

6.1 Vulnerabilities

This section analyzes receiver misbehaviors which range from DoS attacks to more
moderate (hence harder to detect) manipulations of congestion control parameters.
It then develops an analytical model by generalizing [99] to predict the throughput
that a misbehavior will obtain as a function of the modified AIMD parameters o and
B, as well as the retransmission timeout RT'O. Finally, for small files, it derives an
expression for the response time for file download under modifications of the initial

congestion window.

6.1.1 Receiver Misbehaviors

This section treats two classes of misbehaviors in the context of receiver-driven trans-
port protocols: denial-of-service attacks and resource stealing. The key distinction
between the two lies in the primary goal of the misbehaving client: DoS attackers
aim to deny service to the background flows without necessarily achieving a particular
benefit for themselves, whereas resource stealers aim to gain a performance benefit

by stealing resources from the background flows (without necessarily starving them).
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Denial of Service Attacks

This section begins with an extreme scenario and show that an RCP sender can
become an easy target of a DoS attack.! Indeed, Figure 2.4 shows that the RCP
sender listens to the request packets from the receiver, and replies by sending data
packets without any control, as all control functions are delegated to the receiver for
performance reasons. Hence, flooding the sender with short req packets (the same size
as the ack packets, ~40 Bytes) may force the RCP sender to flood the reverse path
(from the server to the client) with much longer data packets (typically ~1500 Bytes),

and congest the network.?
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Figure 6.1 : RCP receiver performs a DoS attack by flooding the sender with requests

To demonstrate the vulnerability of fully receiver-driven transport protocols, the
above request-flood attack is simulated and the result is shown in Figure 6.1. In the
experiment, seven TCP Sack flows share a link, and at time 300sec, an RCP flow

joins the aggregate (the exact simulation parameters are provided in Section 6.3).

IShort overview of the RCP protocol is given in Section 2.2.3, while the entire protocol specifi-
cation could be found in [10].

2While this thesis focuses on RCP, similar receiver incentives and protocol vulnerabilities hold
whether protocols delegate some or all control functions to receivers, e.g., TFRC [4] and WebTP [9],

respectively.
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However, the congestion control functions are removed from the RCP flow (by re-
tuning the appropriate RCP parameters at the receiver - details are given below),
such that it floods the server with requests. Consequently, the RCP flow utilizes the
entire bandwidth and denies service to the background traffic by exploiting TCP’s

well-known vulnerability to attacks by high-rate non-responsive flows.

Resource Stealing

In contrast, an unscrupulous receiver may moderately re-tune its parameters in an
attempt to steal bandwidth from other flows in the network while eluding detection.
Indeed, this thesis will quantify the extent to which it is harder to detect flows that
moderately disobey some (but not all) congestion control rules (e.g., decrease the
window size upon a packet loss, but do not halve it), than it is to detect flows that
dramatically violate one or more congestion control rules. While this thesis do not
underestimate the creativity of misbehaving receivers, this chapter treats only easy-
to-implement misbehaviors that can be achieved by changing protocol parameters;
namely, each parameter can be modified by changing a single line of code.

While the space of possible receiver misbehaviors is vast, this thesis focuses on
parameter-based misbehaviors simply because they are easy to implement. While
receivers could clearly use other mechanisms to achieve similar rates, Section 6.3
demonstrates that this does not affect the detection problem. Furthermore, this
thesis does not treat the problem of application-level misbehaviors such as parallel
download (where a malicious user opens multiple transport-layer connections to par-
allely download different partitions of a file from a server). Nevertheless, observe
that the misbehaviors analyzed in this thesis are much more generic: (i) they can be
simply and entirely implemented at the receivers; (ii) a malicious receiver can achieve

a performance benefit even in scenarios where a single transport connection is used
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for download (e.g., in the HTTP 1.1 web-server scenarios or in the non-partitioned
FTP-download scenarios).

The first parameter of interest is the additive-increase parameter «, which has a
default value of one packet per round-trip time. By increasing the window size more
aggressively (a > 1), a flow can achieve higher throughput.

The second parameter is the multiplicative-decrease parameter (3 which has a de-
fault value of 0.5 such that the congestion window is halved upon the receipt of
congestion indication. Again, the receiver can potentially utilize more bandwidth by
decreasing the window only moderately via g > 0.5.

The third parameter is the retransmission timeout RT(O. Both TCP and RCP
use a retransmission timer to ensure data delivery in the absence of any feedback
from the remote peer.® In both cases, this value is computed using smoothed round-
trip time and round-trip time variation. RFC 2988 [34] recommends to lower- and
upper-bound this value to 1 and 60 sec, respectively. Thus, a malicious receiver may
easily change these values. For example, by setting the RTO to a small value (e.g.,
100 ms), one can expect to achieve throughput improvements in high packet loss
ratio environments, because the misbehaving flow would back-off significantly less
aggressively than behaving flows would.

Finally, the fourth parameter of interest is the initial window size W. The default
is two segments, whereas RFC 2414 [93] recommends increasing this parameter to a
value between two and four segments (roughly 4 Kbytes) to achieve a performance
improvement. A misbehaving receiver might wish to further improve its performance
(without caring much about problems such as congestion collapse), and increase this

parameter even more. By doing so, the receiver can maliciously jump-start the RCP

3In the sender-driven TCP scenario, it is the absence of ack packets from the TCP receiver, while

in the receiver-driven RCP scenario, it is the absence of data packets from the RCP sender.
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flow (this is exactly what was done, among other things, in Figure 6.1 by setting W =
10) and improve its throughput. However, this parameter is expected to be crucial

in improving the short file-size response times which are typical for web browsing.

6.1.2 Modeling Misbehaviors

Manipulations of parameters «, 3, and RTO enable misbehaving receivers to steal
bandwidth over longer time scales, whereas modifying the parameter W reduces la-
tency for small files, hence over shorter time-scales. This section develops analytical
models to predict the amount of stolen bandwidth and reduced latency over long-

and short-time-scales, respectively.

Long Time Scales

This section begins with the well-known TCP throughput formula (Equation (30) in
[99]) that expresses average TCP rate B as a function of the round-trip time RT'T,
steady-state loss event rate p, TCP retransmission timeout value R7TO, and number
of packets acknowledged by each ack b (typically b = 1 [100]):

1
B~ : (6.1)

RTT, /%2 + RTOmin(1,3/%2)p(1 + 32p?)

Using the stochastic TCP model and methodology of [99], this thesis generalizes
the above result to a scenario with arbitrary values of  and (3.* Denoting d as 1/,
it could be shown that

1
B = . (6.2)

RTT /2243 + RTO min(1, 3,/ A1) p(1 + 32p?)

4A deterministic model for TCP-friendly AIMD congestion control with arbitrary a and 3 could
be found in [101].
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The derivation is provided in Appendix C. Note the two corner cases: for a = 1
and 3 = 0.5, Equations (6.1) and (6.2) are equivalent; when § = 1 (when d = 1),
then B — inf, i.e., if the congestion window is never decreased upon a packet loss,
the throughput will theoretically converge to infinity. The intermediate cases are

explored below as follows.
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Figure 6.2 : Long-time-scale misbehaviors - numerical results

Figure 6.2 shows numerical results for TCP (and hence RCP) throughput as a
function of the packet loss rate. PFTK denotes the formula from [99] (Equation
(6.1), with b = 1 and RTO = 1), while SQRT is the “square-root” formula from [102]
(the same as Equation (6.1), only without the RTO part). Next, the figure plots the
throughput that a malicious receiver can achieve, according to the Equation (6.2), by
manipulating «, 3, and RTO (exact values are shown in the figure).

