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1. Mapping techniques add realism and interest to computer graphics images.
Texture mapping applies a pattern of color to an object. Bump mapping alters
the surface of an object so that it appears rough, dented or pitted. In this
example, the umbrella, background, beachball and beach blanket have texture
maps. The sand has been bump mapped. These and other mapping techniques
are the subject of this slide set.  
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2: When creating image detail, it is cheaper to employ mapping techniques
that it is to use myriads of tiny polygons. The image on the right portrays a
brick wall, a lawn and the sky. In actuality the wall was modeled as a
rectangular solid, and the lawn and the sky were created from rectangles. The
entire image contains eight polygons.Imagine the number of polygon it would
require to model the blades of grass in the lawn! Texture mapping creates the
appearance of grass without the cost of rendering thousands of polygons. 
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3: Knowing the difference between world coordinates and object coordinates
is important when using mapping techniques. In object coordinates the origin
and coordinate axes remain fixed relative to an object no matter how the
object’s position and orientation change. Most mapping techniques use object
coordinates. Normally, if a teapot’s spout is painted yellow, the spout should
remain yellow as the teapot flies and tumbles through space. When using
world coordinates, the pattern shifts on the object as the object moves through
space. 
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Depending on the mapping situation, we may need to bound an object with a
box, a cylinder, or a sphere. It’s often useful to transform the bounding
geometry so its coordinates range between zero and one. Transformed
bounding boxes have coordinates that range from (0,0,0) to (1,1,1). For a
bounding cylinder, we set the circumference to one and the height to one. For
a sphere, we scale the latitude and the longitude so that they both range
between zero and one. 
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5: Texture mapping can be divided into two-dimensional and three-
dimensional techniques. Two-dimensional techniques place a two-dimensional
(flat) image onto an object using methods similar to pasting wallpaper onto an
object. Three-dimensional techniques are analogous to carving the object from
a block of marble. 
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6: Two-dimensional mappings use pre-existing images. This slide shows some
images that might be used for texture mapping. The images on the left are
either scanned photographs or images created in a paint or drawing package.
POVRay, a raytracer, created the images on the right.
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7: In two-dimensional texture mapping, we have to decide how to paste the
image on to an object. In other words, for each pixel in an object, we
encounter the question, "Where do I have to look in the texture map to find the
color?" To answer this question, we consider two things: map shape and map
entity.  
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8: We’ll discuss map shapes first. For a map shape that’s planar, we take an
(x,y,z) value from the object and throw away (project) one of the components,
which leaves us with a two-dimensional (planar) coordinate. We use the planar
coordinate to look up the color in the texture map. 
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9: This slide shows several textured-mapped objects that have a planar map
shape. None of the objects have been rotated. In this case, the component that
was thrown away was the z-coordinate. You can determine which component
was projected by looking for color changes in coordinate directions. When
moving parallel to the x-axis, an object’s color changes. When moving up and
down along the y-axis, the object’s color also changes. However, movement
along the z-axis does not produce a change in color. This is how you can tell
that the z-component was eliminated. 
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10: In the left image, an objects color changes when there’s a change in y, or
when there’s a change in z, but the color remains constant when x changes.
Which component was projected? In the right image, which component was
projected? 
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11: A second shape used in texture mapping is a cylinder. An (x,y,z) value is
converted to cylindrical coordinates of (r, theta, height). For texture mapping,
we are only interested in theta and the height. To find the color in two-
dimensional texture map, theta is converted into an x-coordinate and height is
converted into a y-coordinate. This wraps the two-dimensional texture map
around the object. 
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12: The texture-mapped objects in this image have a cylindrical map shape,
and the cylinder’s axis is parallel to the z-axis. At the smallest z-position on
each object, note that the squares of the texture pattern become squeezed into
"pie slices". This phenomenon occurs at the greatest z position as well. When
the cylinder’s axis is parallel to the z-axis, you’ll see "pie slices" radiating out
along the x- and y- axes.
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13:On the left squares of the texture map are squeezed into pie slices that
radiate out along the x- and z-axes. Which coordinate axis is parallel to the
cylinder’s axis? 
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14: When using a sphere as the map shape, the (x,y,z) value of a point is
converted into spherical coordinates. For purposes of texture mapping, we
keep just the latitude and the longitude information. To find the color in the
texture map, the latitude is converted into an x-coordinate and the longitude is
converted into a y-coordinate.
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15: The objects have a map shape of a sphere, and the poles of the sphere are
parallel to the y-axis. At the object’s "North Pole" and "South Pole", the
squares of the texture map become squeezed into pie-wedge shapes. Compare
this slide to slide 12 which has a map shape of a cylinder. Both map shapes
have the pie-wedge shapes at the poles, but there is a subtle difference at the
object’s "equator". The spherical mapping stretches the squares in the texture
map near the equator, and squeezes the squares as the longitude reaches a pole.
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16: These objects have a spherical map shape.
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17: Using a box as the map shape is similar to planar
mapping. Instead of using one texture map, box mapping
uses six -- one each for the left, right, front, back, top and
bottom sides of the object. To texture map the front and
back sides, we eliminate the z-component of an object’s
point and use the remaining x- and y-components to locate
the color in the corresponding texture maps.
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18: Here are six textures that we will use in our next
example.
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19: The objects in the slide have a box as the map shape.
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20: Here’s another six textures. This scene was modeled by
Steve van der Burg.
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21: Here’s the result.
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22: Remember that we choose a map shape and a map
entity when texture mapping. When discussing map
shape, we talked about taking an (x,y,z) value from the
object and converting in various ways, but we didn’t
mention what that value was.

