
Approximation Algorithms for Label Cover and The Log-Density
Threshold
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Abstract

Many known optimal NP-hardness of approximation
results are reductions from a problem called Label-
Cover. The input is a bipartite graph G = (L,R,E)
and each edge e = (x, y) ∈ E carries a projection πe
that maps labels to x to labels to y. The objective
is to find a labeling of the vertices that satisfies as
many of the projections as possible. It is believed that
the best approximation ratio efficiently achievable for
Label-Cover is of the form N−c where N = nk, n is
the number of vertices, k is the number of labels, and
0 < c < 1 is some constant.

Inspired by a framework originally developed for Dens-
est k-Subgraph, we propose a “log density thresh-
old” for the approximability of Label-Cover. Specifi-
cally, we suggest the possibility that the Label-Cover ap-
proximation problem undergoes a computational phase
transition at the same threshold at which local algo-
rithms for its random counterpart fail. This threshold
is N3−2

√
2 ≈ N−0.17. We then design, for any ε > 0,

a polynomial-time approximation algorithm for semi-
random Label-Cover whose approximation ratio is
N3−2

√
2+ε. In our semi-random model, the input graph

is random (or even just expanding), and the projections
on the edges are arbitrary.

For worst-case Label-Cover we show a polynomial-
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time algorithm whose approximation ratio is roughly
N−0.233. The previous best efficient approximation
ratio was N−0.25. We present some evidence towards
an N−c threshold by constructing integrality gaps for
NΩ(1) rounds of the Sum-of-squares/Lasserre hierarchy
of the natural relaxation of Label Cover. For general
2CSP the “log density threshold” is N−0.25, and we
give a polynomial-time algorithm in the semi-random
model whose approximation ratio is N−0.25+ε for any
ε > 0.

1 Introduction

1.1 Label Cover In the past couple of decades
researchers have succeeded in basing many known
optimal NP-hardness of approximation results on the
hardness of a combinatorial optimization problem called
Label-Cover. The decision version of this problem
relevant to hardness of approximation is parameterized
by an approximation ratio δ : N× N→ [0, 1].

Label-Cover:
Input: A bipartite graph G = (L,R,E),
where the L vertices have degree ∆L, and the
R vertices have degree ∆R; finite alphabets
ΣL,ΣR; for each one of the edges e ∈ E, a
function πe : ΣL → ΣR ∪ {⊥}.
Goal: Distinguish between the following two
cases:

• Completeness/accept: There are labels
φL : L→ ΣL and φR : R→ ΣR such that
πe(φL(x)) = φR(y) for all e = (x, y) ∈ E.

• Soundness/reject: For all labels φL : L→
ΣL and φR : R → ΣR, for at most
δ = δ(|L| , |ΣL|) fraction of e = (x, y) ∈ E
we have πe(φL(x)) = φR(y).

In the approximation algorithms literature, as opposed
to the hardness of approximation literature, the term
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Label-Cover is used when the constraints on the edges
are general predicates, and not only when they are
functions (“projections”). In this work we will stick to
the terminology of the vast hardness of approximation
literature. We will use the term 2CSP to refer to the
problem with general constraints.

We denote the number of vertices by n and the alphabets
size by k. We denote the input size by N = nk. The
condition πe(φL(x)) = φR(y) is called a “projection test”.
If the test holds we say that the labels φL, φR satisfy the
edge e = (x, y). Label-Cover is also referred to as a
“projection game” (the famous “unique games” [Kho02]
were defined analogously). The maximum fraction of
edges that can be satisfied simultaneously is called the
value of the game.

A different perspective on Label-Cover is as a robust
constraint satisfaction problem (CSP). In a CSP the
input is a collection of constraints over a large number of
variables, where each constraint depends on ∆ variables.
The variables may assume labels over an alphabet Σ and
each constraint specifies a subset of Σ∆. A constraint
π is satisfied if its ∆ variables are assigned labels in
its set. Let Iπ indicate whether π is satisfied. The
goal is to label the variables as to maximize

∑
π Iπ. In

a robust CSP the input is the same as in CSP, but
the goal is different. Rather than having a binary Iπ
that indicates whether π is satisfied or not, we define a
real Ĩπ that measures π’s proximity to being satisfied.
Formally, the agreement between two strings in Σ∆ is
the fraction of the ∆ indices on which the two strings
are the same, and Ĩπ is the agreement of π’s ∆ variables
with a satisfying assignment. The goal is to maximize∑

π Ĩπ. Label Cover is equivalent to a robust CSP
where L corresponds to the constraints, ∆ = ∆L, and R
corresponds to the variables, Σ = ΣR. The labels to the
L vertices correspond to satisfying assignments to the
constraints.

The Projection Games Conjecture [BGLR93, Mos15]
states that Label-Cover is NP-hard for some δ =
Θ(1/nc) for a constant 0 < c < 1 (“polynomially
small”). If it were proved, one could prove polynomial
hardness for the Closest-Vector-Problem [Kho10]
in lattices, for Directed-Sparsest-Cut [CK09] and
many other problems [Mos15]. Currently, the best NP-
hardness result known for Label-Cover [MR10] is
for poly-logarithmically small δ. Under the stronger
assumption that NP does not have quasi-polynomial time
algorithms, one can prove that there are no polynomial
time algorithms for δ = 2−Ω(

√
logN). In contrast,

the (previously) best polynomial-time approximation
algorithm works for δ = Θ(N−1/4) [MM13].

In this work we study random, semi-random and worst-
case Label-Cover. In random Label-Cover both
the graph G and the projections {πe} are random. In
semi-random Label-Cover the graph G is random
but the projections are arbitrary. In worst-case Label-
Cover both the graph and the projections are arbitrary.
Random CSP is extensively studied due to its importance
to average-case complexity, probability and statistical
physics [MZK+99], cryptography [ABW10], hardness
of approximation [Fei02] and other fields. It is also
a prototypical example of a hard CSP [Gri01, Sch08].
Random Label-Cover, i.e., random approximate CSP,
is therefore a natural object for study. Moreover,
Label-Cover on random (or pseudorandom) graphs
is extremely useful for hardness of approximation, and
there are several known reductions that take advantage
of it, e.g., [Fei02, AAM+11, HK04]. Indeed, Label-
Cover is known to be NP-hard in certain regimes even
when the underlying graph obeys random-like expansion
properties (see, e.g., [HK04]).

1.2 Main Theorems In this work we show approxi-
mation algorithms for Label-Cover that achieve better
approximation ratio than existing algorithms, as well
as Lasserre integrality gaps. Some of the algorithms
approach the “log density threshold” for Label-Cover,
a natural threshold explained in the next section, which
might correspond to the true computational threshold
for Label-Cover. Quantitatively, the threshold is
N−β(1−β)/(2−β) where |L| = Nβ . For the worst β the
log density threshold is N−(3−2

√
2) ≈ N−0.17.

We show a polynomial-time algorithm that works for
random graphs and worst-case projections, and whose
approximation ratio comes arbitrarily close to the log
density threshold (see Section 5).

Theorem 1.1. (Semi-random Label-Cover) For
every ε > 0, there is a approximation algorithm
running in time NO(1/ε2) for Label-Cover with
δ = N−β(1−β)/(2−β)−ε on random graphs G = (L,R,E)
with alphabet size k, where N = |L|k and |L| = Nβ.
The algorithm works with high probability over the choice
of G.

We will provide more details about the “log density
method” this algorithm is based on in the next sec-
tion.

The algorithm in Theorem 1.1 works even if G is only
“weakly expanding” as opposed to random (for exact def-
initions, see the appendix), and even if the completeness
case has Θ̃(1) fraction of satisfied edges as opposed to all
edges. For Label-Cover where all edges are satisfied
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in the completeness case there was a polynomial-time
algorithm with Θ(N1/4) approximation [MM13]. We
improve on this algorithm by showing a polynomial-time
algorithm for δ ≈ N−0.233 (see Section 6).

Theorem 1.2. (Worst-case Label-Cover) For
any constant ε > 0, there exists a polynomial-time
approximation algorithm for Label-Cover with
δ = O

(
N−

1
6 (5−

√
13)−ε

)
.1

Finally, we put forward the possibility that the log density
threshold gives the correct exponent for the Projection
Games Conjecture:

Conjecture 1.1. For any ε > 0, Label-Cover
on alphabet size k = N1−β is NP-hard for δ =
N−β(1−β)/(2−β)+ε. Furthermore, there are no efficient
algorithms for the problem even when the underlying
graph is random with average degree Nβ(1−β)/(2−β).

1.3 Additional Results In addition to the above
theorems, we now list some further results whose proofs
we will omit due to space limitations. These will appear
in the full version of the paper.

First, we consider 2CSP. Here, the log density threshold
is N−β(1−β), and we show a matching approximation
algorithm for the semi-random case.

Theorem 1.3. (Semi-random algorithm, 2CSP)
For every ε > 0, there is an approximation algorithm for
2CSP running in time NO(1/ε2) with δ = N−β(1−β)−ε

on random graphs G = (L,R,E) with alphabet size k,
where N = nk and |L| = Nβ. The algorithm works with
high probability over the choice of G.

This gives a approximation ratio of N1/4+ε for
semirandom instances. For worst case 2CSP the
best efficient algorithm known gives only Θ(N1/3)-
approximation [CHK09], but works in the more general
case where the fraction of satisfied edges in the complete-
ness case is arbitrary.

We prove limitations on approximation algorithms as
well. We show an N1/8−ε integrality gap for the NΩ(ε)-
level Lasserre relaxation of Label-Cover, as stated
below. We remark that the gap instance is in fact semi-
random, as the graph is a random left-regular bipartite
graph, and thus can be N3−2

√
2−ε-approximated in

polynomial time by our algorithm.

Theorem 1.4. For every constant 0 < ε < 1/8 and
sufficiently large N , the integrality gap of the NΩ(ε)-level

1 1
6 (5−

√
13) = 0.23240812075600178448 . . . .

Lasserre SDP relaxation of Label Cover of size N is at
least N1/8−ε.

We show that, even after N1−ε rounds of the Lasserre
SDP hierarchy, there is still a polynomial lower bound of
NΩ(ε) on the integrality gap. Note that this gap matches,
up to a multiplicative constant in Ω(ε), with the naive
algorithm that tries every assignment to N1−ε vertices
(see Theorem 6.1 in [Man15]).

Theorem 1.5. For every constant 0 < ε < 1 and
sufficiently large N , the integrality gap of the N1−ε-
level Lasserre SDP relaxation of Label Cover of size N
is at least NΩ(ε).

Since the r-level Lasserre relaxation takes NO(r) time
to solve, the above integrality gaps imply that the
Lasserre hierarchy cannot refute the Projection Game
Conjecture. Given how powerful semidefinite programs
and Lasserre hierarchy are in approximating CSPs
on small alphabets [Rag08, LRS15], our result is an
indication that the Projection Games Conjecture may
indeed be true. Moreover, since all our algorithms
can be described in terms of rounding linear programs,
Theorem 1.4 presents a barrier for such approaches, i.e.,
it implies that no such algorithm can achieve N1/8−ε-
approximation in polynomial time. Unfortunately, this
is still not a tight lower bound and we leave it to future
work to improve this bound to match our N3−2

√
2+ε-

approximation algorithm.

To prove the Lasserre integrality gaps, we reduce from
an integrality gap of random Max K-CSP from [Tul09].
The reduction and proof follow closely from those
in [BCV+12], in which similar integrality gaps for Dens-
est k-Subgraph were shown. In fact, the only main
difference is that we prove a stronger soundness result,
which ultimately leads to a larger gap in Theorem 1.4.
Our analysis also yields the following integrality gap for
Densest k-Subgraph, improving upon the NΩ(ε)-level
N2/53−ε-gap of [BCV+12].

