
Approximating Matrix p-norms

Aditya Bhaskara ∗ Aravindan Vijayaraghavan †

Abstract

We consider the problem of computing the q 7→ p norm of a
matrix A, which is defined for p, q ≥ 1, as

‖A‖q 7→p = max
x 6=~0

‖Ax‖p
‖x‖q

.

This is in general a non-convex optimization problem,
and is a natural generalization of the well-studied question
of computing singular values (this corresponds to p = q =
2). Different settings of parameters give rise to a variety
of known interesting problems (such as the Grothendieck
problem when p = 1 and q = ∞). However, very little
is understood about the approximability of the problem for
different values of p, q.

Our first result is an efficient algorithm for computing
the q 7→ p norm of matrices with non-negative entries, when
q ≥ p ≥ 1. The algorithm we analyze is based on a natural
fixed point iteration, which can be seen as an analog of power
iteration for computing eigenvalues.

We then present an application of our techniques to the
problem of constructing a scheme for oblivious routing in
the ℓp norm. This makes constructive a recent existential
result of Englert and Räcke [ER09] on O(log n) competitive
oblivious routing schemes (which they make constructive
only for p = 2).

On the other hand, when we do not have any restrictions

on the entries (such as non-negativity), we prove that the

problem is NP-hard to approximate to any constant factor,

for 2 < p ≤ q and p ≤ q < 2 (these are precisely the ranges

of p, q with p ≤ q where constant factor approximations

are not known). In this range, our techniques also show

that if NP /∈ DTIME(npolylog(n)), the problem cannot be

approximated to a factor 2(logn)1−ε

, for any constant ε > 0.

∗Center for Computational Intractability, and Department of

Computer Science, Princeton University. Supported by NSF CCF
0832797. Email: bhaskara@cs.princeton.edu

†Center for Computational Intractability, and Department of

Computer Science, Princeton University. Supported by NSF CCF
0832797. Email: aravindv@cs.princeton.edu

1 Introduction

We study the problem of computing norms of matrices.
The ℓq to ℓp norm of a matrix A ∈ R

m×n is defined to
be

‖A‖q 7→p = max
x∈Rn,x 6=~0

‖Ax‖p
‖x‖q

,

where ‖x‖p = (|x1|
p + · · ·+ |xn|

p)1/p

Throughout, we think of p, q ≥ 1. If we think of the
matrix as an operator from R

n with the ℓq norm to the
space Rm with ℓp norm, the norm ‖A‖q 7→p measures the
‘maximum stretch’ of a unit vector.

Computing the q 7→ p-norm of a matrix is a natural
optimization problem. For instance, it can be seen
as a natural generalization of the extensively studied
problem of computing the largest singular value of a
matrix [HJ85]. This corresponds to the case p = q = 2.
When p = 1 and q = ∞, it turns out to be the well-
studied Grothendieck problem [Gro53, AN04], which is
defined as

max
xi,yi∈{−1,1}

∑

i,j

aijxiyj .

Thus for different settings of the parameters, the prob-
lem seems to have very different flavors.

We study the question of approximating ‖A‖q 7→p

for different ranges of the parameters p, q. The case
p = q is referred to as the matrix p-norm (denoted
by ‖A‖p), and has been considered in the scientific
computing community. For instance, it is known to have
connections with matrix condition number estimates
(see [Hig92] for other applications). Computing ‖A‖q 7→p

has also been studied because of its connections to
robust optimization [Ste05]. Computation of the ‖A‖p
(for matrices with only non-negative entries) come up in
graph theoretic problems, like in the ℓp oblivious routing
question of [ER09].

Note that computing the matrix q 7→ p norm is a
problem of maximizing a convex function over a convex
domain. While a convex function can be minimized
efficiently over convex domains using gradient descent
based algorithms, it is in general hard to maximize
them. Thus it is interesting that our algorithm can
efficiently compute the norm for non-negative matrices
for a range of parameters.

Known algorithms. Very little is known about
approximating ‖A‖q 7→p in general. For computing
p-norms (i.e., q = p), polynomial time algorithms
for arbitrary A are known to exist only for p =
1, 2, and ∞. For the general problem, for p ≤ 2,
q > 2, Nesterov[Nes98] shows that the problem can
be approximated to a constant factor (which can be
shown to be < 2.3), using a semidefinite programming
relaxation. When the matrix has only non-negative
entries, this relaxation can be shown to be exact [Ste05].