The map entity determines what we use as the (x,y,z) value.

Commonly-used map entities are

1) a point on the object relative to the object’s bounding
box,

2)  the surface normal at the point being rendered,
3)  a vector running from the object’s centroid through the

point, and
4)  the reflection vector at the current point.

Remember that the reflection vector depends not only on
the position of the point and its normal, but on the
position of the viewer.
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23: This next sequence of slides shows the interaction of
map shape and map parameter. The map shape is the same
for all the teapots on this slide. What is it?
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Cylindrical map shape

24: Some combinations of map shape and map parameter
produce more useful results than others. For a cylindrical
map shape, which map parameters seem to produce the
best results?
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Spherical map shape

25: Which map parameters look good with a spherical map
shape? Compare map parameters best for cylindrical map
shape with those best for a spherical map shape. Are there
any similarities?
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Guess the map shape…

26: Can you guess the map shape?
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27: When rendering a parametric patch, we can dispense
with map shape and map entity by treating the u- and v-
parameters of the surface as if they were normalized device
coordinates (Catmull, 1974). Multiplying u and v by the
resolution (in pixels) yields the device coordinates of the
desired pixel in the texture map.
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28: Here is the same patch with its texture map.
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29: The model for this teapot has 32 parametric patches,
each of which sports a copy of the texture. This slide shows
the use of the u,v  parameters to select the coordinates of
desired color in the texture image.
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30: This technique can be applied to objects that aren’t
parametrically defined by assigning u,v values to each
vertex. As long as the chosen values range between zero
and one, it’s possible to use the same texture mapping
approach.



32

31: By using a nonlinear function, it’s possible to pull or
distort the texture maps over the surface of polygons.
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32: We can layer textures one on top of another by using a
technique similar to the one that allows television viewers
to see a forecaster standing in front of a weather map when
in actuality the forecaster is standing in front of a blue wall
in a studio. The colors of the background weather map is
substituted for the blue color. (Have you noticed that they
never wear blue?) We can do the same thing. We want to
place the word "hello" on top of a map of the world. The
black background of the "hello" image will be treated as
transparent. To create a pixel in the final image, we find the
colors in the corresponding pixel locations in the two input
images and combine the two.



34

33: Here is an example of layered textures. :-)
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34. Characters from "Toy Story". "Toy Story" made history as
the first 100% computer animated feature film and was
created by Disney and Pixar (1995). What texture
techniques are at work in this image? What was the map
shape for the wall? For the floor?  
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35: A major drawback to 2D texture mapping is the
necessity of handling singularities. For instance, a spherical
mapping has two singularities, one each at the North and
South Poles. Just as it makes no sense to talk about the
time zone at the North Pole, it’s impossible to determine
the second texture coordinate by the usual mathematical
conversion. A programmer has to anticipate singularities
and handle them as special cases or the program will bomb.
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2D planar mapping

36: In a 2D planar mapping, a checker pattern degenerates
into stripes along the axis being projected, which does not
happen with a 3D mapping of a checker pattern.
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37: In three-dimensional texture mapping, each point
determines its color without the use of an intermediate map
shape (Peachey, 1985; Perlin, 1985). We use the (x,y,z)
coordinate to compute the color directly. It’s equivalent to
carving an object out of a solid substance. Most 3D texture
functions do not explicitly store a value for each (x, y, z)-
coordinate, but use a procedure to compute a value based
on the coordinate and thus are called procedural textures.
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38: To put stripes the left teapot, we find the integer part of
the z-value of each point of the object. If resulting value is
even, we choose red; otherwise we choose white. How were
the stripes produced in the other two teapots?
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3D texturing, based upon distance from the object's center
even = red,   odd = white

39: To produce the rings in the upper left teapot, we use
the x- and y-components to compute the distance of a
point from the object’s center, and truncate the result. If
the resulting value is even, we choose red; otherwise we
choose white. Which two components were used to produce
the rings on the upper right teapot?
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mod(x,a)/a (sin(x) + 1)/2

magenta = 0, yellow = 1

40: Here are textures created by ramp and sine functions. A
nice ramp is created by the function mod(x,a)/a. This ramp
function has a range of zero to one, as does (sin(x)+1)/2. In
this picture, we assigned magenta to value of zero and
yellow to the value one. Which of these teapot is using a
sine function? How do you know?
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41: We can use a point to compute an index into a color
table. One way to do this is to keep the fractional part of
the x-coordinate, which ranges between zero and one, and
multiply it by the number of elements in the color table.