First, observe that by re-tuning « to four, one can double the throughput (y-axis
is in logarithmic scale), while re-tuning 3 to 0.8 (d = 1.25) one can steal somewhat
less bandwidth. More generally, according to Equation (6.2), setting a to a value
larger than one, enables a flow to achieve approximately y/« higher throughput as

compared to a well-behaved TCP flow and for the same packet loss rate. Second,
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observe that both curves (o« = 4 and 3 = 0.8) have a shape similar to the PFTK
curve. This indicates that the amount of stolen bandwidth (the difference between
the misbehaving and the PFTK curve) is approximately independent of the packet
loss ratio. On the other hand, notice that this is not the case for the RTO parameter
(e.g., RTO = 100 ms), where the amount of stolen bandwidth increases as the packet
loss ratio increases. This is because timeouts occur more frequently in higher packet-
loss-ratio environments, and thus, disobeying the exponential backoff rules enables
significant throughput gains in such environments. Furthermore, by re-tuning all
parameters together (o« = 4, 8 = 0.8, RTO = 0.1), the model predicts significant
stealing effects, where the misbehaving flow utilizes approximately ten (for p = 0.02)
to twenty (for p = 0.1) times more bandwidth than behaving flows. Finally, observe
that the SQRT formula significantly overestimates the TCP-friendly rate for higher
packet loss ratios (where the exponential backoffs play a key role), hence this formula

is not suitable for detection purposes (to be explained in detail below).

Short Time Scales

This section develops an expression for the response time for file download under
modifications of the initial congestion window parameter W. It models only the ex-
ponential increase phase, which is the only phase that the majority of short-lived
flows ever enter [72].° Section 6.4.2 shows that the expression accurately captures the
response times of short files in a web browsing experiment.

The exponential increase phase for receiver-driven TCP is the same as in the
sender-driven scenario, with the difference that the receiver has the leading role. It

sends the first two req packets (the default initial window size is two segments) to

5See references [103-105] for more sophisticated models for the latency of well-behaving TCP

flows.
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the sender, which replies with the first two data packet. Next, the receiver doubles
the congestion window and sends four req packets to the sender. Denote 7, as the
response time of a regular (behaving) RCP flow, N as the file (flow) size in packets,
and RTT as the round-trip time. In such a scenario, the response time for a flow of

size N is

T, = max(RTT, [log, N | RTT). (6.3)

The equation indicates that files of length N packets will be downloaded in
[logo N | RTT seconds. This is true for N > 2. On the other hand, the down-
load time for a single-packet-long (N = 1) file cannot be smaller than RTT, hence
Equation (6.3).

Next, denote T, as the response time of a malicious flow who sets the initial
window size W to a value larger than two. Further, denote s as the packet size in
bits and C' as the available bandwidth in bits/s. Then, when the file size N < W, it

follows that

T, = max(RTT,Ns/C). (6.4)

In other words, if the initial window size is set to a number larger than the file
size, the file will be downloaded in a “single burst,” and thus the actual response time

equals the burst size, lower-bounded by RTT. Otherwise, if N > W, it follows that

T, = max(RTT,Ws/C) + [logy, N — log, W| RTT. (6.5)

The first part of Equation (6.5) is similar to Equation (6.4). It says that the first W
packets are downloaded in a single burst, whereas the rest are transferred in a “jump-

started” exponential increase phase. A simple calculation shows that a misbehaving
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user can indeed significantly improve the file response time by manipulating the initial
window size parameter. For example, this simple model indicates that for C' =
10 Mb/s, a 70kByte file can be transferred within a single RTT when the initial
window size W is set to 70 or more packets: seven times faster than what a behaving

flow achieves.

6.2 Network Solutions

This section analyzes several state-of-the art network solutions (both core- and edge-
based) designed to detect malicious flows. Common to all solutions is their funda-
mental limitation to accurately detect such flows due to their lack of the knowledge

of the flows’ round-trip times.

6.2.1 Core-Router-Based Solutions

This section first considers RED-PD (RED with Preferential Dropping) in detail, and
then briefly discusses variants of Fair Queuing (FQ). In the absence of knowledge of
flows’ round-trip times, the above two schemes penalize flows based on the absolute
throughput seen at a router, which in a heterogeneous-RTT environment typically

means punishing short-RTT flows.

RED-PD

In [12], Mahajan et al. develop RED-PD, a scheme that uses the packet drop history
at a router to detect high-bandwidth flows in times of congestion, and preferentially
drop packets from these flows. In order to detect high-bandwidth flows, RED-PD sets
a target bandwidth, above which a flow is identified as malicious. The target bandwidth
is defined as the bandwidth obtained by a reference TCP flow with the target RTT

(default is 40 ms), and the current drop rate measured at the output router queue.
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The targeted bandwidth is computed using the square-root TCP-friendly formula. In
other words, in the absence of per-flow RTT measurements, RED-PD sets the target

RTT to 40 ms as a bound for distinguishing in- vs. out-of-profile flows.
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Figure 6.3 : RED-PD is unable to detect a malicious flow

While RED-PD can protect the system against certain misbehaviors, the lack of
exact knowledge of the flow’s RT'T fundamentally limits its ability to detect severe
end-point misbehaviors as demonstrated in Figure 6.3. The ns experiments with nine
flows sharing a RED-PD router are performed. The round-trip times of the flows are
varied from 20 to 350 ms (as shown on the z-axis), and the bandwidth of a single flow
is plotted on the y-axis. When all flows are well-behaved, the bandwidth share is fair
(the straight line in the figure). However, when one of the flows (whose normalized
throughput is shown on y-axis) re-tunes « to 25, it can potentially steal up to five
times more bandwidth than its fair share according to Equation (6.2). Observe that
RED-PD successfully limits the malicious flow to its fair-share, but only when the
RTT is less than or equal to 40 ms (recall that this is the RTT of the reference flow).
However, as the flows’ RT'T increases, the malicious flow is able to steal more and
more bandwidth, up to five times more than its fair share (the maximum for this
scenario) when the RTT is 350 ms.

RED-PD’s limitations in detecting misbehaving flows are more general than in-
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dicated in the above example. First, it is important to notice that a misbehaving
flow can steal bandwidth not only in homogeneous-RTT scenarios as in the above ex-
periments, but also in heterogeneous-RTT environments, since the amount of stolen
bandwidth depends on the RTT of a misbehaving flow. Second, while this chapter
focuses on receiver-driven transport protocols, observe that the above RED-PD lim-
itations apply equally to sender-based TCP stacks. Another problem arises from the
fact that RED-PD uses a simple (and less accurate) square-root formula, which sig-
nificantly overestimates the TCP-friendly rate for higher packet loss ratios because it
doesn’t account for retransmissions [99]. Hence, malicious TCP or RCP flows have the
opportunity to steal dramatically more bandwidth as the packet loss ratio increases,
e.g., 100 times more when p = 0.3, as indicated in Figure 6.2.

Finally, RED-PD’s inability to determine with high confidence if a flow is malicious
or not, limits its ability to punish a malicious flow (e.g., to completely starve it).
Hence, “stealing pays oftf” for endpoints as they can freely re-tune their parameters
without adverse effects: (i) they will not be completely starved; (ii) they will not
utilize less bandwidth than a well-behaving TCP or RCP would; and yet (iii) they

can quite often steal significant amounts of bandwidth.