Theorem 1.6. For every 0 < ε < 1/14 and sufficiently
large N , the integrality gap of the NΩ(ε)-level Lasserre
SDP relaxation of Densest k-Subgraph on a graph of
N vertices is at least N1/14−ε.

2 Notation

Before we explain the intuition behind our algo-
rithms, let us define additional conventions to be
used in the paper. A Label-Cover instance G =
(L,R,E,ΣL,ΣR, {πe}e∈E) is said to be satisfiable or fully
satisfiable if its value is one. The graph G = (L,R,E) is
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called the supergraph of G. The label extended graph as-
sociated with the Label-Cover instance, denoted Gext
has vertices L×ΣL and R×ΣR. An edge inGext connects
(x, σx) to (y, σy) if (x, y) ∈ E and π(x,y)(σx) = σy.

An important procedure in our algorithms is label sets
reduction, in which we discard some labels that we are
certain are not the satisfying labels. We are then left
with candidate labels for each vertex. When we focus on
a set S ⊆ L∪R, we use a function ΣS : S → P(ΣL∪ΣR)
where P(ΣL ∪ ΣR) is the power set of ΣL ∪ ΣR to
represent the reduced label sets of all vertices in S, i.e.,
ΣS(u) ⊆ ΣL ∪ ΣR is the reduced label set of u.

We use ΓG(u) to denote the set of neighbors of a vertex
u in a graph G and ΓG(S) to denote the

⋃
u∈S ΓG(S)

for S ⊆ L ∪ R. For i ≥ 2, we write ΓGi (S) to denote
ΓG(ΓGi−1(S)) and ΓG1 (S) = ΓG(S. degG(u) is defined
as the degree of u in the graph G. In addition, for
S, S′ ⊆ L∪R, we write EG(S, S′) to denote the set of all
edges whose one end point is in S and the other is in S′;
as a shorthand, we write EG(S) to denote EG(S,L∪R),
the set of edges whose at least one endpoint is in S.
When it is clear from the context which graph we are
refering to, we may drop G altogether.

We say that a bipartite graph (L,R,E) is biregular if
the degrees of all vertices in each side is equal. Similarly,
(L,R,E) is said to be λ-nearly biregular if, on each side,
the degrees of any two vertices are at most λ times each
other, i.e., for every u, u′ ∈ L and v, v′ ∈ R, we have
deg(u) ≤ λ · deg(u′), deg(v) ≤ λ · deg(v′). We say that
a bipartite graph is nearly-biregular as a shorthand for
O(logC(n))-nearly biregular where C is some constant
and n is the number of vertices in the graph.

Throughout the paper, we use polylog(f(n)) to denote
logC(f(n)) for some constant C. In addition, from this
point on, we will abuse the notations Õ and Ω̃, and
use them to hide a factor of polylog(nLnRkLkR); this
is in contrast to the standard convention, in which
Õ(f(n)) and Ω̃(f(n)) represent O(f(n)polylog(f(n))
and Ω(f(n)polylog(f(n))) respectively.

3 The Log Density Method

Some of our algorithms use a method first introduced
in [BCC+10] to study Densest k-Subgraph, and which
has since been used successfully for the related problems
of Smallest k-Edge Subgraph [CDK12] and Small
Set Bipartite Vertex Expansion [CDM17]. The
method consists of the following steps, which follow in
the rest of the section.

1. Random Problems: Study random problems, where

the goal is to distinguish a random input from a
random input with a planted solution.

2. Witnesses: Restrict attention to constant-sized
witnesses, such that the witness occurs and is
satisfied in an instance with a planted solution,
whereas the witness occurs but is not satisfied
with high probability in a random (unsatisfiable)
instance.

3. Log density threshold: There is typically a threshold
(depending on the size of the graph, the degree, etc)
at which such witnesses appear and this threshold
is relatively simple to compute. This threshold is
called the “log density threshold” for reasons that
will become clear shortly.

4. Algorithms: One can often design efficient algo-
rithms inspired by the random model, whose approx-
imation ratio approaches the log density threshold
for more general cases than just the random case.
This often involves a subtle argument, which must
show that either the input is sufficiently random
looking (in order to emulate algorithms for random
models), or take advantage of non-random behavior
in the input in order to produce a good solution.

Interestingly, even though the log density method uses a
simplified model (the random model) and an incredibly
simple algorithmic technique (constant-sized witnesses),
for Densest k-Subgraph it captures existing algorith-
mic ideas, including much more sophisticated techniques:
spectral and semidefinite programming based algorithms
do not improve over that threshold [BCC+10] and there
is an SA+ integrality gap with the same ratio [BCV+12].
It is believed that the log density threshold is the com-
putational threshold for Densest k-Subgraph, namely,
where the approximation problem changes from tractable
to intractable. In fact, this log-density threshold has
been used as an average-case hardness assumption in
[ABBG10, ACLR15].

In this section we define the random problem for Label-
Cover and derive the log density threshold for it. The
difficult, elusive, step of the log density method is to
design algorithms whose approximation ratio approaches
the log density threshold, and much of the rest of the
paper is devoted to this challenging task.

Random Label Cover: Given a Label-Cover
instance of one of the following forms, determine which
of the two distributions it was drawn from.

DNO: G(L,R,E) is an Erdős-Rényi random bipartite
graph G(n/2, n/2, p = ∆/n), and each projection πe
between e = (u, v) is given by a random right-regular
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bipartite graph of degree d = kγ .

DY ES : G(L,R,E) is an Erdős-Rényi random bipar-
tite graph G(n/2, n/2, p = ∆/n), and the projections
{πe}e∈E are chosen arbitrarily in such a way that it
satisfies at least one assignment.

For simplicity, in this section we consider |L| = |R| = n/2
and ∆L = ∆R

.= ∆. Furthermore, we consider
projections which are d to 1 functions only, so |ΣR| = k/d
where |ΣL| = k. Intuitively, this “regular” case is the
hardest, since an algorithm cannot make progress by
exploiting local irregularities.

We consider a family of algorithms based on counting
local witness templates. Any such algorithm will use
a constant sized graph W, and look for occurences2

H ⊆ G ofW in the graph G. If the instance is satisfiable,
then H can be satisfied by a suitable assignment of the
variables. Since W only has constant size, this can be
checked in polynomial time. The hope is to find W
such that its occurrences are not satisfiable with high
probability in the purely random case, allowing us to
distinguish. Any witness template W needs to satisfy
two main properties to refute instances generated in the
soundness case:

1. The templateW should occur in G (a random graph
of degree ∆),

2. For random instances, every assignment to an
occurrence H ofW should fail with high probability.

Let the witness template W have a vertices (with aL of
them on the left, and aR of them on the right) and b
edges respectively. In the calculations that follow, we
will ignore constant factors for convenience. To satisfy
the first property in expectation, we require the following
condition on a and b to hold:

E [number of occurrences of W] =
(n

2

)a(∆
n

)b
> 1

(3.1)

This upper bound on the edge density corresponds to the
well-studied threshold phenomenon in random graphs.
Consider an occurrence H ⊆ G of W. For (u, v) ∈ E,
the vertices u ∈ L, v ∈ R have k labels and k/d labels
respectively, and a fixed label assignment to u and v
satisfies πe with probability d/k. Hence, to satisfy the
second property, we need

E [number of satisfying assignments for H](3.2)

2An occurrence of W is just a subgraph H ⊆ G that is
isomorphic to W.

= kaL
(
k
d

)aR ( d
k

)b = ka
(
db−aR

kb

)
< 1.(3.3)

Thus it would seem, based on the above, that we
could distinguish whenever the parameters n,∆, k, d
are such that there exists such a witness W as above
satisfying

b− a
b

<
log ∆
logn and b− a

b− aR
>

log d
log k .(3.4)

It would seem advantageous to design the witness W
so that as many of its a nodes as possible are on the
right, in order to make the upper bound on the right as
unrestrictive as possible. However, this can only be done
within some limit: while we have been using expectation
to imply the existence of the witness W, it turns out
that this only corresponds to a high-probability event
when the degrees in W are all at least 2, and thus we
require in particular that ar ≤ b/2, meaning that in the
best possible scenario, we would need the existence of a
witness W with parameters a, b such that

b− a
b

<
log ∆
logn and b− a

b/2 >
log d
log k .

In other words, a necessary condition for distinguishing
is that

(3.5) log(∆2)
logn >

log d
log k .

It turns out that in fact this is also a sufficient condition,
and that in fact, when the above inequality holds with
a constant additive gap, we can find a witness W
satisfying (3.4).

Motivated by the above calculation we define log density
as follows.

Definition 3.1. In a Label Cover instance as above,
the log density of the supergraph is log(∆2)/ log |V |
(or more generally, log(∆L∆R)/ log |L|), while the log
density of the projections is log d/ log k. We will use the
term log density gap to refer to the excess (difference)
of the log density of the supergraph over the log density
of the projections.

Further, the above calculation shows that such local
algorithms cannot work if logn(∆2) < logk d. This log-
density condition points to a barrier for local algorithms
to approximate Label Cover, much like the log-density
barrier for Densest k-subgraph. This is formalized
in Conjecture 1.1. To see where our approximation
guarantee comes from, we need to examine simpler
algorithms which we must resort to when there is no log
density gap.
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Simple algorithms and the derivation of the
threshold. For a Label-Cover instance with degree
∆ one can find a labeling that satisfies 1/∆ fraction of
the edges by picking a perfect matching in the graph
and satisfying only those edges. For a Label-Cover
instance whose projections are d to 1 and whose alphabet
is of size k, one can find a labeling that satisfies d/k
fraction of the edges by picking the labels of the R
vertices randomly and picking the labels of the L vertices
in a greedy fashion. If we have a gap in the log-density,
then the above local witness distinguishes a random
label cover instance from a satisfiable instance. If there
is no log-density gap then the simple approximations
give a min{∆, k/d} approximation. If d = kγ , by
balancing the guarantees of these different algorithms,
the worst setting of parameter γ is when γ = 2−2β

2−β .
Substituting, we see that that log-density threshold is
N−c for c = β(1−β)/(2−β). Maximizing over β ∈ [0, 1]
gives an c = 3− 2

√
2.

4 Algorithms for Random Label Cover based
on Counting Local Structures

We now describe counting-based algorithms for Random
Label Cover which we will later build on in when de-
signing an algorithm for semi-random models. Consider
the distinguishing problem described in the previous sec-
tion, in which the algorithm must distinguish between a
random instance of Label Cover and a fully satisfiable
instance.

As noted earlier, a necessary condition for a certain
class of distinguishing algorithms to succeed is that we
have a positive log-density gap, i.e., that inequality (3.5)
holds with a constant additive gap. In what follows,
let us assume that this is indeed the case. Specifically,
let us assume that d ≤ kγ and ∆ ≥ nα/2 for some
constants γ < α. Our algorithms will be parametrized
by a rational approximation to the log-density. Thus,
let r, s be integers and ε1, ε2 > 0 be constants such
that γ + ε1 ≤ r/s ≤ α − ε2. When this condition
holds, we will show that we can successfully solve the
distinguishing problem, as well as find a better-than-
random assignment when a satisfying assignment is
planted in a random instance. Note that, if we do not
have a positive log-density gap, we can still run the
simple algorithms described earlier and satisfy at least
an Ω(N−(3−2

√
2)) fraction of all edges.