43

42: Regular patterns are not as interesting as patterns with
some randomness. For texture mapping the randomness is
produced by a noise function. Desirable properties for such
a noise function are (Perlin, 1985):

    * known range
    * stationary
    * band limited
    * isotropic
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43: Lattice noise has these desirable properties. It stores a
number from the random number generator at each integer
lattice point in a 3D array. If a point from the object
happens to have integer coordinates, a lattice noise
function does a table lookup to find the value to return. If
the object’s point has non-integer values, the function uses
trilinear interpolation to determine the returned value.
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44: A second technique for producing "nice noise" is called
gradient noise. Gradient noise generates random unit
vectors for each integer lattice point, and uses interpolation
to find values for non-integer coordinates.
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45: In lattice noise, maxima and minima always occur at
regularly-spaced intervals, since it first fixes values to the
(integer) positions of the lattice and interpolates to obtain
intermediate values. The regularity of these maxima and
minima can be noticeable to an observer, as demonstrated
in this slide. Gradient noise does not suffer from this
problem.
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46: We can change the frequency and amplitude to vary the
nature of the noise. The middle image in this slide depicts
the function

noise(x,y,z)

We can vary the effect of the noise by using the expression

noise(f*x, f*y, f*z) * a

where f controls the frequency and a controls the amplitude.
Noise having large amplitudes will result in a greater range
of colors. Noise having high frequency will contain more
detail. In the slide there are four images surrounding the
depiction of the original noise function. Which image
portrays noise having lower frequency and lower amplitude
than the original? Which has higher frequency and lower
amplitude?
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47: This is a demonstration of how 1/f noise is created. We
begin with a noise function, depicted on the left. To this we
add the same noise function with twice the frequency and
half the amplitude, which results in the second picture. The
third image is the sum of the noise in the second picture
plus the noise function with four times the frequency and a
quarter of the amplitude. We can continue adding noise of
higher and higher frequency until the frequency is so high
that something as large as a pixel won’t be able to record
it.
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48: Here we finally begin seeing some application of noise
to texture mapping. To get a Wisconsin-styled black-and-
white spotted teapot, use the following pseudocode:

    gray = noise(x,y,z)

    if(gray > threshold)

    choose white else

    choose black
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49: Perturbing stripes can result in a texture with a marbled
appearance.
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50: This is the "Grateful Teapot", created by perturbing a
"pinwheel texture" to produce an index into a color table.
This texture was created by Kevin Ferguson.
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51: Making a wood-grained object begins with a three-
dimensional texture of concentric rings (Peachey, 1985). By
using noise to vary the ring shape and the inter-ring
distance, we can create reasonably realistic wood.
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52: We can create an irridescence effect by combining the
color from a color table with the object’s original color.
Adding noise to perturb the color table lookup creates a
mother-of-pearl effect.
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53: Procedural functions can not only determine an object’s
color, but its geometry as well. Volume density functions
describe the geometry of gases and are similar to solid
texturing procedures in that they take a point in three-
dimensional space as input and return a value. Instead of
returning a color, they return a density value. The cloud in
this image is a procedurally altered metaball created by
David Ebert.