Fair Queuing

While it may appear attractive to apply some version of fair queuing (including the
preferential-dropping schemes developed to enforce fairness among adaptive and non-
adaptive flows, e.g., Flow Random Early Detection (FRED) [21], CHOKe [20], or
Stochastic Fair Blue (SFB) [26]) to solve the above problem, observe that such
schemes are also unable to detect end-point misbehaviors and to enforce the pro-
portional fairness targeted by TCP. Moreover, in a heterogeneous RTT environment,

such schemes will significantly deviate from the proportional bandwidth share, and
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even magnify the bandwidth-stealing effects. A simple, yet illustrative example, is
given below. While not representative of an actual or realistic scenario, the main goal
is to illustrate the difference between proportional (RTT-dependent) and max-min
fairness as enforced by FQ.

Consider a link shared by three congestion-controlled flows, such that the propor-
tional fair share is (0.9,0.05,0.05). Next, assume that flow 2 is malicious. It re-tunes
its parameters and utilizes more bandwidth by stealing from flow number one, such
that the bandwidth share is now (0.7, 0.25, 0.05). However, if FQ is used, all flows
get their “fair-share”, and the bandwidth share is now (0.33, 0.33, 0.33). Thus, FQ

provides even more bandwidth to flow 2 than it could have stolen without it.

6.2.2 Edge-Router-Based Solutions

This section presents two solutions whose goal is to detect non-TCP-friendly behavior
at the network edge. The key advantage of an edge-based vs. a network-based scheme
is the opportunity to monitor packets in both directions (data in forward, and ack in

reverse).®

D-WARD

In [11], Mirkovic et al. develop D-WARD, an edge-router based protection scheme for
detecting DoS activity. For each traffic type, they establish a baseline traffic model.
For a TCP session, they measure both outgoing (data) and incoming (ack) traffic
and define the maximum allowable ratio of the two. When the ratio of the number of
data vs. the number of ack packets goes over a certain threshold, they conclude that

the flow is out of profile and rate-limit it.

6The data and ack paths of the same flow may not cross the same network router, but typically

do cross the same edge router.
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While the above scheme may indeed protect against TCP-based denial-of-service
attacks (where the sender floods the network with data packets independent of the
feedback from the receiver), this model clearly doesn’t apply to the receiver-driven
TCP scenario. Recall that in the receiver-based scenario, the number of requests and
data packets is the same in both directions, even in the most severe denial-of-service
scenarios. Moreover, the fact that the number of packets in the forward (data) and
reverse (req) directions is the same is actually the core idea of the request-flood attack:
the receiver floods the sender with requests, and the sender replies by transmitting
the same number of data packets, yet with significantly larger size thereby congesting

the network.

Tcpanaly

In [27], Paxson presents tcpanaly, a tool whose initial goal was to work in one pass
over a packet trace by recognizing generic TCP actions. The goal of executing only
one pass stemmed from the objective that tcpanaly might later evolve into a tool that
could monitor an Internet link in real-time and detect misbehaving TCP sessions on
the link. Unfortunately, the author was forced to abandon both of the goals. Among
many obstacles, the key one is that one-pass analysis proved difficult due to vantage
point issues (see reference [27] for details), in which it was often hard to tell whether
a TCP flow’s actions were due to the most recently received packet, or one received

in the distant past.

6.3 An End-Point Solution

This section evaluates the potential of an end-point scheme to detect receiver mis-
behaviors. The key advantage of an end-point (vs. network-based) approach is the

ability of the sender to estimate the round-trip time and loss rate on the path to
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the receiver, and hence enforce a much “tighter” TCP-friendly throughput profile.
However, a fundamental problem arises from the fact that in the absence of trust
between the sender and receiver, it is problematic for the sender to infer whether the
receiver is misbehaving as defined in Section 6.1 or legitimately trying to optimize its

performance.

6.3.1 Sender-Side Verification

In order to detect receiver misbehavior, the sender requires increased functionality
beyond its role as a slave to the receiver’s request packets (see Figure 2.4). The
objective is to add the minimum functionality to the sender that will enable it to
robustly detect receiver misbehavior over long-time scales (the short-time-scale mis-
behavior detection problem is treated in Section 6.4.2), yet without any help from
a potentially misbehaving receiver. While this new functionality inevitably increases
the sender-side implementation complexity, it will be demonstrated that it represents

a general solution to the bandwidth-stealing receiver-induced misbehaviors.
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Figure 6.4 : Secure RCP sender

Figure 6.4 depicts the key components of such a solution. Equation (6.1) indicates

that knowledge of RTT and packet loss ratio is enough to compute the TCP-fair
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throughput, and consequently to detect out-of-profile flows. Unlike in network-based
scenarios discussed in Section 6.2, an end-point scheme can measure RTT and the
packet loss ratio, and hence enforce a more precise traffic profile than any network-
based solution.

Because the sender must estimate RTT and packet loss ratio without any cooper-
ation from the untrusted receiver, the sender transmits ping packets that the receiver
has no incentive to delay, as a larger RTT implies a lower bandwidth profile.” Like-
wise, the sender must estimate the packet loss ratio and detect whether the receiver
is actually re-requesting data packets that are dropped. Note that a node performing
a DoS attack need not re-request dropped packets, whereas receivers that are stealing
bandwidth will be forced to re-request packets for a reliable service. In any case, one
possible solution to the above problem is for the sender to purposely drop a packet
to test if the receiver will re-request it as the absence of a repeated request for the
dropped packet would indicate a potential DoS attack. Note that this is a backward-
compatible technique that could be used instead of the proposed nonce technique [98].
Nevertheless, this chapter focuses on bandwidth-stealing scenarios where receivers are
forced to re-request dropped packets for a reliable service.

Once the RCP sender estimates RT'T and the packet-loss-ratio, it can compute the
TCP-friendly rate. However, because these parameters can vary significantly during
a flow’s lifetime, this thesis applies the methods developed for TCP-Friendly Rate
Control (TFRC) [4] to estimate the TCP-friendly rate in real time. Namely, while

existing use of TFRC focuses on setting the transmission rate based on RTT and loss

7If the receiver doesn’t reply to the ping requests, the sender may either disconnect it, or rate-limit
it to a moderate rate. Moreover, to prevent the receiver to simply send a response in anticipation of
a request (thus thereby simulating a smaller RTT), the sender should randomize the period between

the ping messages.
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measurements, this thesis utilizes TFRC to verify TCP friendliness using the actual
RTT (measured via the ping agent) and loss measurements incurred by the RCP flow
itself.

In [106], Patel et al. designed an end-point scheme whose goal is to verify TCP
friendliness in the context of untrusted mobile code. The key difference between the
end-point scheme presented here and the one from [106] is that the scheme developed
here aims to thwart possible receiver misbehaviors, and hence does not require any
cooperation from a potentially malicious receiver. Moreover, in contrast to the scheme
from [106], which compares the TCP sending rate to the TCP-friendly equation rate
[99], the secure-RCP scheme applies the TFRC protocol to estimate the TCP-friendly
rate in real time. This is particularly important in the presence of highly dynamic
background traffic; while being an equation-based scheme, TFRC manages to adapt
to relatively short time-scale available-bandwidth fluctuations [70].