4.1 Distinguishing algorithm and Witness Tem-
plates. Our distinguishing algorithm consists of a fam-
ily of algorithms Alg-Distr,s given by different local

witness templates Wr,s that are parameterized by two
integers r, s. Our algorithm will differ slightly from the
general recipe of a local witness-based algorithm de-
scribed earlier. We will use a local witness that will
involve special constant-size trees, which we call witness
templates. In a witness template based on a tree W,
we fix a small set of vertices U in G, and consider the
subgraphs of G that are isomorphic to W whose set of
leaves is exactly U . These witness templates are inspired
by the templates for Densest k-subgraph [BCC+10]. In
addition to satisfying conditions (3.1), (3.3) and (3.4),
these witnesses will occur not just in random graphs,
but in any supergraph G with sufficient average degree
3 ∆.

The template witness structure Wr,s parameterized by
r, s will correspond to a tree with (r+ 1) leaves of “fixed
vertices”, all of which can only be occupied by vertices in
L. This structure will also have (2s− r) internal vertices
or “free vertices” in total, with s of the internal vertices
to be occupied by vertices in R, and (s − r) internal
vertices to be occupied by vertices in L. Hence, in the
notation of the previous section, aR = s and aL = s− r
denote the number of internal vertices on the left and
right respectively.

In our algorithm, we will fix the leaves to be a small set
of vertices u0, u1, . . . , ur ∈ L and consider all subgraphs
H ⊆ G that are isomorphic to W with the (r+ 1) leaves
being U = (u0, u1, . . . , ur). Each such subgraph H is
called an occurence of W supported on leaves U .

We now formally describe the structure of the witness,
by first describing a caterpillar graph W (r, s) with (s+1)
vertices in total. This caterpillar exactly corresponds
to the caterpillar templates used in Densest k-subgraph
[BCC+10]. Our final witness template Wr,s will have all
the (s + 1) nodes in W (r, s) (both leaves and internal
nodes) corresponding to vertices from L, and we will
just replace each of the s edges of W (r, s) with a path of
length 2, with its own distinct node on the right. Hence
Wr,s will have (r+ 1) leaves and (s− r) internal vertices
on the left, and s internal vertices on the right. The case
of r ≥ s is a degenerate case, where Wr,s is just a path
of length 2 with both leaves on the left, and one internal
node on the right.

Definition 4.1. [Witness Template Wr,s and caterpil-
lar W (r, s)] For r < s, the caterpillar structure W (r, s)
is a tree constructed inductively. It has a backbone con-
sisting of the (s− r) free vertices, and (r+ 1) leaves fixed
vertices or leaves.

3For instancesW with triangles may not occur if G is bipartite,
even if it satisfies various expansion properties.
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1. Begin with two vertices: one being a leaf, and
another being a free vertex z1 that is connected by
an edge4. This is the first step.

2. For steps i = 2, 3, . . . , (s− 1), do the following:
• At step i, if the interval [ irs ,

(i+1)r
s ] contains an

integer, add a leaf to the (current) rightmost
free vertex. This is called a hair step.
• Otherwise, add another free vertex to the

right, with an edge to the previous free vertex
(increasing the backbone length by 1). This is
called a backbone step.

For r ≥ s, then Wr,s is just a path of length 2 with both
leaves on the left, and one internal node on the right.

Illustrations of a witness template and a caterpillar can
be found in Figure 1.

Let B = {z1, z2, . . . zs−r} denote the vertices on the
backbone. The number of hair steps encountered in
the first t steps is b (t)r

s c. Further, the final step
in the construction adds the (r + 1)th leaf of the
structure.

The distinguishing algorithm. Let d ≤ kγ , ∆ ≥
nα/2. We will pick integers r, s such that γ+ ε1 ≤ r/s ≤
α− ε2, where ε1, ε2 ≥ ε > 0 are constants.

Algorithm Alg-Distr,s:

1. For every guess of r+ 1 vertices u0, u1, u2, . . . , ur ∈
L along with an assignment of labels σ0, σ1, . . . , σr
to each of them
(a) Given the fixed vertices or leaves of Wr,s

being U = (u0, u1, u2, . . . , ur), check if there
are at least log2s n occurences of Wr,s in G,
supported on U .

(b) For each of the first O(logn) occurences H ⊆
G of Wr,s supported on U , check if there is a
satisfying assignment for the vertices of H that
is (individually) consistent with the assignment
σ0, σ1, . . . , σr for U .

(c) If TRUE (i.e. there are such consistent
occurences), output DY ES and return.

2. Output DNO.

We note that we can check for every occurence H of
Wr,s if there is a satisfying assignment consistent with
σ0, . . . , σr in time kr · poly(k, n) i.e., polynomial time.
Hence, the running time of the algorithm is at most
NO(s+r).

4There is a small difference c.f. [BCC+10] where the initial
vertex is a backbone vertex – this is more of a notational thing.

The analysis of the distinguishing algorithm is straight-
forward from the following proposition which shows that
the distinguishing algorithm works if the log-density
condition is satisfied.

Proposition 4.1. Consider the problem of distinguish-
ing between projection games drawn from DY ES vs DNO
with parameters ∆ = nα/2, d = kγ. If r, s are inte-
gers satisfying γ + ε1 ≤ r/s ≤ α − ε2 for some small
constants ε1, ε2 > 0, then Alg-Distr,s will run in time
nO(r+s) and distinguish between DY ES and DNO with
high probability.

We only sketch the proof here, since this is subsumed by
the algorithm in Section 5.

Proof Sketch. The proof consists of three main steps:

1. In any random graph G of average degree ∆ >
n
r

2s+ε2 for some ε2 > 0, w.h.p. for any fixing U of
the r + 1 leaves, the number of occurrences of Wr,s

in G with mutually disjoint internal vertices is at
least nε2s. This can be shown using an inductive
argument similar to Densest k-subgraph [BCC+10,
Vij12]. Getting high probability bounds is not
completely straightforward : it is done by a careful
induction that follows the construction of the
template, and along with a trick called color coding
to decouple some dependencies.

2. Given an instance from DY ES , it is satisfiable (let
us call this assignment φ∗). Hence, for every fixing
of leaves U in G, the assignment φ∗ satisfies every
occurence H supported on U , as long as the fixed
assignment to the leaves σ0, σ1, . . . , σr is consistent
with φ∗.

3. For an instance drawn from DNO i.e., a random
projection game with d ≤ kr/s−ε1 let H ⊆ G
be an occurence of Wr,s supported on U . For a
fixed assignment to the leaves σ0, σ1, . . . , σr, the
probability that there is an assignment to the
internal vertices that satisfies H is at most k−ε1r.

4. Since each witness template Wr,s has many oc-
curences in G, for a fixed assignment σ0, σ1, . . . , σr
to U , the probability that there is an extension of
this assignment that satisfies at least Ω(logn) many
occurences is at most k−ε1r logn. By taking a union
bound over all the kr+1 assignments to the leaves
U we get the required result.

2

The above algorithms require that r < s: this corre-
sponds to the regime when ∆ ≤ n1/2. On the other
hand, if ∆ > n1/2 logN , then it is easy to see that w.h.p.

906 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited



from every vertex u ∈ L, there are O(logN) paths of
length 2 from u to every other vertex v in L. This will
allow us to use similar arguments to show that for every
fixing of a label for u, for every vertex v ∈ L, there is
no label that satisfies O(logN) of the paths from u to
v.

4.2 Planted Random model The distinguishing al-
gorithm can refute the existence of a satisfying assign-
ment for DNO, but it does not find a satisfying as-
signment for instances from DY ES . We now consider
the corresponding search version in planted random in-
stances.

Definition 4.2. (Planted Random Model DPL)
The distribution of instances DPL is parameterized by
a planted assignment φ∗, and parameters n,∆, k, d.
A projection game drawn from this model DPL has
a supergraph G(L,R,E) that is drawn from an
Erdős-Rényi bipartite random graph with parameters
G(n/2, n/2, p = ∆/n). For each edge e ∈ E, the
projection πe is chosen from a random right-regular
bipartite graph of degree d that is consistent with φ∗.

The instance has a satisfying assignment φ∗, but other-
wise the projections are random. Here the algorith-
mic goal is to maximize the number of constraints
satisfied. In this section we will design an algorithm
Alg-Planted that given an instance drawn from DPL
finds an assignment satisfying at least N−(3−2

√
2+ε) frac-

tion of all constraints, for any constant ε > 0.

The algorithm proceeds in iterations: there may be
O(1/ε) of them. In each iteration, we will run two steps,
one of which will succeed:

Simple Algorithms. Run two simple algorithms as
described in Section 3 in order to satisfy at least
max{ dk ,

1
∆} fraction of the edges (see Lemma 5.3). This

approach will be used when we do not have a significant
log density gap.

Label Reduction. We will reduce the label set size (k
initially) for each vertex in L by a factor of NΩ(ε), while
guaranteeing that the label-reduced instance remains
satisfiable. We will then recurse into this instance.

In fact, the Label Reduction step will produce a
polynomial number (say q of them) of “left label
reductions” i.e., subinstances in which the label sets
Σ′i : L → P([k]) for nodes in L have been reduced
by a factor of at least Nε for a constant ε > 0, with
the guarantee that at least one of these subinstances is

still satisfiable (in general, it will be Ω̃(1)-satisfiable).
This label reduction step gives a new notion of progress
which does not correspond to any aspect of similar
algorithms for Densest k-Subgraph which inspired our
algorithm.

If ∆ >
√
n, then a simple algorithm based on considering

paths of length 2 can be used to get either a good
approximation of N−O(ε) or we can get the required
label reduction (see Lemma 5.4). The main component
of our algorithm performs well when there is a significant
log density gap i.e. if ∆ ≥ n

α
2 Nε and d ≤ kα/Nε for

some ε > 0. In this case, our algorithm will reduce the
label sets in L by a factor of NΩ(ε). It may seem strange
that this can always be achieved, but note that for a
significant log density gap (as required below) we must
have k > Nε, so the label reduction will not continue
indefinitely (one of the two simple algorithms may work
at this point). In fact, it may not occur at all, if our
instance does not have a log density gap to begin with.
The guarantee of the main component of our algorithm
is as follows:

Lemma 4.1. In a Planted Random Label Cover instance
as above, if for some α > 0 and ε > 0 we have d ≤ kα/Nε

and ∆2 ≥ nαNε, then we can find kO(1/ε) left label
reductions {Σ′i : L→ P([k]) | i ∈ [q]} with alphabet size
|Σ′i(u)| ≤ k/Nε/2 ∀i ∈ [q] and u ∈ L, such that for some
i ∈ [q] the instance defined by G and Σ′i is satisfiable.

Before we describe the Label Reduction algorithm and
analysis, we will first see why this implies the stated
approximation guarantee.

Approximation Ratio. Suppose n = Nβ . Our goal
is to obtain an N

β(1−β)
2−β +O(ε) approximation. We can

assume that ∆ ≥ nδ/2+ε and d ≤ kδ−ε: otherwise
we get a min{∆, k/d} = N

β(1−β)
2−β +O(ε) ≤ N3−2

√
2+O(ε)-

approximation.