55

54: This still is from the movie "Getting Into Art", by David
Ebert and diplays another example another example of a
volume density function. Name the texture mapping
techniques you see. Which are the 3D textures?
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55: All the frames in the movie "Toy Story" were rendered
using Pixar’s Photorealistic Renderman. In Renderman,
textures are added via the use of "shaders". Compare the
horse pattern on the quilt to the wood pattern in the
headboard. Which is more likely to be a 3D texture?
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56: Bump mapping affects object surfaces, making them
appear rough, wrinkled, or dented (Blinn, 1978). Bump
mapping alters the surface normals before the shading
calculation takes place. It’s possible to change a surface
normals magnitude or direction.
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57: In the upper left image, lattice noise alters the
magnitude of the teapot’s surface normals, which creates a
rough-looking surface. Lattice noise at a lower frequency
changes the magnitude of the surface normals of the upper
right teapot. It appears dented. The lower left teapot is the
result of using sin(y)/ 2 + .5 to scale the normals
magnitude, which results in a rippled effect. In all cases the
profile of the teapot is still smooth. Bump mapping does
not change the underlying geometry of the model, but fools
the shading algorithm to produce an interesting surface.
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58: In contast, displacement mapping alters an object’s
geometry (Cook, 1984). Compare the profiles and the
shadows cast by these two objects. Which is bump mapped?
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59: Embossing is a form of bump mapping. To emboss the
letter "D" onto the teapot, we map each point of the object
into the "D" image. If we land at a location where there is a
transition from white to black, then we rotate the point’s
surface normal by an angle theta. If we land at a location in
the "D" where there is a transition from black to white, then
we rotate the point’s surface normal by -theta. If we land at
a location where there is no transition, we don’t do
anything to the surface normal.
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60: Environment mapping is a cheap way to create
reflections (Blinn and Newell, 1976). While it’s easy to
create reflections with a ray tracer, ray tracing is still too
expensive for long animations. Adding an environment
mapping feature to a z-buffer based renderer will create
reflections that are acceptable in a lot of situations.
Environment mapping is a two-dimensional texture
mapping technique that uses a map shape of a box and a
map parameter of a reflection ray.
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61: Here are side-by-side comparisons of raytracing and
environment mapping. What differences can you see?
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Raytracing vs Environment mapping

62: Environment mapping is cheaper than raytracing and
works well when the reflective surface is planar or convex
and there are no obvious sets of parallel lines in the
reflection. In the top example the results from environment
mapping compare favorably with raytracing, but in the
lower example, the reflected lines of the ceiling tiles do not
align with the actual ceiling.



64

63: Notice the difference in rendering times between
raytracing and environment mapping. Compare the
difference in appearance.
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64: In this still from "Toy Story," what techniques are being
applied to Slinky Dog’s ear and Rex’s skin?
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This image is not raytraced, yet reflections  are visible in
the highly polished helment on Buzz. What technique
created this effect?
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65: No matter the type of mapping we’re undertaking, we
run the danger of aliasing. Aliasing can ruin the appearance
of a texture-mapped object.
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66: Aliasing is caused by undersampling. Two adjacent
pixels in an object may not map to adjacent pixels in the
texture map. As a result, some of the information from the
texture map is lost when it is applied to the object.
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67: Antialiasing minimizes the effects of aliasing. One
method, called prefiltering, treats a pixel on the object as
an area (Catmull, 1978). It maps the pixel’s area into the
texture map. The average color is computed from the pixels
inside the area swept out in the texture map.
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68: A second method, called supersampling, also computes
an average color (Crow, 1981). In this example each of four
corners of an object pixel are mapped into the texture. The
four pixels from the texture map are averaged to produce
the final color for the object.
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69: Prefiltering in action
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70: Supersampling in action.
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71: Antialiasing is expensive due to the additional
computation required to compute an average color.
Mipmapping saves some expense by precalculating some
average colors (Williams, 1983). The mipmap algorithm first
creates several versions of the texture. Beginning with the
original texture the mipmap algorithm computes a new
texture that’s one fourth the size. In the new, smaller
texture map, each pixel contains the average of four pixels
from the original texture. The process of creating smaller
images continues until we get a texture map containing one
pixel. That one pixel contains the average color of the
original texture map in its entirety.
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72: In the texture mapping phase the area of each pixel on
the object is mapped into the original texture map. The
mipmap computes a measure of how many texture pixels
are in the area defined by the mapped pixel. In this example
approximately nine texture pixels will influence the final
color so the ratio of texture pixels to object pixel is 9:1.
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73: To compute the final color, we find the two texture
maps whose ratios of texture pixels are closest to the ratio
for the current object pixel. We look up the pixel colors in
these two maps and average them.
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74: All images are rendered at 512x324. The upper left
figure is not antialiased.
The figure to its right was rendered with mipmapping. The
textures are a little better. I
n the bottom row, the left image was supersampled at a
rate of nine samples to one pixel.
The final image benefited from 9:1 supersampling and
mipmapping.
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75-79: The final series of slides, courtesy of Evans and
Sutherland, demonstrate mipmapping. The foreground in
these images is texture mapped using the bigger mipmaps
containing more detail, with the smaller mipmaps reserved
for the background. In slide 75, compare cultivated fields in
the foreground with those in the background. The
technique is effective in simulating a wide variety of terrains,
as can be seen in slides 76-78. Evans and Sutherland
develop flight simulators to train pilots. These simulators
project views of what the pilot would see if actually flying
the plane (slide 79). The simulators change the views as the
pilot flies the plane, and must react instaneously with new
views in response to pilot commands. Mipmapping
heightens the sense of reality by adding detail to the views.
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