Finally, by comparing the measured throughput (based on the number of packets
sent) and the throughput computed by the TFRC agent, the control agent is able to
detect, and eventually punish, a misbehaving receiver. This work does not implement
the control module, as the primary goal here is to explore the ability of the above
scheme to accurately detect receiver misbehaviors. Alternatives to punish include
rate-limiting and preferentially dropping packets. However, given that the scheme
can indeed accurately detect misbehaving receivers (to be shown below), the sender
may simply disconnect the misbehaving client, and in that way discourage potentially

malicious receivers from the temptation to steal bandwidth.

6.3.2 Detecting Misbehaviors

This section first evaluates the accuracy of the TFRC agent in measuring “TCP

friendliness.” Next, it re-tunes the RCP parameters at the receiver to mimic malicious
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behavior, and then evaluates the sender’s ability to detect such misbehaviors.

TFRC Agent

To robustly detect misbehaving receivers, it is essential to first evaluate the TFRC
agent’s accuracy in measuring TCP friendliness. Computed TFRC throughput may
deviate from actual TCP throughput due to measurement errors (low RTT sampling
resolution, ping packets sent once per second, etc.), system dynamics, and inaccura-
cies in the underlying TCP equation. Thus, to manage the detection scheme’s false
positives (incorrect declaration of a non-malicious flow as malicious), such inaccura-
cies must be incorporated into the detection process.

The ns simulation experiments are conducted and a link shared by a number of
TCP Sack flows (varied from 1 to 600) is considered. The link implements RED queue
management and has capacity 10 Mb/s; the buffer length, min_thresh, and max_thresh
are set to 2.5, 0.25 and 1.25 times the bandwidth-delay product, respectively. The
round trip time is 50ms. Unless otherwise indicated, these parameters are used
throughout the chapter. A number of simulations are performed, and the average
results together with 95% confidence intervals are presented.

To establish a baseline of TFRC’s behavior, the TFRC agent is first mounted
on the sender side of a sender-based TCP Sack [36] flow and present the results in
Figure 6.5. The figure depicts the ratio of measured (TCP Sack) vs. computed
(by the TFRC agent) throughputs as a function of the packet loss ratio. When the
measured vs. computed throughput ratio is one, this indicates that the TFRC agent
exactly matches the TCP Sack throughput. Observe that this is indeed the case
for low packet loss ratios (for the curve labeled as “TCP Sack”). As the packet loss
ratio increases, the curve moderately increases, indicating a slight conservatism of the

TFRC agent as the throughput computed by the TFRC agent is slightly lower than
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the measured TCP Sack throughput. The problem of TFRC conservatism has been
studied in depth in reference [107]. However, this problem is much less pronounced
here than indicated in [107] as the TFRC agent measures the actual packet loss ratio
incurred by the TCP Sack flow. This ratio is much lower than the loss ratio induced
by a TFRC flow which backs-off less conservatively than TCP Sack (see reference
[107] for further details). In summary, the throughput computed by the TFRC agent
deviates from the TCP Sack throughput, yet the deviation is moderate, even for high

packet loss ratios.
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Figure 6.5 : TFRC agent mounted on the sender side of a well-behaved (a) TCP Sack
and (b) RCP Sack

Finally, the above experiment is repeated, but now mount the TFRC agent on
the RCP sender as in Figure 6.4. Observe that the ratio of the measured (RCP
Sack) vs. computed throughput is somewhat higher than in the above sender-based
TCP Sack scenario. Indeed, RCP Sack has an improved loss recovery mechanism (see
reference [10] for details) and consequently improves throughput. The key problem is
the sender side’s difficulty in determining whether the receiver is trying to optimize
its performance, or is simply stealing bandwidth. This problem is treated in detail
in Section 6.3.3. Here, the reference measurement-based profile for a behaving RCP
flow is obtained. This profile will next be used to demonstrate the capability of an

end-point scheme to detect even moderate receiver misbehaviors.
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Detecting Misbehaving Receivers

This section implements a misbehaving RCP node that re-tunes its congestion control
parameters «, 3, and RTO at the receiver. The goal is to evaluate the sender’s ability
to detect these misbehaviors and to evaluate the accuracy of the modeling result from

Equation (6.2).
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Figure 6.6 : Misbehaving receiver re-tunes the additive-increase parameter o

First, this section re-tunes the additive-increase parameter a and repeats the
experiment above. Figure 6.6 depicts the measured vs. computed throughput ratio
for misbehaving receivers (having « of 4, 9, 16 and 25), together with the same ratio
for the behaving RCP flow having o = 1. Recall that the left-most point on the
curve corresponds to low loss and experiments in which the RCP flow competes with
a single TCP Sack flow, whereas the right-most point on the curve corresponds to
high loss and a single RCP flow competing with 600 TCP Sack flows. Observe first
that the measured vs. computed throughput ratios for misbehaving flows clearly
differ from the behaving flows’ profile, indicating a strong potential for misbehavior
detection (to be demonstrated below). Second, observe that the throughput ratio for
misbehaving flows is approximately proportional to y/« as predicted by the model
except for extremely low aggregation regimes (e.g., p = 0.03 in which a single RCP

flow competes with a single TCP Sack flow). In such low aggregation cases, while
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the misbehaving flow indeed takes significantly more bandwidth than the competing
TCP Sack flow (not shown), it is unable to fully utilize the bandwidth due to frequent

backoffs.
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Figure 6.7 : Misbehaving receiver re-tunes the multiplicative-decrease parameter 3

Second, this section considers misbehaviors via a re-tuned multiplicative-decrease
parameter 3 and presents the results in Figure 6.7. Note that the curve for § = 0.7 is
close to that of the behaving flow, indicating detection difficulties to be shown below.
Also, observe that the curves for misbehavers are shifted to the right when compared
to the behaving RCP flows (this also holds for Figure 6.6). This is due to fact that a

misbehaving RCP flow increases the ambient packet loss rate.
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Figure 6.8 : Misbehaving receiver re-tunes the retransmission timeout parameter RTO

Next, this section explores misbehavers that re-tune the retransmission timeout
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parameter by simultaneously re-tuning both minRTO and maxRTO parameters and
present the results in Figure 6.8. Notice that when RTO is set to 500 ms, the receiver
gradually steals more and more bandwidth as the packet loss ratio increases (as
predicted by the model), since the number of time-outs increases with the packet
loss ratio. However, 500 ms backoffs are sufficient to keep the system stable. On the
other hand, observe that when re-tuning the RT'O parameter to 100 ms (which in this
scenario is smaller than the RTT), the system is pushed deeply into a loss regime
(p &~ 0.35). In such a scenario, the amount of stolen bandwidth is so extreme that it
may be characterized as a denial-of-service attack. Indeed, by re-tuning only a few
parameters, it is possible to transform RCP (and TCP) into a powerful DoS tool (see
Figure 6.1).

Detection Threshold

This section evaluates the sender’s ability to detect receiver misbehaviors and study
the false-alarm probability and correct misbehavior-detection probability. Denote
meas_thr as the throughput measured by the RCP sender, and comp_thr as the
throughput computed by the TFRC agent (as shown in Figure 6.4). Next, denote k
as the threshold parameter, and define P(k) as

meas_thr

P(k) = Prob( > k). (6.6)

comp_thr

For example, P(1) denotes the probability that the measured vs. computed
throughput ratio is larger than one, whereas P(2) is the probability that the the
measured throughput is more than twice the computed one. If the receiver is be-
having, then P(k) is the false-alarm probability (i.e., it is falsely concluded that the
receiver is misbehaving with probability P(k)). On the other hand, if the receiver

is misbehaving, then P(k) is the correct misbehavior-detection probability (i.e., it is
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correctly concluded that the receiver is misbehaving with probability P(k)).
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Figure 6.9 : Detecting out-of-profile flows

Figure 6.9 plots the false alarm probability (for the behaving RCP flow), together
with the correct misbehavior-detection probabilities for three moderately misbehaving
receivers (exact parameters are shown in the figure). The packet loss ratio is set to
0.15 representing a scenario in which the throughput ratio deviates (approximately)
the most as indicated in Figure 6.5. Consequently, the false-alarm probability for the
behaving RCP flow is largest, indicating that this scenario is the most challenging
from the detection point of view.