Otherwise, we have a log-density gap. Hence, the label-
reduction procedure can be used to bring down the label
size by Nε and we recurse. This recursion bottoms out
when we have at most Õ(1) labels per left vertex, or we
do not have a log-density gap, in which case the simple
algorithms get a N

β(1−β)
2−β +O(ε) approximation. The final

labeling that the algorithm outputs is the best of all the
labelings output by the two simple algorithms, and the
labeling output after the end of label reduction. As we
shall see, a single iteration of label-reduction will involve
choosing O(1/ε) leaf vertices and guessing the correct
labels for them. Considering the O(1/ε) iterations, we
will need to choose O(1/ε2) leaf vertices and guess their
labels — hence, the total run time is kO(1/ε2)NO(1) i.e.,
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polynomial time for any constant ε > 0.

Label Reduction from Log-density Gap For any
α ∈ (0, 1) as in Lemma 4.1, we can choose natural num-
bers r, s > 0 so that |α − r

s | < ε/2 and s ≤ d1/εe.
In the algorithm, we will guess the assignment for
a constant number of vertices on the left bipartition
L of the supergraph G, and try to infer (or narrow
down) the potential labels for the rest of the vertices
on the left. The algorithm consists of a family of algo-
rithms Alg-Plantedr,s given by the witness templates
Wr,s introduced earlier, parameterized by two integers
r, s.

A single iteration of algorithm Alg-Plantedr,s corre-
sponding to structureWr,s will fix all but the last leaf of
Wr,s to be a set of vertices u0, u1, . . . , ur−1 (on the left)
and then consider the candidates for the “free vertices”
of Wr,s and possible labels for each of these vertices. In
fact, we will focus on the (s− r) free vertices from the
left and their labels. Specifically, at every step of the
iteration, we will maintain some set of nodes S, and some
set of feasible labels for each node in the set. Initially,
this set will simply be the first leaf which we fix to be
S = {u0}, with a label which we will guess (in the final
algorithm, we will try all possible labelings for the con-
stant number of fixed nodes). The rest of the iteration
proceeds by following along the inductive construction
of Wr,s as defined in Definition 4.1:

Backbone Step. If the current step is a “backbone
step”, or the last step in the construction, then we let
our new set be Γ(Γ(S)), and we restrict the label sets
as follows. For every vertex v ∈ Γ(S), restrict its label
set only to labels that are consistent with some label
in all of v’s neighbors in S. Similarly, for every vertex
u ∈ Γ(Γ(S)), restrict its label set only to labels that are
consistent with some label for each neighbor of u in Γ(S).
Please refer to Figure 1 for an illustration of a backbone
step.

Note that the expansion of G (a random graph) guaran-
tees that the new set will have cardinality |Γ(Γ(S))| =
min{|L|,Ω(∆2|S|)}. Moreover, since these the con-
straints are d-to-1 projections, the label set sizes in
the new set will be at most a d-factor larger than the
label sets we consider for nodes in S, and will still con-
tain the correct labels if this was the case for S. In
fact, with some minor modifications, a similar approach
will also work in the semi-random model, since these
bounds do not require the projections to be random.
Thus, the effect of a backbone step can be summarized
as follows:

Claim 4.1. In the random planted model, performing

a backbone step on a set S ⊆ L with label sets of
size at most k′ yields a set S′ ⊆ L such that |S| =
min{n,Ω(|S|∆2)} with label sets of size at most k′d. If
the label sets of S contain the planted labeling, then so
do the label sets of S′.

Hair Step. If the current step in the construction is
a “hair step” (except for the last step), then we guess
a label for the next leaf ui, and let our new set be the
intersection5 S ∩ Γ2(ui). We also restrict the set of
possible labels for each of these nodes to be labels that
match any labels of neighbors in Γ(ui) induced by the
labeling of ui.

Again, since G is a random graph, we are guarantee
(w.h.p.), that the new set will have cardinality |S ∩
Γ2(ui)| = Ω(|S|∆2/n). Moreover, the randomness of the
projections guarantees that the label sets for nodes in
the new set will be a factor d/k smaller. This cannot
be guaranteed in the semi-random model, and will
need to be handled differently. In the random planted
setting, the effect of a hair step can be summarized as
follows:

Claim 4.2. In the random planted model, performing
a hair step on a set S ⊆ L of size ω̃(n/∆2) with
label sets of size at most k′ yields a set S′ ⊆ L such
that |S| = Θ(|S|∆2/n) with label sets of size at most
max{k′d/k, Õ(1)}. If we correctly guess the planted label
for ui and the label sets of S contain the planted labeling,
then so do the label sets of S′.

The purpose of a single iteration is to narrow down the
label sets of all vertices in L. Once this is done, we
can fix a new set of leaves and labels and repeat the
process until every vertex on the left has Õ(1) labels
(assuming all our guesses for the labels of fixed vertices
were correct, otherwise the label sets will be empty), or
we no longer have a log density gap (in which case the
simple algorithms apply). We will show that for the right
choice of parameters, we only need a constant number
of iterations (and thus a constant number of leaves for
which we have to guess all possible labelings) until we
have discovered the right labels. The analysis of a single
iteration is given in the following proposition:

Proposition 4.2. Given an instance of the planted
random model with parameters ∆ ≥ n

r
2s+ε, with the

projections having d ≤ k
r
s−ε, a single iteration of

Algorithm Alg-Plantedr,s which guesses the correct
labels for the fixed vertices returns label sets for all

5Note that for any S ⊆ L, Γ2(S) ⊆ L is the set of all nodes in
L that have a path of length 2 to S.

908 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited



Figure 1: The figure on the left shows the caterpillar structures W (r, s) and Wr,s for r = 3, s = 5. The structure
has 4 leaves, and 7 internal vertices in total. The figure on the right shows a backbone step. S is the set of
candidate vertices at the start of the step, and the solid circles denote the set of feasible labels of each vertex in S.

vertices in L of size k1−ε which contain the right labels
for those vertices.

Proof. Consider the first leaf (from the left). Suppose
we fix the leaves to be vertices u0, u1, . . . , ur−1 (picked
arbitrarily) from the left partition of the supergraph G.
By step t ∈ [s] in the inductive construction of caterpillar
W (r, s), ht = b trs c of them are leaf steps and the rest
bt = t− ht steps are backbone steps. Let M(t) denote
the number of candidates of the set S after t steps, and
K(t) represented the largest label set size after t steps.
Then the following claim follows by induction on t using
Claim 4.2 and Claim 4.1 for the corresponding steps.

Claim 4.3. Conditioned on the correct assignment to
the first leaf (u0), the number of candidates M(t) for the
rightmost backbone vertex after t steps of the caterpillar
CaL,b satisfies w.h.p.
M(t) ≥ (nr/s)bt(n−(s−r)/s)ht logtN , and the average
number of valid labels for each of these vertices is
K(t) ≤ (kr/s)bt(k−(s−r)/s)ht logtN .

It is fairly straightforward to check the bounds M(t) and
K(t) hold in expectation. For the exact bounds, we will
get w.h.p. estimates (up to a loss of polylog(N) factors)
since M(t),K(t) ∈ [Nε, N1−ε] for some small constant
ε > 0 (this follows from the properties of the structure).
We do not prove the claim here.

Consider the final step, i.e., for t = s. After step t− 1,
the number of candidates for the rightmost backbone
vertex is at least (nr/s)s−r(n−(s−r)/s)r−1 = n1−r/s

(by the choice of parameters). Similarly, K(t − 1) ≤
(kr/s)s−r(k−r/s)r−1 = k1−r/s.

To find a valid labeling, we do a backbone step at the last
step t = s (instead of the hair step in the distinguishing
algorithm). Since w.h.p. the graph on L (induced by

paths of length 2) has expansion ∆2 ≥ nr/s+ε, and in the
second-to-last set we have more than n/∆2 candidates,
this will reach all vertices in L. On the other hand,
the number of valid labels for these vertices (in our
algorithm) is at most d ·K(t− 1) ≤ k1−ε. Furthermore,
it is easy to see that if all guesses of labels were correct,
than these label sets still include the (correct, satisfiable)
planted assignment. 2

5 Approximating Label-Cover in the
Semi-random model

5.1 Expansion Properties and Random graphs
Our algorithm in the semi-random model is designed for
instances in which the supergraph is a random bipartite
graph. However, the algorithm prunes the graph in non-
random ways in several iterations, so that we need to
prove correctness not only for random graphs, but more
generally for graphs which retain some of the expansion
properties of random graphs. It turns out that for our
analysis, simple edge-expansion or vertex-expansion is
not enough, since these properties will not survive the
pruning.

Definition 5.1. We call a bipartite graph on vertices
L × R such that |L| = nL and |R| = nR a strong
(∆L,∆R)-expander if the following conditions hold:

• ∆LnL = ∆RnR. Let us denote p = ∆R/nL =
∆L/nR, and n = nL + nR.
• Every u ∈ L has degree ∆L ≥ deg(u) = Ω̃(∆L).
• Every u ∈ R has degree ∆R ≥ deg(v) = Ω̃(∆R).
• For every vertex set S ⊆ L, the vertices {v ∈ R |
|Γ(v) ∩ S| ≥ max{2p|S|, logn}} contribute at most
Õ(|S|) edges to S.
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• For every vertex set T ⊆ R, the vertices {u ∈ L |
|Γ(v) ∩ T | ≥ max{2p|T |, logn}} contribute at most
Õ(|T |) edges to T .

Note that a random bipartite graph with edge probability
(1− o(1))p is a strong (pnR, pnL)-expander w.h.p. We
may also consider a somewhat weaker property:

Definition 5.2. We call a bipartite graph on vertices
L×R such that |L| = nL and |R| = nR a weak (∆L,∆R)-
expander if the following conditions hold:

• ∆LnL = ∆RnR. Let us denote p = ∆R/nL =
∆L/nR, and n = nL + nR.
• Every u ∈ L has degree ∆L ≥ deg(u) = Ω̃(∆L).
• Every u ∈ R has degree ∆R ≥ deg(v) = Ω̃(∆R).
• For every vertex set S ⊆ L, the vertices {v ∈ R |
|Γ(v) ∩ S| ≥ max{2p|S|, logn}} contribute at most
õ(|S|∆L) edges to S.

• For every vertex set T ⊆ R, the vertices {u ∈ L |
|Γ(v) ∩ T | ≥ max{2p|T |, logn}} contribute at most
õ(|T |∆R) edges to T .

Note that both strong (∆L,∆R) expansion and weak
(∆L,∆R) expansion are hereditary properties in the fol-
lowing sense. Any subgraph of a strong/weak (∆L,∆R)-
expander G = (L,R,E) which contains at least Ω̃(|E|)
edges and is nearly-biregular is also a strong/weak
(∆L,∆R)-expander, since the last two properties are
clearly hereditary.

Finally, note that a (weak) (∆L,∆R)-expander is, in
particular, a good vertex expander. Indeed, for any
vertex set S ⊆ L, for example (the argument for subsets
of R is identical), by the degree bounds, there are
Ω̃(∆L|S|) edges incident to vertices in S, and most
of them have endpoints in R which have at most
O(max{p|S|, logn}) neighbors in S (by the second-to-
last property). Thus, the number of such vertices that
S expands to as at least Ω̃(∆L|S|/(max{p|S|, 1})) =
Ω̃(min{nR,∆L|S|}) vertices.

5.2 From planted random to semi-random mod-
els The algorithms for the semi-random model are di-
rectly inspired by the planted random model; however,
there are significant technical issues that arise because
of the adversarial nature of the projections. For sim-
plicity, we will assume the same regularity properties
as in the previous section. The preprocessing in Sec-
tion 5.3 ensures that by bucketing and pruning, these
conditions are approximately true up to polylogarithmic
factors. However, this is at the loss of full satisfiability
(or perfect completeness): in the remaining instance,
we have an assignment that satisfies a 1/poly(logN)

fraction of the edges. This introduces some technical
complications, which are handled by modifying each step
of the algorithm (and analysis) appropriately.

The primary challenge is in each of the hair steps in the
caterpillar based procedure. The aim in a hair step is to
reduce the label size of a current working subset S ⊆ L of
left vertices. This is achieved by intersecting S with the
two-step neighborhood of a carefully chosen vertex v ∈ L.
If we fix the correct label for v, the label set of these
vertices S ∩ Γ2(v) will be significantly smaller when the
projections are random. However, this need not happen
when the projections are arbitrary. To handle this, we
show that if for every leaf v ∈ L, the correct label for v
does not give the required label size reduction, then these
labels stand out. We show that there are significantly
fewer than k labels for every vertex v ∈ L that satisfy
these properties. Hence, if the hair step doesn’t work
this can be used to obtain obtain a significant label
size reduction for every vertex v ∈ L. Since we cannot
know which kind of label is more prevalent among the
correct labels for nodes in L, our algorithm will fork by
essentially trying both possibilities.

As in Section 4.2, the algorithm proceeds in O(1/ε)
iterations. In each iteration, we will run two steps,
one of which will succeed: Simple algorithms or Label
Reduction. The iteration proceeds by following the
inductive construction of Wr,s, as in the algorithm for
the Planted Random model (section 4.2). The backbone
step proceeds in a similar identical fashion to section 4.2,
though we also need to handle the instance not being
fully satisfiable. The hair step differs significantly from
section 4.2.

Hair Step. If the current step in the construction is
a “hair step”, let k′ be the current bound on the size of
label sets in S. We will try two approaches. Fix the next
leaf ui ∈ L and a label σui for ui (the algorithm will try
performing the hair step for all possible choices for ui
and σui). Let S′ = S ∩ Γ(Γ(ui)). For every vertex in
u ∈ S′, restrict its current label set to labels that match
the label of at least one neighbor in Γ(u)∩Γ(ui) induced
by the labeling of ui. That is, if the current label set for
u is Σ(u), let

Σ′(u) = Σ(u) ∩
⋃

v∈Γ(ui)∩Γ(u)

π−1
(u,v)(π(ui,v)(σui)).

In the planted random case, the label sets for S′ will
contract to size k′′ ≤ k′/k1−r/s as required.

However, in the semirandom case, the projections are no
long random, and this contraction of label sets may not
occur. In this case, we do the following. For every vertex
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v ∈ Γ(S), consider every possible label σv of v. If for
every neighbor u ∈ Γ(v) ∩ S we have |π−1

(u,v)(σv)| > k′′,
then call σv a bad label for v (in this step). For every
u ∈ L, call a label σu bad for u if for every neighbor
v ∈ Γ(u) ∩ Γ(S) the matching label π(u,v)(σu) is bad
for v. Add to the current list of label reductions the
reduction which assigns to every left node u ∈ L only its
bad labels. These will sometimes informally be called
abort steps.

Formally, our algorithm proceeds by a sequence of
backbone and hair steps in the order corresponding to
Wr,s, enumerating over every possible choice of leaves
for Wr,s and labels for those leaves (this will include
choices consistent with φ∗). When these latter choices
behave well (like in the random planted model), the final
step is guaranteed to give reduced label sets, such that
they retain the correct labels, and thus all such label
reductions are added to the list (for every choice in our
enumeration). However, when a leaf node in G behaves
badly (its labeling according to φ∗ does not bring about
the desired label reduction), that actually allows us to
identify a reduced label set for this leaf, since, as we will
show, few labels can have the combinatorial properties
associated with a bad label. Thus, at every hair step we
also add to our list of label reductions the label reduction
corresponding to possible bad labels.

Our main algorithmic tool of Label Reduction is de-
scribed in the following lemma:

Lemma 5.1. For every constant ε > 0, there is a poly-
nomial time algorithm which, given an Ω̃(1)-satisfiable
projection games on a weakly (∆L,∆R)-expanding su-
pergraph G = (L,R,E) with alphabet size k, returns one
of the following:

• A labeling which satisfies at least a
1/Nβ(1−β)/(2−β)+ε fraction of constraints, where
N = k|L| and |L| = Nβ.
• A polynomial number of left label sets {Σi : L →
P([k]) | i ∈ [t]} such that for every index i ∈ [t] and
left node u ∈ L, we have |Σi(u)| ≤ k/Nε/2, and for
at least one index i ∈ [t], the subinstance defined by
label sets Σ is Ω̃(1)-satisfiable.

5.3 Pruning highly satisfiable projection games
As in the previous section, we only consider nearly-
biregular bipartite graphs. That is, bipartite graphs G =
(L,R,E) such that |L| = nL, |R| = nR, every vertex
u ∈ L has degree ∆L ≥ deg(u) = Ω̃(∆L), and every
vertex v ∈ R has degree ∆R ≥ deg(v) = Ω̃(∆R), for
some ∆L,∆R such that nL∆L = nR∆R. We show that
any projection game which is at least Ω̃(1)-satisfiable can

be decomposed into a logarithmic number of subinstances
with additional regularity properties which will help in
the design and analysis of our algorithm.

Lemma 5.2. Let G = (L,R,E, [k], [k], {πe}e∈E) be a
projection game with supergraph G = (L,R,E), alphabet
size k, and projection {πe}e∈E, such that G is nearly-
biregular, and such that there exists a labeling which
simultaneously satisfies at least Ω̃(|E|) edges. Then we
can find a set of at most log k subinstances {π′e}e∈E′ on
G such that at least one has the following properties:

• The projections are d-to-1 for some d > 0: For every
superedge (u, v) ∈ E, every label σ in the image of
π′(u,v) has a preimage of size |π′−1

(u,v)(σ)| ≤ d.
• For the same d the label set of every right vertex
v ∈ R has size |

⋃
u∈Γ(v) π

′
(u,v)([k])| = Õ(k/d).6

• There is a nearly-biregular subgraph of G with Ω̃(|E|)
edges which is fully satisfiable (satisfying projections
{π′e}e∈E).

Proof. For every j ∈ [log k], construct a subinstance as
follows: For every edge (u, v) ∈ E, consider only labels σ
for v such |π−1

(u,v)(σ)| ∈ [2j−1, 2j ], and only the preimages
of these labels for u. Note that different edges incident in
u (or v) can now associate a different label set with that
node. There are log k such subinstances, therefore, at
least one of them retains a correct labeling for a 1/ log k
fraction of edges which were originally simultaneously
satisfiable. For the index j corresponding to such a
subinstance, let d = 2j .

Since in this subinstance, we can still satisfy Ω̃(|E|)
edges, it is easy to see that there exists a nearly-biregular
subgraph H of G which is fully satisfiable: Indeed, as
a thought-experiment, consider a fixed labeling which
satisfies m = Ω̃(|E|) edges. Then for some sufficiently
large constant C > 0, suppose we removed all vertices
u ∈ L with at most ∆L/ logC(n) satisfied incident
edges, and vertices v ∈ R with at most ∆R/ logC(n)
satisfied incident edges. Then the total number of
edges removed is at most o(m), and all remaining
vertices in L,R have satisfiable-degree Θ̃(∆L), Θ̃(∆R),
respectively. Removing unsatisfied edges would give the
desired subgraph.

Note that in the subgraphH above, for every right vertex,
the correct label participates in at least ∆R/ logC(n)
satisfied edges. Therefore, we can further prune our
instance by discarding, for every vertex v ∈ R (in the
original graph G), all labels that currently participate

6We think of the projections as being defined by a label-
extended graph, so for certain edges, some labels on the left
may not necessarily have a corresponding label on the right.
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in fewer than ∆R/ logC(n) edges. This does not reduce
the number of satisfied edges in H.

Finally, let {π′e}e∈E be the projections in the current
subinstance. Note that for any edge (u, v) ∈ E, the
image ΣR(u,v) := π′(u,v)([k]) has cardinality at most 2k/d.
This is because every label σ ∈ ΣR

(u,v) has a preimage
π′
−1
(u,v)(σ) of cardinality at least d/2, and these preimages

are disjoint (since π′(u,v) is a projection). Moreover, for
any vertex v ∈ R, every remaining label of v participates
in at least a 1/ logC(n) fraction of these images ΣR

(u,v),
therefore, the union of all these label sets has size at
most logC(n)

deg(v)
∑
u∈Γ(v) |ΣR(u,v)| = Õ(k/d). 2

5.4 Labeling and label reduction As opposed to
previous algorithms, our algorithm may not immediately
choose a labeling. Rather, we produce a polynomial
number of subinstances in which the label sets nodes
in L have been reduced by a factor of at least Nε for
a constant ε > 0, with the guarantee that at least one
of these subinstances is still Ω̃(1)-satisfiable even when
restricted to the label-reduced nodes on the left. This
is a novel feature which does not correspond to any
aspect of similar algorithms for Densest k-Subgraph
which inspired our algorithm.

Lemma 5.1 immediately gives our approximation guaran-
tee for Projection Games on weak (∆L,∆R)-expanders,
and in particular for semi-random instances.

Theorem 5.1. For every ε > 0, there is a polynomial
time Nβ(1−β)/(2−β)+ε-approximation algorithm for an
Ω̃(1)-satisfiable projection games on weakly (∆L,∆R)-
expanding supergraphs G = (L,R,E) with alphabet size
k, where N = |L|k and |L| = Nβ.

Proof. Given a projection game on a graph G0 =
(L0, R0, E0) as above with alphabet size k0, and a
constant ε0 > 0, we let N0 = |L0|k0, and run the
algorithm from Lemma 5.1 recursively. That is, we
run the algorithm on the original instance. If we get a
good labeling, we output this labeling. Otherwise, we
recurse on all the subinstances induced defined by label
set Σi for i = [t]. Formally, the algorithm is as follows:

• Given a projection game on graph G = (L,R,E)
and alphabet size k, let N = |L|k, and ε ≥ ε0
such that Nε = N0

ε0 . Run the algorithm from
Lemma 5.1 with parameter ε.
• If the algorithm returns a labeling, return this

labeling.
• Otherwise, for each Σi, run the algorithm recursively

on the subinstance defined by these label sets.

• If for at least one Σi, the algorithm finds a good
labeling, return this labeling.

The correctness of the algorithm can be shown for all
Ω̃(1) instances, by induction on k. If k < Nε/2, then by
Lemma 5.1 we must get a good labeling, since the label
sets in L cannot be reduced to size at most k/Nε/2.

Otherwise, we may still get a good labeling, in which
case we are done. Otherwise, suppose we get a set of
reduced label sets {Σi | i ∈ [t]}. The lemma guarantees
that for at least one i, the subinstance defined by label
sets Σi is Ω̃(1) satisfiable. By our induction hypothesis,
running the algorithm recursively on this instance will
yield a labeling. Let us analyze the fraction of edges
satisfied by this labeling. The new label set size is
k′ = k/Nε/2, giving us total size N ′ = k′|L| = N1−ε/2,
and therefore |L| = (N ′)β/(1−ε/2). Let β′ = β/(1− ε/2)
and ε′ = ε/(1− ε/2) (so (N ′)ε′ = Nε = Nε0

0 ). Then by
the induction hypothesis, the fraction of edges satisfied
by the labeling (up to a polylogarithmic factor) will be

(N ′)−
β′(1−β′)

(2−β′) −ε
′

= N
− β(1−β′)

(2−β′) −ε > N−
β(1−β)
(2−β) ,

where the inequality follows since β′ > β.