The key observations from Figure 6.9 are as follows. First, note the tradeoff in
setting the threshold parameter £. If it is too small (e.g., £ = 1), it is possible to detect
the misbehaving receivers with high probability, but the false alarm probability is also
one. On the other hand, if it is set too high (e.g., k = 3), the false alarm probability
becomes zero, but the correct misbehavior-detection probability also becomes zero.
However, observe that the fact that the false-alarm probability decreases faster (for
smaller k), makes it possible to set the threshold (e.g., & = 1.8 in this scenario),
such that the false positives are acceptably small, yet it is possible to detect all of
the above cheaters with high probability. Thus, this worst-case scenario confirms

the high precision of the end-point scheme in detecting a wide range of receiver
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misbehaviors.® However, it will be shown next that setting the parameter k incurs an
additional challenge when confronted with versions of TCP employing performance

enhancements.

6.3.3 Advanced Congestion Control Mechanisms

This section studies RCP stacks that implement advanced congestion control mecha-
nisms, e.g., Explicit Loss Notification (ELN) [95, 108] or Westwood [96]. While such
mechanisms can significantly improve throughput [10], they introduce a fundamental
receiver-misbehavior detection problem. In essence, it is problematic from the network
endpoint (sender side) to distinguish between a malicious receiver that legitimately
optimizes its performance by applying an advanced congestion control mechanism
and a malicious receiver, who unscrupulously steals bandwidth from other flows in
the network. This section first provides a brief background on advanced congestion
control mechanisms and their performance in the receiver-driven protocol scenarios,
and then discusses in detail the misbehavior detection problem.

There is a significant body of work proposed to improve the TCP performance
in wireless environments, where high channel losses may disproportionately degrade
TCP Sack performance. Here, this section explains two well-known protocols, TCP-
ELN and TCP Westwood. TCP-ELN has been proposed to distinguish wireless ran-
dom losses from congestion losses. It relies on an external trigger to classify the
losses, and fast retransmits lost segments due to wireless errors without decreasing
down the congestion window. It has been shown in [10] that when this mechanism

is applied in the receiver-driven protocol scenario, the throughput improvements are

8While misbehaviors other than parameter modification may indeed occur, this research focuses
on parameter-based misbehaviors because they are easy to implement; other misbehaviors (e.g.,

algorithmic) will be out-of-profile anyway.
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quite significant (this thesis repeats this experiment and confirms the result below).
This is mostly due to the fact that RCP-ELN benefits from having accurate loss
classifications about all missing segments in the receive buffer.

Another protocol that significantly improves the throughput over wireless links is
TCP Westwood. It does so by using a less conservative decrease parameter 5 that
depends on the online estimate of the available bandwidth. In this way, TCP West-
wood avoids significant throughput losses due to link errors. It is expected that the
same mechanism could provide further throughput improvements in receiver-driven
protocols. Below, this thesis focuses on RCP-ELN and does not further consider

sender- or receiver-based TCP Westwood.
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Figure 6.10 : RCP-ELN significantly improves throughput

This section first presents the simulation of an RCP-ELN flow in a lossy wireless-
like environment. Figure 6.10 depicts the measured vs. computed throughput ratio
as a function of loss. Observe that the RCP-ELN throughput ratio increases sig-
nificantly as compared to the RCP Sack profile, indicating that RCP-ELN indeed
significantly improves throughput, e.g., achieving a six-fold increase for a loss ratio of
0.17. However, the key problem is that from the sender perspective, the RCP-ELN
flow is difficult to distinguish from a misbehaving flow.

Figure 6.11 depicts the false-alarm probability for the behaving RCP-ELN flow for
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Figure 6.11 : From the sender’s perspective, RCP-ELN looks like a misbehaving flow

a packet loss ratio of 0.15. To emphasize the detection problem, the figure also plots
the correct misbehavior detection probabilities (without any advanced congestion
control mechanisms), with maliciously re-tuned parameters (i) a = 25, (ii) 8 = 0.9,
and (iii) & = 25 and § = 0.9. Observe that using a small threshold (e.g., £ = 1)
ensures a high detection probability for any of the above misbehaviors, but the RCP-
ELN is also falsely detected as malicious. However, simply increasing the threshold &
does not eliminate the problem. For example, for £ = 4, the false alarm probability
for ELN-RCP is still one, while the probability to detect misbehaviors (i) and (ii)
has already dropped to zero. Finally, by using a very large k (e.g., K = 7 in this
scenario), the false alarm probability for RCP-ELN becomes acceptably small, but it
the scheme is unable to detect any of the (quite severe) receiver misbehaviors.

Thus, these experiments illustrate a fundamental tradeoff between system per-
formance and security (the ability to detect bandwidth stealers), as both cannot be
maximized simultaneously. Ironically, while advanced congestion control mechanisms
at the receiver significantly improve throughput, the resulting false-alarm probability
further increases, further emphasizing the tradeoff. This thesis argues that setting
the parameter k to a larger value strikes the best balance for the file- or streaming-

servers in the Internet. A large value protects servers from severe denial-of-service
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attacks, while enabling innovation in protocol design by preserving the performance
benefits of receiver-centric transport protocols. The downside is the fact that the
scheme is unable to detect some bandwidth stealers. In contrast, strictly enforcing
today’s TCP-Sack throughput profile via a lower ¥ would indeed make it possible to
catch even modest bandwidth stealers. However, a small ¥ would remove most of the
RCP benefits, and indeed remove the incentive for designing and deploying enhanced

TCP stacks.

6.4 Short Time Scale Misbehavior

The secure RCP sender is designed to detect receiver manipulations of congestion
control parameters (e.g., a, 5, RTO) that would enable the receiver to steal band-
width over longer time periods. Hence, these misbehaviors can be detected on longer
time-scales. This section explores the minimum time scale for which the sender can
accurately identify receiver misbehavior. Moreover it studies a receiver misbehav-
ior targeted towards short-lived flows in which receivers begin with a large initial

congestion window.

6.4.1 Minimum Detection Timescales

To explore the minimum detection time-scale, this work first performs ten experi-
ments, and the results are shown in Figure 6.12. In all experiments, a single RCP
flow competes with 20 TCP Sack cross-traffic flows. Figure 6.12 depicts the measured
vs. computed throughput ratio (measured at the RCP sender) as a function of time,
where the reference time zero identifies the start time of the RCP flow. In five of the
ten experiments, the RCP receiver behaves well (only the random seed is changed for

each simulation run), while in the remaining experiments a malicious receiver with
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o =9 is created.