Note that the recursion depth can be at most 2/ε, so the
number of subinstances produced is polynomial, since
the fanout at every level of the recursion is polynomial,
and the recursion depth is constant. 2

5.5 Simple algorithms and parameterization
The algorithm which proves Lemma 5.1 starts by apply-
ing the pruning procedure of Lemma 5.2. Thus, through-
out this section and the next, we may assume that our
instance is already of the form guaranteed by the lemma
(and by the hereditary properties of weakly (∆L,∆R)-
expanding graphs):

• The supergraph G = (L,R,E) is weakly (∆L,∆R)-
expanding, and nodes in L have alphabet size k.
• The projections are d-to-1 for some d > 0: For every

superedge (u, v) ∈ E, every label σ in the image of
π(u,v) has a preimage of size |π−1

(u,v)(σ)| ≤ d.
• For the same d the label set of every right vertex
v ∈ R has size |

⋃
u∈Γ(v) π(u,v)([k])| = Õ(k/d).

• There is a subgraph H of G with Ω̃(|E|) edges
which is also weakly (∆L,∆R)-expanding, and fully
satisfiable (satisfying projections {πe}e∈E).

We formally state and give the guarantees for the simple
algorithms that are described at the end of section 3.
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Lemma 5.3. In a Label Cover instance as above,
we can find a labeling which satisfies at least a
1/Õ(min{∆L,∆R, k/d})-fraction of constraints.

Proof. To see that we can always satisfy an Ω̃(d/k)-
fraction of constraints, consider the following algorithm:

• For every right node, choose a label independent
uniformly at random.
• For each u ∈ L, choose a label which maximizes the

number of satisfied constraints involving u.

For every right node in H, there is an Õ(d/k) probability
that we will choose the correct label. Since H contains
Ω̃(|R|) right nodes, in expectation an Ω̃(d/k) fraction of
right nodes will be correctly labeled, and thus, by near-
regularity, the greedy labeling on the left will satisfy at
least an Ω̃(d/k)-fraction of all constraints.

To see that we can satisfy a 1/Õ(min{∆L,∆R})-fraction
of constraints, first consider the case when |L| ≥ |R|.
Note that in this case we have ∆L = Õ(∆R), so we only
need to show that there is an Ω̃(1/∆L)-approximation.
Indeed, consider the following algorithm:

• For every u ∈ L choose a neighbour v ∈ R of u
uniformly at random, and let F be the set of edges
chosen.
• For every v ∈ R, consider its neighbours ΓF (v) in
F , and choose a label σv for v which maximizes
the number of neighbours u ∈ ΓF (v) such that
the preimage π−1

(u,v)(σv) is non-empty. For every
u ∈ L choose a label which satisfies π(u,v) if one is
available.

It is easy to check that every right node in H will have
at least Ω̃(|L|/|R|) F -neighbours in H with probability
Ω̃(1). Thus, the greedy labeling will satisfy in expec-
tation at least Ω̃(|L|) edges out of |E| = Õ(|L|∆L), as
required. The case when |L| < |R| is symmetric. 2

Now recall that Lemma 5.1 does not necessarily require
that we label any nodes. We may also reduce the size
of label sets on the left. This allows us to deal with a
special case:

Lemma 5.4. In the above notation, if ∆L · ∆R ≥ |L|,
then for any ε > 0, we can either satisfy an Ω̃(1/Nε)-
fraction of all constraints, or output a polynomial number
of label set reductions Σ1, . . . ,Σt : L → [k] as in
Lemma 5.1 with alphabet size at most k/Nε.

Proof. First, if d ≥ k/Nε, then by Lemma 5.3, we can
label an Ω̃(d/k) = Ω̃(1/Nε)-fraction of all constraints.

Thus, suppose d < k/Nε. Then for every node u ∈ L
and label σu ∈ [k], let Ru,σu be the set of neighbours

v of u such that the projection π(u,v) maps σu to some
label of v. Now, let Lu,σu = Γ(Ru,σu). For every node
u′ ∈ Lu,σu , assign to this node the label set

Σu,σu(u′) =
⋂

v∈Γ(u′)∩Ru,σu

π−1
(u′,v)(π(u,v)(σu)).

That is, Σu,σu(u′) is the set of labels for that node whose
projections agree completely with the projections of σu
for u. Note that fixing any neighbour v ∈ Γ(u′) ∩Ru,σu ,
the new label set for u′ has size |π−1

(u′,v)(π(u,v)(σu))| ≤
d < k/Nε, as required. For nodes u′ ∈ L \ Lu,σu , let
Σu,σu(u′) be any arbitrary set of k/Nε labels.

We now output the list of all label reductions Σu,σu

(for all u ∈ L and σu ∈ [k]). To see that at least
one of these label sets satisfies the requirements of the
lemma, consider a left node u in H, and a correct
label σu for u (in a labeling which completely satisfies
H). Then every node in v ∈ Ru,σu will be assigned
the correct label π(u,v)(σu), and thus for every node
u′ ∈ V (H) ∩ Lu,σu = V (H) ∩ Γ(Ru,σu), the label set
Σu,σu(u′) will also contain the correct label for u′. Since
∆L ·∆R ≥ |L|, by the expansion properties of H, we have
that |V (H) ∩ Lu,σu | = Ω̃(|L|), which, by near-regularity,
makes the instance defined by label sets Σu,σu at least
Ω̃(1)-satisfiable. 2

As in the random planted case, the main component of
our algorithm performs well when there is a significant
log density gap. In this case, our algorithm will reduce
the label sets in L by a factor of Nε. It may seem strange
that this can always be achieved, but note that for a
significant log density gap we must have k > Nε, so the
label reduction will not continue indefinitely. In fact, it
may not occur at all, if we our instance does not have
a log density gap to begin with. The guarantee of the
main component of our algorithm is as follows:

Lemma 5.5. In a Label Cover instance as above, if
for some α > 0 and ε > 0 we have d ≤ kα/Nε and
∆L∆R ≥ |L|αNε, then an algorithm that runs in time
NO(1/ε) finds a polynomial number of left label reductions
{Σi : L → [k] | i ∈ [t]} as in Lemma 5.1 with alphabet
size at most k/Nε/2.

The next section is devoted entirely to the algorithm
which proves this lemma. Let us now see how our main
guarantee now follows.

Proof of Lemma 5.1. First, consider the case when
|R| ≤ |L|, and let |R| = |L|γ (for some γ ≤ 1). Let
α = 2−2β

2−β · γ + 1− γ(= 1− β
2−β · γ). By Lemma 5.5, if

we have d ≤ kα/Nε and ∆L ≥ |L|(1−β)γ/(2−β)Nε, then
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we are done, since the latter inequality implies that

∆L ·∆R = ∆L · (∆L · |L|/|R|) = ∆2
L|L|1−γ ≥ |L|αN2ε.

On the other hand, suppose one of the two bounds does
not hold. If d > kα/Nε, then by Lemma 5.3, we can find
a labeling where the fraction of constraints satisfied is

d

k
>
kα−1

Nε
= k−

β
2−β ·γ

Nε
= N−

β(1−β)
2−β ·γ−ε ≥ N−

β(1−β)
2−β −ε.

If ∆L < |L|(1−β)γ/(2−β)Nε, then again we can apply
Lemma 5.3, and get a labeling in which the fraction of
satisfied constraints is at least

∆−1
L ≥ 1/(|L|

(1−β)
(2−β) ·γNε) = N−

β(1−β)
2−β ·γ−ε ≥ N−

β(1−β)
2−β −ε.

Now consider the case when |R| ≥ |L|, where |R| = |L|γ
(now for some γ ≥ 1). Let us first eliminate a simple
case: If γ ≥ 2, then note we must have ∆R ≥ 1
(otherwise, by Lemma 5.3, we can satisfy an Ω̃(1)-fraction
of constraints). But this means that ∆L = |R|∆R/|L| =
|L|γ−1∆R ≥ |L|γ−1 ≥ |L|, and so ∆L · ∆R ≥ |L|, and
then we are done by Lemma 5.4. Thus, we may assume
γ ∈ [1, 2). Now set α = 1− β

2−β · (2− γ). If d ≥ kα/Nε
and ∆L ≥ |L|(γ−β)/(2−β) · Nε, then we are done by
Lemma 5.5, since the latter inequality implies that

∆L ·∆R = ∆2
L|L|1−γ ≥ |L|

1−γ+ 2γ−2β
2−β N2ε = |L|αN2ε.

On the other hand, suppose one of the two bounds does
not hold. If d > kα/Nε, then by Lemma 5.3, we get a
labeling in which the fraction of satisfied constraints is
at least
d

k
> k−

β
2−β (2−γ)/Nε = N

−β(1−β)
2−β ·(2−γ)−ε ≥ N−

β(1−β)
2−β −ε.

If ∆L < |L|(γ−β)/(2−β)Nε, then again we can apply
Lemma 5.3, and get a labeling in which the fraction of
satisfied constraints is at least

1/∆R = |R|/(∆L|L|) ≥ 1/(|L|
γ−β
2−β +1−γNε)

= N−
β(1−β)

2−β ·(2−γ)−ε ≥ N−
β(1−β)

2−β −ε.

2

5.6 Label Reduction from Log-density Gap In
this section we will prove Lemma 5.5 and present the
algorithm that achieves the corresponding alphabet size
reduction, if there is a non-negligible gap in the log-
density. The algorithm is very similar to the algorithm
Alg-Plantedr,s which we used for the random planted
setting. We will sometimes use for convenience n to
represent |L|. Recall that as in section 5.5, we have
approximate regularity properties:

• The supergraph G = (L,R,E) is weakly (∆L,∆R)-
expanding, and nodes in L have alphabet size k.
• The projections are d-to-1 for some d > 0: For every

superedge (u, v) ∈ E, every label σ in the image of
π(u,v) has a preimage of size |π−1

(u,v)(σ)| ≤ d.
• For the same d the label set of every right vertex
v ∈ R has size |

⋃
u∈Γ(v) π(u,v)([k])| = Õ(k/d).

• There is a subgraph H of G with Ω̃(|E|) edges
which is also weakly (∆L,∆R)-expanding, and fully
satisfiable (satisfying projections {πe}e∈E). Denote
by φH : V (H)→ [k] a satisfying assignment to the
vertices of H.

For any α ∈ (0, 1), we can choose natural numbers
r, s > 0 so that |α− r

s | < ε/2 and s ≤ d1/εe. Note that
if we assume (as in Lemma 5.5) that ∆L∆R ≥ |L|αNε

and d ≤ kα/Nε then for α′ = r/s we still have

∆L∆R ≥ |L|α
′
Nε/2 and d ≤ kα

′
/Nε/2,

so α′ = r/s still lies within the log-density gap. We
now describe the algorithm for Label reduction in semi-
random instances in detail.

Algorithm Alg-Semirandomr,s for witness Wr,s.
The algorithm Alg-Semirandomr,s corresponding to
structure Wr,s will try all possible choices to fix the
leaves ofWr,s to be vertices u0, u1, . . . , ur−1 (on the left)
and every possible labeling for these leaves, and then
consider the candidates for the “free vertices” of Wr,s

(in particular, the (s− r) free vertices from the left) and
possible labels for each of these vertices. Specifically, at
every step of the iteration, we will maintain some set of
nodes S, and some set of labels for each node in the set.
Initially, this set will simply be the first leaf which we
fix to be S = {u0}, with a label which we will guess (in
the final algorithm, we will try all possible labelings for
the constant number of fixed nodes). At each step, we
will also enforce some bound on the size of label sets of
vertices in S (initially, this bound will be 1, meaning we
will guess a singly label for u0). The rest of the iteration
proceeds by following along the inductive construction
of Wr,s as defined in Definition 4.1:

Backbone Step: If the current step is a “backbone
step”, we let our new set be Γ2(S), and we restrict the
label sets in the following way:

1. For every vertex v ∈ Γ(S), restrict its label set
only to labels that are consistent with some label
in at least a Ω̃(1)-fraction of v’s neighbors in S (in
particular, if it has a single neighbor in Γ(S), simply
take the labels corresponding to the remaining label
set of that neighbor).
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2. For every vertex u ∈ Γ2(S), restrict its label set
only to labels that are consistent with some label in
at least a Ω̃(1)-fraction of u’s neighbors in Γ(S) (in
particular, if it has a single neighbor in Γ(S), simply
take the labels corresponding to the remaining label
set of that neighbor).