Meas. vs. Comp. Throughput Ratio

Time (sec)

Figure 6.12 : Throughput ratio vs. time for (a) a well-behaving flow and (b) a
misbehaving flow (o = 9) (for five different random seeds)

Observe that the ratios for both of the stacks (behaving and malicious) converge
relatively quickly: toward one for the behaving flows, and approximately to y/a for
the misbehaving flows. However, note that the curves for the two stacks can be quite
similar, and may overlap, over short time scales. The overlaps are due to the fact
that a behaving RCP flow (just like a TCP flow) can be quite bursty over shorter
time-scales (e.g., due to the exponential increase phase), and thus may deviate from

the TCP-friendly rate computed by the TFRC agent.
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Figure 6.13 : Probability to detect a misbehaving flow increases as the time evolves

Next, this section presents an extensive set of simulations to statistically quantify

the above observations. Figure 6.13 depicts the correct misbehavior detection proba-
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bility (for the misbehaving flow with o = 9), together with the false alarm probability
(for the behaving flows) as a function of time and for £ = 2. Observe first that the
correct misbehavior-detection probability converges to one as time evolves, indicating
that it becomes more and more certain that the receiver is misbehaving. On the other
hand, observe that the false-alarm probability for the same scenario is quite low (only
several percent up to 10sec) and approaches zero beyond 10sec. Thus, beyond this
time scale, it is possible to detect the receiver misbehavior with high confidence, and
the sender can freely punish the receiver given that the probability to falsely detect
a behaving flow drops to near zero beyond 10 sec.

However, very short-lived flows transmitting up to tens or hundreds of packets are
common in today’s Internet due to web traffic. The file transmission times typically
last for only several ms to several hundreds of ms, and the above scheme (targeted
to detect bandwidth stealers in file- or streaming-server scenarios) is not designed to
detect very short time-scale misbehaviors. Below, this work first explores additional
short time-scale receiver misbehaviors targeted for web-browsing and short files, and

then analyzes appropriate protection mechanisms.

6.4.2 Initial Congestion Window

This section considers web RCP flows that increase their initial congestion window
in order to obtain decreased response time. It will be shown that it is possible for a
malicious receiver to not only significantly improve its own response time, but to also
severely degrade the response times for the background traffic.

Figure 6.14 shows the simulation scenario. This thesis adopts the model developed
in [71], which is described in detail in Chapter 5. Here, the inter-page and inter-
object time distributions are exponential, while the means are changed in different

experiments such that the utilization on the bottleneck link varies from 10% to 90%.
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Figure 6.14 : Web simulation scenario

There is a single misbehaving client in the client pool, which uses a mis-configured
RCP (details are given below), while the other clients from the pool behave and use

unmodified TCP Sack.
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Figure 6.15 : Misbehaving receiver re-tunes the initial window size parameter W (link
utilization 10%)

Figure 6.15 depicts the average file response time for the RCP flow (normalized
by the response times for the same flow when the RCP client is well behaving) as a
function of file size. Because of the normalization, the curve labeled as “W1=W2=2"
is a straight line with a value of one. On the other hand, notice that the misbehaving
RCP client is able to significantly improve its response times by increasing the initial
window size parameter W to 10. Observe next that the malicious receiver achieves
the maximum improvement exactly for the files that are 10-packets long, and this is

because such files are downloaded in a single burst (files with size less than 10 packets
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are also downloaded in a single burst, but the improvement is most prominent for the
longest files in this single-burst-category). On the other hand, files longer than 10
packets also improve their response times, simply due to the fact that their congestion
windows are jump-started with W = 10. Next, observe that the modeling result
from Section 6.1.2 accurately tracks the simulation results.® The non-monotonic and
alternating quasi-periodic shape of the modeling curve is due to the use of the ceiling

function ([.]) in Equations (6.3) and (6.5).
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Figure 6.16 : A greedy receiver (/W = 100) may degrade its own response times; but
“turning off” the backoff timers (W = 100, RTO = 0.1) “improves” the response
times (link utilization 90%)

While it may appear attractive for a malicious client to maximally increase the
initial window size parameter W in order to steal more and more bandwidth, this
is not necessarily a good option, especially in more congested environments. This
is illustrated in Figure 6.16, where the link utilization is increased to 90%, and the
malicious clients sets the initial window size parameter W to 100 packets. Here, this
greedy user significantly degrades not only the background traffic (not shown), but
also degrades its own response times (shown in the figure) by an order of magnitude.

This degradation is due to the fact that when the malicious user sends large bursts

9In Equations (6.4) and (6.5), C is set to 10 MB/s, which due to the low average utilization of

10%, is close to the flow’s available bandwidth.
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of requests, it forces the web server to reply with large bursts of data packets, many
of which are themselves lost in the congestion. These packet losses force even the
RCP user to enter the exponential backoff phase and degrades its response time. To
overcome the above problem, the malicious user needs to “turn off” the exponential
backoff timers. This is done by re-tuning the RTO parameter to 100 ms. In this way,
the malicious user is able both to “push-out” and significantly degrade the background
traffic, and at the same time improve its own response times, as also shown in the

figure.

6.4.3 Solutions

This section explores two possible solutions to the above short-time-scale misbehav-
iors. One is to rate-limit flows, which while effective in thwarting cheaters, is a
non-work conserving solution in which it is problematic to determine the appropriate
rate. The second solution is to have a “smart” RCP client at the sender side that
would enforce a “TCP-friendly” exponential window increase. It would estimate the
RTT to the client, and release the data packets accordingly. While also effective

in thwarting cheaters, this approach unfortunately mitigates some of the benefits of
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Figure 6.17 : Protecting against short-time-scale misbehaviors



172

To study the performance of the above solutions, Figure 6.17 plots the file-response
times in three different scenarios for the RCP flow with the available bandwidth of
10 Mb/s and RTT of 50ms: (i) when a malicious user sets the initial window W to
100 packets and the sender does not rate limit (labeled as “Rcv. misbehaving - Snd.
unprotected”); (ii) the receiver sets W = 100, but the sender rate limits to 200kb/s
(labeled as “Recv. misbehaving - Snd. rate-limited”) and (iii) the receiver is well be-
having and is not rate-limited (labeled as “Rcv. well-behaving - Snd. unprotected”).
Figure 6.17 illustrates problems in setting the rate-limit value. Setting it to 200 Kb/s
degrades the file response times significantly, as shown in Figure 6.17.

But the key insight from the above experiment is that using a large initial window
sizes can significantly (up to fen times in the above scenario - and much more in
larger-bandwidth networks) improve file response times. Such methodologies have
been studied in depth in [91,109-111], but in the context of sender-based TCP, where
the web-server increases the initial window size in an attempt to improve system
performance. However, in the receiver-driven RCP scenario, it is hard to distinguish
whether the receiver is jump-starting the TCP flow or is simply malicious. Thus,
applying rate limiting or the “smart” RCP client methodology may indeed protect
the system against receiver misbehavior, but at the same time prevents attempts as
in [91,109-111] to improve performance. This illustrates the tradeoff between system
security and performance in that strict enforcement of protocol rules would not only
reduce performance, but would also inhibit protocol innovation.

However, unlike in the RCP-ELN scenario (in which it is concluded that using
larger values for the detection threshold parameter £ can protect against DoS attacks,
but not from relatively moderate bandwidth stealing), here, the conclusion is that
either rate-limiting or a “smart” RCP client has to be strictly applied, because a

receiver with an excessively large W in combination with manipulated exponential
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backoff timers can significantly degrade the legitimate background traffic (Figure
6.16). Yet, applying any of the short-time-scale protection methodologies inevitably
reduces the incentive for receivers to use RCP for short-lived flows, as sender-based
TCP enhanced with jump-starting methodologies is able to achieve the best response-

time curve from Figure 6.17 without any security considerations.
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Chapter 7

Conclusions and Future Work

This chapter summarizes the major results of this thesis and then discusses some of

the directions for the future work.

7.1 Conclusions

This thesis designed, implemented, and evaluated a series of edge-based algorithms
and protocols for efficient inference and control of the Internet from its endpoints.
The proposed solutions together form a new foundation for a robust quality-of-service
communication via a scalable edge-based architecture where the novel functionality
is added strictly at either edge routers or end hosts. The major findings of this thesis
are summarized below.

Chapter 3 developed a framework for clients of multi-class services to assess a
system’s core QoS mechanisms. The thesis developed a scheme for clients to perform
a series of hypothesis tests across multiple time scales in order to infer the request
service discipline among class-based weighted fair queuing, earliest deadline first,
and strict priority. The scheme can be applied to any other scheduler for which a
statistical service envelope is derived. For a particular scheduler, this work devised
techniques for clients to obtain maximum likelihood estimations of the system’s class
differentiation parameters, such as WFQ weights and EDF delay bounds. Finally,
this research showed how parameters of non-work-conserving elements such as rate

limiters can be estimated.



175

The thesis further evaluated the methodology in a two-class setting in both net-
working and QoS web-server scenarios. The main findings of this part of the thesis
are as follows. (i) For networks, the results show high accuracy in both scheduler
inference and unknown parameter estimation. (ii) For web servers, the inference
scheme achieves high accuracy provided that the variability of service times due to
factors such as different CPU processing times, disk service times and variable file
sizes is not significantly larger than the service variability due to the other class’
workload. In both cases, the scheme utilized a general multiple-time-scale traffic and
service model to characterize a broad set of behaviors within a unified framework.
(iii) The inference techniques developed in Chapter 3 are generally applicable and
computationally feasible up to a moderate number of service classes.

Chapter 4 presented TCP-LP, a protocol designed to achieve low-priority service
(as compared to the existing best-effort class) from the network endpoints. TCP-LP
allows low-priority applications such as bulk data transfer to utilize excess bandwidth
without significantly perturbing non-TCP-LP flows. TCP-LP is realized as a sender-
side modification of the TCP congestion control protocol and requires no functionality
from the network routers nor any other protocol changes. Moreover, TCP-LP is in-
crementally deployable in the Internet. The thesis presented an extensive set of ns-2
simulations and Internet experiments and showed that (iv) TCP-LP is largely non-
intrusive to TCP traffic (including very large aggregation regimes) while at the same
time, TCP-LP flows can successfully utilize a large portion of the excess network
bandwidth. (v) In practice, significant excess capacity is available even in the pres-
ence of “greedy” long-lived FTP/TCP flows due to factors such as ACK delays from
reverse traffic. (vi) Competing TCP-LP flows share excess bandwidth fairly. (vii)
File transfer times of best-effort web traffic are significantly reduced when long-lived

bulk data transfers use TCP-LP rather than TCP. (viii) Despite their low-priority
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nature, even longer-RTT TCP-LP flows are able to utilize substantial amounts of
spare available bandwidth in a wide-area network environment.

Chapter 5 presented low-rate denial of service attacks that are able to throttle
TCP flows to a small fraction of their ideal rate while transmitting at sufficiently low
average rate to elude detection. This work showed that by exploiting TCP’s retrans-
mission timeout mechanism, TCP exhibits null frequencies when multiplexed with a
maliciously chosen periodic DoS stream. The thesis developed several DoS traffic pat-
terns (including the minimum rate one) and through a combination of analytical mod-
eling, an extensive set of simulations, and Internet experiments it showed that (ix)
low-rate DoS attacks are successful against both short- and long-lived TCP aggregates
and thus represent a realistic threat to today’s Internet; (x) in a heterogeneous-RTT
environment, the success of the attack is weighted towards shorter-RTT flows; (xi)
low-rate periodic open-loop streams, even if not maliciously generated, can be very
harmful to short-RTT TCP traffic if their period matches one of the null TCP fre-
quencies; and (xii) both network-router and end-point-based mechanisms can only
mitigate, but not eliminate the effectiveness of the attack.

The thesis further concluded that the underlying vulnerability is not due to poor
design of DoS detection or TCP timeout mechanisms, but rather to an inherent
tradeoff induced by a mismatch of defense and attack time-scales. Consequently, to
completely defend the system in the presence of such attacks, one would necessarily
have to significantly sacrifice system performance in their absence.

Finally, Chapter 6 analyzed the class of receiver-driven transport protocols that
delegate key control functions to receivers. While this radically new protocol design
achieves significant performance and functionality gains in a variety of wireless and
wireline scenarios, this work showed that a high concentration of control functions

available at the receiver leads to an extreme vulnerability. Namely, receivers would
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have both the means and incentive to tamper with the congestion control algorithm
for their own benefits. This thesis analyzed a set of easy-to-implement receiver misbe-
haviors and analytically quantified the substantial benefits that a malicious client can
achieve in terms of stolen bandwidth over long time-scales (e.g., in file- or streaming-
server scenarios) and response time improvements for short-files in HT'TP scenarios.

This thesis further evaluated a set of state-of-the-art network-based solutions, and
proposed and analyzed a set of end-point solutions. The main findings of this part of
the thesis are as follows. (xiii) Network-based solutions are fundamentally limited
in their ability to detect and punish even severe endpoint misbehaviors. (xiv) End-
point solution can accurately detect long-time-scale receiver misbehaviors and strictly
enforce the TCP-friendly rate, but such enforcement entirely removes the performance
benefits of receiver-driven protocols. (xv) In the file- and streaming-server scenarios,
it is possible to strike an acceptable balance between protocol performance on one
hand, and vulnerability to misbehavers on the other, due to the fact that moderate
bandwidth stealers do not represent a critical threat to the system security. (xvi)
On the contrary, short time-scale receiver misbehaviors can extremely degrade the
response times of well-behaving clients in the HTTP-server scenarios; hence, such
servers have to strictly apply sender-based short-time-scale protection mechanisms;
unfortunately, such mechanisms can often limit the receiver-driven TCP performance

to a level which is below the level achievable by sender-based TCP.

7.2 Future Work

In the end, this thesis identifies several research directions for future work. The first
direction merges more closely the concepts of end-point inference and control; the

second direction promotes the design of robust and dependable network services.
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7.2.1 Adaptive Networking

While a significant amount of work has been done in designing better and better
end-point algorithms (e.g., TCP congestion control), the Internet keeps bringing a
wide range of stresses, from new applications such as streaming or multicast to di-
verse environments with vastly different link capacities (ranging from several kb/s
up to several Gb/s per flow), congestion levels, etc. As a new network technology
or environment (wireless, high-speed, asymmetric, etc.) evolves, new protocols are
developed to improve the system performance by taking advantage of some unique
network-environment property. However, a single algorithm or mechanism is unlikely
to be uniformly applicable to all network environments. On the other hand, it is im-
possible for network clients to “tune” their protocol parameters whenever they change
the network or the bottleneck of their end-to-end path changes location.