Hair Step: If the current step in the construction is
a “hair step”, let k′ be the current bound on the size of
label sets in S. We will try two approaches:

1. Fix the next leaf ui ∈ L and a label σui for ui (the
algorithm will try performing the hair step for all
possible choices for ui and σui). Let S′ = S∩Γ2(ui).
Our target bound for label sets in S′ will be
k′′ = k′/k1−r/s. For every vertex in u ∈ S′, restrict
its current label set to labels that match the label
of at least one neighbor in Γ(u) ∩ Γ(ui) induced by
the labeling of ui. That is, if the current label set
for u is Σ(u), let

Σ′(u) = Σ(u) ∩
⋃

v∈Γ(ui)∩Γ(u)

π−1
(u,v)(π(ui,v)(σui)).

Discard from S′ any vertices which still have more
than Õ(k′′) labels, and let the new vertex set be
the remaining vertices in S′.

2. For every vertex v ∈ Γ(S), consider every possible
label σv of v. If for at least an Ω̃(1)-fraction of
neighbors u ∈ Γ(v) ∩ S we have |π−1

(u,v)(σv)| > k′′,
then call σv a bad label for v (in this step). For
every u ∈ L, call a label σu bad for u if for at least
an Ω̃(1) fraction of neighbors v ∈ Γ(u) ∩ Γ(S) the
matching label π(u,v)(σu) is bad for v. Add to the
current list of label reductions the reduction which
assigns to every left node u ∈ L only its bad labels.

The following two lemmas, whose proofs are deferred to
the full version, allow us to maintain the required lower
bound on the size of the node set S, and an upper bound
on the size of its labels after the backbone step and hair
step. Lemma 5.5 follows by combining these two lemmas,
based on the inductive definition of Wr,s.

Lemma 5.6. (Backbone Step) Let S ⊆ L be a node
set with label sets ΣS : S → P([k]) such that for at
least an Ω̃(1) fraction of nodes u ∈ S we have u ∈ H
and φH(u) ∈ ΣS(u), and suppose maxu∈S |ΣS(u)| ≤ k′.
Then letting S′ = Γ2(S) be the new set of nodes and
ΣS′ : S′ → P([k]) be the label sets for these nodes after
applying a backbone step to (S,ΣS), then we have

|{u′ ∈ S′ ∩ V (H) | φH(u′) ∈ ΣS′(u′)}| = Ω̃(|S′|),
(5.6)

and max
u′∈S′

|ΣS′(u′)| = Õ(dk′).

Lemma 5.7. (Hair Step) Let S ⊆ L be a node set of
size |S| ≥ Ω̃(|L|)/∆L∆R, with label sets ΣS : S → P([k])
such that for at least an Ω̃(1) fraction of nodes u ∈ S
we have u ∈ H and φH(u) ∈ ΣS(u), and suppose
maxu∈S |ΣS(u)| ≤ k′ for some k′ ≥ k1−r/s. Let
Σ′ : L → P([k]) be the label reduction after applying
the second part of a hair step to (S,ΣS), and for every
choice of leaf and label (ui, σui), let S′(ui, σui) be the
new set of nodes and ΣS′(ui,σui ) : S′(ui, σui) → P([k])
after applying the first part of the hair step. Then at
least one of the following two statements hold:

• There exists some choice of leaf ui ∈ L and label
σui for ui such that

max
u′∈S′(ui,σui )

|ΣS′(ui,σui )(u
′)| = Õ(k′/k1−r/s), and

|{u′ ∈ S′(ui, σui) ∩ V (H) | φH(u′) ∈ ΣS′(ui,σui )}|

= Ω̃(|S′(ui, σui)|).

• The label reduction Σ′ restricts the alphabet size
to at most Õ(k/Nε/2), and moreover for an Ω̃(1)
fraction of left nodes u ∈ L ∩ V (H) we retain the
correct label, that is, φH(u) ∈ Σ′(u).

Completing the Proof of Lemma 5.5. We follow the
same approach as in the Planted Random model (Sub-
section 4.2) and combine the guarantees of Lemma 5.6,
Lemma 5.7 as given by the structure Wr,s. Recollect
that by step t ∈ [s] in the inductive construction of cater-
pillar W (r, s), ht = b trs c of them are hair steps and the
rest bt = t− ht steps are backbone steps. We will abuse
notation and use S(t) to represent the number of candi-
dates of the set S after t steps, and K(t) represented the
largest label set size after t steps. The following simple
claim proof follows by induction:

Claim 5.1. In the above notation, let after t steps of
the algorithm, S ⊆ L be the node set with label sets
ΣS : S → P([k]). Further, let {Σ′i : L→ P([k]) | i ∈ qt}
be the reduced label sets obtained by from the hair steps
(approach 2). Then we have at least one of the following:

1. For at least an Ω̃(1) fraction of nodes u ∈ S we
have u ∈ H and φH(u) ∈ ΣS(u), and suppose
K(t) = maxu∈S |ΣS(u)|,

K(t) ≤ Õ(1) · kbt·r/skht(r/s−1) = Õ(1) · k
tr/s

kht
.

2. qt ≤ N t, and for every i ∈ [qt] and u ∈ L, we
have |Σ′i(u)| = Õ(k/Nε/2). Further there exists
i ∈ [qt] such that for an Ω̃(1) fraction of the left
nodes u ∈ L ∩ V (H) we retain the correct label i.e.,
φH(u) ∈ Σ′i(u).
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The proof of the above claim follows by a simple
induction. The base case is true because at t = 0,
we start with a candidate set of size 1 and a guess of
the correct label. The induction follows easily using
Lemma 5.7 and Lemma 5.6 as follows. If case (2)
holds after step t, then it also holds at step t + 1. If
case (1) holds after step t, the condition of Lemma 5.6
or Lemma 5.7 holds, depending on whether it is a
backbone step or hair step (respectively). Then, by
setting k′ = K(t), we get the required bound for K(t+1).
Further, the number of reduced label sets qt ≤ N t

because every hair step (and guess of leaf and its label)
gives rise to a reduced label set Σ′i.

Consider the final step, i.e., for t = s. Unlike the
distinguishing algorithm, where the last step step is
a hair step, here the last step is a backbone step to find
a labeling. If case (2) in the above Claim holds, then we
are done. Otherwise, we will now show that the label set
size is at most Õ(k)/Nε/2. Further, since the last step is
a backbone step, we have that S(s−1) ≥ Ω̃(|L|)/(∆L∆R)
(this also holds when restricted to H). From Lemma 5.6,
the candidate set after the final step in both G and H is
Ω̃(|L|). From the Claim after step (s−1) i.e., before step
s, the label set size k′ ≤ Õ(1)k(s−1)r/s/kr−1 = k1−r/s.
Hence, using Lemma 5.6, we see that the size of final
label set is at most

Õ(k′d) = Õ(1) · k/Nε/2.

This completes the proof of the Lemma 5.5.

6 Algorithm for Worst Case Label Cover

In this section, we describe an O
(

(nk) 1
6 (5−

√
13)+δ

)
-

approximation algorithm for satisfiable Label-Cover
for any constant δ > 0, thereby proving Theorem 1.2.
To construct the algorithm, our strategy is to take an
efficient Õ((nLkL)α)-approximation algorithm for some
α > 1

6 (5 −
√

13) and boost its approximation ratio to
Õ((nLkL)α′) for some α′ < α. Specifically, we will prove
the following lemma.

Lemma 6.1. For any α ∈ (0, 1], if there exists a
polynomial-time Õ ((nLkL)α)-approximation algorithm
for satisfiable Label-Cover, then there also exists a
polynomial-time Õ

(
(nLkL)

1
5−3α

)
-approximation algo-

rithm for satisfiable Label-Cover.

Theorem 1.2 can now be easily proved by start-
ing with any algorithm and repeatedly applying
Lemma 6.1.

Proof of Theorem 1.2. We start with the O((nLkL)1/4)-
approximation algorithm from [MM13]. We then define
the i-th algorithm by applying Lemma 6.1 to the (i− 1)-
th algorithm. The lemma implies that the i-th algorithm
has approximation ratio Õ((nLkL)αi) where α1 = 0.25
and αi = 1/(5 − 3αi−1) for all i > 1. Clearly, the
sequence {αi}i∈N converges to 1

6 (5−
√

13), completing
the proof of the theorem. 2

Due to space constraints, we will only give an overview
of the proof of Lemma 6.1. The rest of this section
is organized as follows. First, in Subsection 6.1, we
discuss the main difference between the semi-random
case and the worse case; with this in mind, we introduce
a notation of cutting algorithms and relate them to
approximation algorithms. In Subsection 6.2, we
describe a simplified version of our algorithm, in the
“uniform” setting. Finally, in Subsection 6.3, we outline
how “non-uniformity” is handled in our algorithm.

6.1 Game Partitioning and Approximation Al-
gorithms The main difference between worst case in-
stances and semi-random instances is that, in the worst
case scenario, the supergraphs need not expand. This
means that, if we try to use the semi-random algorithm
for worst case instances, it is possible that, even after
a certain number of the backbone steps, the set S still
remains small. In this case, even though the backbone
steps do not work well, we learn that the graph does not
expand much, which allows us to partition the graph into
smaller components in such a way that a considerable
fraction of edges remain inside the components. If we
can also choose each component so that it is easy for
us to solve or approximate the subinstance induced on
the component, then we can arrive at a good solution
to the original instance by solving these subinstances
separately and combining their solutions.

Before we specify how the supergraph is partitioned, let
us first formalize the notion of cutting algorithms and
how good they are as follows.

Definition 6.1. A cutting algorithm for Label-
Cover is an algorithm that takes in a Label-Cover
instace G = (L,R,E,ΣL,ΣR, {πe}e∈E), and outputs a
non-empty set T ⊆ L ∪ R and a partial assignment
φT : T → ΣL ∪ ΣR.

The cutting ratio for such algorithm is defined as the
ratio between edges in E(T, T ) satisfied by the assignment
and the number of edges in E(T ), i.e.,

|{(a, b) ∈ E(T, T ) | π(a,b)(φT (a)) = φT (b)}|
|E(T )| .
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Note that the cutting ratio is the ratio of the number
of satisfied edges over the number of edges that we lose
when we cut T from the rest of the graph.

Cutting algorithms and approximation algorithms are
closely related; if there is a cutting algorithm with a high
cutting ratio, there is also an approximation algorithm
with a low approximation ratio:

Lemma 6.2. For any non-decreasing function f : N ×
N→ R+, if there is a polynomial-time cutting algorithm
with cutting ratio at least 1/f(nL, kL) for every satisfiable
Label-Cover instance, then there is a polynomial-time
f(nL, kL)-approximation algorithm for satisfiable Label-
Cover.

The proof of the lemma is rather simple: we use the
cutting algorithm to find T and φT . We then remove T
from the instance and repeat until it is empty. We do not
elaborate further here since a generalized version of this
lemma (Lemma 6.4) will appear later. With Lemma 6.2
in hand, to prove Lemma 6.1, we only need to find a
sufficiently good cutting algorithm, i.e., it is enough to
prove the following lemma.

Lemma 6.3. For any constant α ∈ (0, 1], if there exists
a polynomial-time Õ ((nLkL)α)-approximation algorithm
for satisfiable Label-Cover, then there is a cutting
algorithm with cutting ratio Ω̃

(
1/(nLkL)

1
5−3α

)
for every

satisfiable Label-Cover instance.

6.2 Algorithm Overview for the Uniform Case
To gain intuition for our algorithm, we first describe
a simplified algorithm under the assumptions that the
input instance G is exactly d-to-1 (i.e. |π−1

e (σ)| = d for
all e ∈ E, σ ∈ Σ) and its supergraph is biregular.

Our algorithm once again employs backbone steps as
subroutines. Since G is satisfiable, we use the simpler
version of the backbone step from Section 4.2. Recall
that, for S ⊆ L and restricted label sets, a backbone step
restricts the label set of each v′ ∈ Γ(S) to only labels
that are consistent with at least one label of each vertex
in Γ(v′) ∩ S. Then, it similarly restricts the label set of
each u′ ∈ Γ(Γ(S)) only to labels that are consistent with
some label of each vertex in Γ(u) ∩ Γ(S). The step ends
by setting S = Γ(Γ(S)).

Clearly, if the starting label σu ∈ ΣL is the right label
for the starting vertex u ∈ L, then the backbone step
retains the right label for every vertex. Moreover, if G
is d-to-1, after b(i+ 1)/2c backbone steps, the number
of labels left in Γi(u) is at most dbi/2c. With these
observations, our algorithm can be described as follows.
The algorithm tries five different cutting approaches and

uses the best of them. More specifically, for a vertex
u ∈ L, we can devise polynomial-time cutting algorithms
with the following cutting ratios:

1. d
kL

: Assign an arbritary label to all vertices in R
and, for each vertex in L, pick a label that satisfies
the maximum number of edges touching it.

2. |E({u})|
|E(Γ(u))| : Pick T = {u} ∪ Γ(u), which can be fully
satisfied in polynomial time.

3. |E(Γ(u))|
|E(Γ2(u))| : Pick T = Γ(u)∪Γ2(u). This again can be
fully satisfied in polynomial time since a backbone
step restricts the label sets of Γ(u) to be of size one.

4. Ω̃
(
|E(Γ2(u))|
|E(Γ3(u))|

(
1

|Γ2(u)|d

)α)
: Pick T = Γ2(u) ∪ Γ3(u).

A backbone step reduces the number of labels for
each vertex in Γ2(u) to be at most d. Then use
the Õ ((nLkL)α)-approximation algorithm on the
subgame induced on S with these reduced alphabets.

5. |E(Γ3(u))|
|E(Γ4(u))|

( 1
d

)
: Pick T = Γ3(u) ∪ Γ4(u). Two

backbone steps reduce the number of labels of each
vertex in Γ3(u) to at most d. A greedy algorithm can
then satisfy 1/d fraction of the edges in E(Γ3(u)).

By picking the best of the five, the resulting cutting
ratio is the maximum of the five ratios, which is always
at least their weighted geometric mean. Assign weight
(1− α) to each of |E({u})|

|E(Γ(u))| ,
|E(Γ(u))|
|E(Γ2(u))| ,

|E(Γ3(u))|
|E(Γ4(u))|

( 1
d

)
and

assign weight 1 to each of d
kL

, |E(Γ2(u))|
|E(Γ3(u))|

(
1

|Γ2(u)|d

)α
. The

cutting ratio of the algorithm is at least

Ω̃
(

5−3α

√
|E({u})|1−α|E(Γ2(u))|1−α

kL|E(Γ3(u))|α|E(Γ4(u))|1−α|Γ2(u)|1−α

)

≥ Ω̃
(

5−3α

√
1

nLkL

)
,

where the inequality comes from |E(Γ3(u))|, |E(Γ4(u))|
≤ |E| and the biregularity of the graph.

Note here that, for these uniform instances, the algorithm
from [MM13], although phrased differently, is simply
the best of four algorithms with cutting ratios d

kL
,

|E({u})|
|E(Γ(u))| ,

|E(Γ(u))|
|E(Γ2(u))| and |E(Γ2(u))|

|E(Γ3(u))|
( 1
d

)
. The first three

were described above whereas the last is a simple greedy
algorithm on Γ2(u) ∪ Γ3(u) after the label sets of Γ2(u)
have been reduced to have size at most d. By picking the
best of these four, the cutting ratio is at least (nk)−1/4

and the equality occurs only when Γ3(u) = R. However,
in this case, the restricted label set of every vertex in
R is of size at most p! Hence, a reasonable thing to do
in this case is to apply the algorithm recursively on this
restricted instance, which ultimately inspired the fourth
algorithm described above.
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6.3 Handling Non-Uniformity In this subsection,
we outline the main ideas needed to turn the algorithm
from the previous subsection to handle non-uniform
instances. There are two non-uniformities we have to
deal with: the degrees and the preimages.

6.3.1 Part I: The Degrees Non-uniformity of the
degrees is easy to deal with. Specifically, we can
prove the following lemma, which implies that, to prove
Theorem 6.1, it suffices to find a cutting algorithm
with cutting ratio Ω̃

(
1/(nLkL)

1
5−3α

)
for O(log4(nLnR))-

nearly biregular satisfiable games.

Lemma 6.4. For any non-decreasing function f : N ×
N× N→ R+, if there is a polynomial-time cutting algo-
rithm whose cutting ratio is at least 1/f(nL, kL, λ) for ev-
ery satisfiable λ-nearly biregular Label-Cover instance,
then there exists a polynomial-time O(log4(nLnR) ·
f(nL, kL, O(log4(nLnR))))-approximation algorithm for
satisfiable Label-Cover.

While we do not provide a full proof of Lemma 6.4 here,
the idea behind it is quite intuitive. Again, we would
like to repeatedly apply the cutting algorithm to find
T, φT , remove T from the instance, and continue doing
so until the instance is empty. However, since the given
cutting algorithm has guarantees only on nearly biregular
instances, we need to make the graph nearly biregular
before we appeal to the algorithm. Here we do the most
natural thing before we call the cutting algorithm: as
long as there is some vertex whose degree is too large or
too small, remove it from the graph.

In particular, the approximation algorithm works on
input G = (L,R,E,ΣL,ΣR, {πe}e∈E) as follows:

1. Pick ∆L ∈ [nR],∆R ∈ [nL] that maximize the
number of (u, v) ∈ E with deg(u) ∈ [∆L/2,∆L]
and deg(v) ∈ [∆R/2,∆R]. Let λ = 20 log4(nLnR)
and let G(1) = (L(1), R(1), E(1)) = (L,R,E).

2. While E(i) 6= ∅, do the following:
(a) As long as some u ∈ L(i) has degree in G(i) less

than ∆L/λ or more than ∆L or some v ∈ R(i)

has degree less than ∆R/λ or more than ∆R,
remove one such u or v from (L(i), R(i), E(i)).

(b) Run the cutting algorithm on G(i) =
(L(i), R(i), E(i),ΣL,ΣR, {πe}e∈E(i)). Let us
call the output of the algorithm Ti and φTi .

(c) Set L(i+1) ← L(i+1) − Ti, R(i+1) ← R(i) − Ti
and E(i+1) ← E(i)−E(i)(Ti) where E(i)(Ti) is
the set of all edges with at least one endpoint
in Ti with respect to (L(i), R(i), E(i)).

3. For each u ∈ Ti, set φ(u)← φTi(u). For any vertex

u not assigned in any step, assign any label to it.

Clearly, when we invoke the cutting algorithm in Step 2b,
G(i) is λ-nearly biregular. Moreover, it is possible to
argue that

∑
i |E(i)(Ti)| ≥ Ω(|E|/λ). This implies that

the algorithm indeed provides the desired approximation
for satisfiable Label-Cover.

6.3.2 Part II: The Preimages Alas, dealing with
nonuniformity of preimages is harder. For instance, if
we use the preprocessing lemma from the semi-random
algorithm, the game becomes unsatisfiable. Since the
graph is not random, a well-spread satisfiable subgraph
need not exist, causing the backbone step to fail.

Fortunately, there is a rather straightforward approach
to get around nonuniformity of preimages: in the
backbone step, we will discard the vertices whose reduced
alphabets are “too large”. But how large is too large?
The threshold is going to be based on what we get from
the following greedy algorithm: for each v ∈ R, pick
σgreedy
v that maximizes the sum of its preimages size with

respect to all edges touching v, i.e.
∑
u∈Γ(v) |π

−1
(u,v)(σv)|.

Then, for each u ∈ L, simply pick its assignment
uniformly at random from ΣL. Define dgreedy to be the
average number of preimages with respect to σgreedy

v over
all edges, i.e., dgreedy = 1

|E|
∑

(u,v)∈E |π
−1
(u,v)(σ

greedy
v )|. It

is easy to see that this algorithm gives an approximation
ratio of dgreedy

kL
in expectation and that it can be

derandomized:

Lemma 6.5. There exists a polynomial-time dgreedy
kL

-
approximation algorithm for Label-Cover.

Since Lemma 6.5 was also proved in [MM13], we do not
prove it here. Let us turn our focus back to the rest
of the algorithm. We use 2dgreedy as the threshold for
considering the reduced label set for each vertex in Γ2(u)
being “too large”. For every u ∈ L and σu ∈ ΣL, let
S2(u, σu) be the set of all vertices in Γ2(u) that, after a
backbone step, their remaining label sets are of size at
most 2dgreedy. These are the set of “good” vertices that
we use in place of Γ2(u). The algorithm remains almost
the same as the algorithm for the uniform preimages
case except that we use S2(u, σu) instead of Γ2(u). This
translates to the following guarantees on the algorithm.
For convenience, here we use S2

u to denote S2(u, σoptu )
where σoptu is the satisfying assignment for u.

Lemma 6.6. If there is a polynomial-time Õ ((nLkL)α)-
approximation algorithm for satisfiable Label-Cover,
then there are polynomial-time cutting algorithms
that, for any satisfiable Label-Cover instance and
any vertex u ∈ L, their cutting ratios are at least

918 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited



|E({u})|
|E(Γ(u))| ,

|E(Γ(u),S2
u)|

|E(S2
u)| , Ω̃

(
|E(S2

u)|
|E(Γ(S2

u))|

(
1

dgreedy|S2
u|

)α)
and

|E(Γ(S2
u))|

|E(Γ2(S2
u))|

(
1

2dgreedy

)
.

Since the algorithms in Lemma 6.6 are essentially the
same as the algorithms from Subsection 6.2 except that
S2(u, σu) is used instead of Γ2(u), we do not restate
their descriptions here.

Once we have Lemma 6.5 and Lemma 6.6, we again
use the best of the five algorithms from the two lemmas.
When the supergraph is λ-nearly biregular, it is not hard
to argue, similarly to the uniform case, that, with an
appropriate choice of u, the maximum ratio is at least
Ω̃
(

1/(nLkL)
1

5−3α

)
/λ. This, combined with Lemma 6.4,

yields an Ω̃
(

1/(nLkL)
1

5−3α

)
-approximation algorithm

for satisfiable Label-Cover, which concludes our proof
overview for Lemma 6.1.
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