The above scenario makes a case for a new generation of protocols that would be
able not just to detect a specific network environment, but to determine the domi-
nant network state (e.g., based on the measured round-trip time, available bandwidth,
packet loss ratio, a specific packet-loss pattern, etc.), and to adapt to it by applying
the appropriate mechanism for that state. Necessarily, such control protocols would
need sophisticated inference algorithms, able not just to determine the specific net-
work state, but to detect and track possible state changes (e.g., due to bottleneck
hoping), and locally optimize performance objectives such as throughput or fairness.
Such globally-applicable hybrid protocols would not only more firmly merge the con-
cepts of inference and control, but would push the concept of protocol adaptation to

a completely new level.
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7.2.2 Building DoS-Resilient Network Services

While this thesis focused on the vulnerabilities of end-point protocols - such vulner-
abilities, unfortunately, exist in almost each and every existing or emerging network
protocol, architecture, or technology. Examples of potential vulnerabilities are the
ones recently explored in peer-to-peer systems (e.g., [112]), ad-hoc networks (e.g.,
[113]), or routing protocols (e.g., [114]). The main cause of such vulnerabilities comes
from the fact that network services were built targeting functionality, scalability, and
efficiency, but much less security and DoS-resiliency. The key reason for such a design
philosophy is an assumption of global cooperation that is increasingly invalid today.
However, the fundamental problem arises from the fact that cooperation among dif-
ferent entities in a network or a distributed system is not an “unnecessary design
assumption”, but indeed an essential requirement for a proper system functioning.
Hence, building robust network services remains to be an important goal of the future
Internet.

This thesis promoted a pro-active approach in solving the above end-point mis-
behavior problems. Such an approach preferences active discovery of possible sys-
tem vulnerabilities versus only reacting to the problems once they actually happen.
The pro-active approach is generally applicable to non-end-point-based vulnerabili-
ties, and is certainly valuable as it enables us to discover and prevent new classes of
denial-of-service attacks before they become widely exploited. The second promis-
sory approach in solving the above problems (that has not been applied in this thesis)
seems to be the one that employs the concepts of cooperation and coordination among
the well-behaving entities in detecting the misbehaving ones. Indeed, if the majority
of the communication parties are well-behaving, then their coordinated effort in de-

tecting misbehaviors should be more successful then if they act independently. But on
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the other hand, nothing stops the misbehaving parties to also cooperate and coordi-
nate their efforts in launching DoS attacks or achieving certain performance benefits.
Such activities, their potentials, and possible consequences are still left very much
unexplored. Hence, the “war” between DoS attackers and defenders continues, and
the final outcome is still uncertain. In any case, this remains to be an active and

interesting research area.
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Appendix A

Summary of Notation from Chapter 3

d;
o

Uls,s + ]

arrival time of request j in class ¢

departure time of request j in class ¢

relative weight of class ¢ in WFQ scheduler

rate limit bound of class ¢

deterministic service capacity

class i’s theoretical service envelope over intervals of length t

class ’s theoretical arrival envelope over intervals of length t

total class ’s arrivals in the interval [s,s+t]

class i’s delay bound for EDF scheduler

measurement window

interval length (I = kI3)

class i’s empirical arrival rate in the [s + (j — 1)I, s + jI] interval

number of successive intervals of length Ij in the measurement window T
mean of the empirical arrival rate envelope of class ¢ for intervals of length I
variance of the empirical arrival rate envelope of class i for intervals of length I,
service received during backlogging interval [s, s + ]

service rate received in the backlogging interval [s, s + ]

vector of empirical service rates over backlogging intervals of length I

Table A.1 : Notation from Chapter 3 - Part I




182

vector of empirical aggregate service rates over backlogging intervals of length I
aggregate rate service envelope over intervals of length I

mean of Cj,

variance of Cy,

vector of empirical class #’s service rates over backlogging intervals of length I
pdf of S*(I},) for scheduler SCH and for constant aggregate service capacity
mean delay of class ¢ requests

pdf of the aggregate service envelope in time scale I

pdf of S*(I},) for scheduler SCH and for variable aggregate service capacity
MLE of ¢; in time scale I

final estimate of ¢;

MLE of class i’s rate limit bound r; in time scale I,

rate variance ratio for class i and time scale I

threshold for rate variance ratio

Table A.2 : Notation from Chapter 3 - Part II
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Appendix B

Computing the throughput of a TCP aggregate
under the shrew attack

Assume that an initial outage causes all TCP flows to enter the retransmission timeout
and assume that 7" = b. Then, the throughput of the TCP aggregate can be computed

as

b— E(z)
3

where E(X) denotes expected value of a random variable X which corresponds to an

p(T =b) = (B.1)

event that at least one TCP flow’s timeout expired at time z, z € [a,b]. Assuming
that each TCP flow’s minRTO is uniformly distributed between a and b, the CDF of

X becomes

PX<z)=1- (=%

< —)" (B.2)

Denoting the corresponding pdf of random variable X as p(x), it follows that

p(z) = °F ();f z) n(lzb__xi;: . (B.3)

The expected value of X, F(X) can be computed as

_ b (b o m)n—l
E(X) —/a on dx. (B.4)

The integral from Equation (B.4) can be solved by using integration by parts with

the substitutes n%-2°" = dy and z = u. The solution is E(X) = a + £2. Thus,
(b—a) n+1
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based on Equation (B.1), it follows that Equation (5.7) holds.
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Appendix C

Computing the throughput of a misconfigured
RCP/TCP flow

This section applies exactly the same assumptions, methodology, and notation as in
[99]. A reader interested in following the derivation below needs to use reference [99]
in parallel.
Loss indications are exclusively “triple-duplicate” ACKs:
Assume that a user increases window size by a packets, and that it decreases it
by a factor of 5. Denote d as 1/3. Then, Equation (7) from [99] becomes
Wioe X

+

Wi= = "

=12, ... (C.1)

where X, is the number of increase rounds in the i-th tripple-duplicate period
(TPD;). Equation indicates that during TDP;, the window size increases between
W;_1/d and W;, and the increase is linear with slope a//b. Consequently, the number

of packets transmitted in T'PD; is expressed by

Y; =

X; Wi_
? ! + W; — a) + G, (02)

( d
where [3; is the number of packets sent in the last round. Next, assuming that
X, and W; are mutually independent sequences of i.i.d. random variables, it follows

from the above two equations and Equation (5) from [99] that

E[W] = %—E[m], (C.3)
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and,

1=p gy = B EL Lm0y + 207, (C.4)
p 2 d 2
From Equations (C.3) and (C.4), it follows that
 da bd—1)+d
EWw]= 1+d 2b(d—1)
bd—1)+d,,, da ., a d? 1-p
+\/( wa-n ) Gxd ThaiTaua-n p (C5)

Observe that,
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EW] = \/%%—f—o(l/\/ﬁ). (C.6)

i.e., E[W] converges to the first term of Equation (C.6) for small values of p.
From Equations (C.3), (C.8) as well as Equation (6) from [99], the expressions for the
expected number of rounds (F[X]) in the TD period, as well as the expected duration

E[A] of the same period are derived. A simplified expression for E[X] is

2b(d — 1)

BN =\ (1 dpa * 20/V): (C.7)
and,
b4y (M D 2
+\/(b(§gf$d>2 P2 Bl (C8)

Finally, based on Equation (18) from [99], as well as E[X] and E[A] derived here,
it could be shown that the RCP (TCP) throughput B(p) is
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1 1
B(p) = RTT 2bp(d—1) + 0(1/\/]3) (Cg)
a(d+1)

Loss indications are “triple-duplicate” ACKs and timeouts:
Using Equations (25) and (28) from [99], as well as Equations (C.6) and (C.7)

from above, it could be shown that Equation (6.2) follows.
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