For other ranges of p, q, the best known bounds are
polynomial factor approximations, obtained by ‘interpo-
lating’. For instance, for computing ‖A‖p 7→p, comput-
ing the vectors that maximize the norm for p = 1, 2,∞,
and picking the best of them gives an O(n1/4) approx-
imation for all p (see [Hig92]). For the general prob-
lem of computing ‖A‖q 7→p, Steinberg [Ste05] gives an
algorithm with an improved guarantee of O(n25/128),
by taking into account the approximation algorithms of
Nesterov for certain ranges.

These algorithms use Hölder’s inequality, and a
fact which follows from the duality of ℓp spaces (this
sometimes allows one to ‘move’ from one range of
parameters to another):

‖A‖q 7→p = ‖AT ‖p′ 7→q′ ,

where AT is the transpose of the matrix A, and p′ and q′

are the ‘duals’ of p, q respectively (i.e. 1/p+ 1/p′ = 1).
See Appendix A.2 for a proof. On the hardness front,
the problem is known to be NP-hard in the range
q ≥ p ≥ 1 [Ste05].

1.1 Our Results
Non-negative matrices. We first consider the

case of matrices A with non-negative entries. Here we
prove that if 1 ≤ p ≤ q, then ‖A‖q 7→p can be computed
in polynomial time. More precisely we give an algorithm
which gives a (1+ δ) approximation in time polynomial
in n,m, and (1/δ).

Thus in particular, we give the first poly time
guarantee (to the best of our knowledge) for computing
the matrix p-norm for non-negative matrices. We
give an analysis of a natural power iteration type
algorithm for computing p-norms proposed by [Boy74].
The algorithm performs a fixed point computation,
which turns out to mimic power iteration for eigenvalue
computations.

Heuristic approaches to many optimization prob-
lems involve finding solutions via fixed point compu-
tations. The techniques from our analysis could poten-
tially be useful in other similar settings. We believe that
this algorithm could be useful as an optimization tool
for other problems with objectives that involve p-norms

(or as a natural extension of eigenvalue computations).
One such application is the problem of Oblivious

Routing in the ℓp norm. Englert and Räcke [ER09]
recently showed that there exists an oblivious routing
scheme which attains a competitive ratio of O(log n)
when the objective function is the ℓp-norm of the flow
vector (|E| dimensional vector). However, they can ef-
ficiently compute this oblivious routing scheme only for
p = 2. Using our algorithm, and some structural prop-
erties that we establish about the maxima (Section 4),
we can make the result of [ER09] constructive. Here
matrix p-norm computation is used as a ‘separation or-
acle’ in a multiplicative weights style update, and this
gives an O(log n)-competitive oblivious routing scheme
for all ℓp-norms (p ≥ 1).

Hardness of approximation. For general matri-
ces (with negative entries allowed), we show the inap-
proximability of almost polynomial factor for computing
the q 7→ p norm of general matrices when q ≥ p and both
p, q are > 2. By duality, this implies the same hardness
when both p, q are < 2 and q ≥ p.1

More precisely, for these ranges, we prove that
computing ‖A‖q 7→p upto any constant factor is NP-
hard. Under the stronger assumption that NP /∈
DTIME(2polylog(n)), we prove that the problem is hard

to approximate to a factor of Ω(2(log n)1−ε

), for any
constant ε > 0.
Techniques. We first consider p 7→ p norm approxima-
tion, for which we show constant factor hardness by a
gadget reduction from the gap version of MaxCut. Then
we show that the p 7→ p norm multiplies upon tensor-
ing, and thus we get the desired hardness amplification.
While the proof of the small constant hardness carries
over to the q 7→ p norm case with q > p > 2, in general
these norms do not multiply under tensoring. We han-
dle this by giving a way of starting with a hard instance
of p 7→ p norm computation (with additional structure,
as will be important), and convert it to one of q 7→ p
norm computation.

We find the hardness results for computing the
q 7→ p norm interesting because the bounds are very
similar to hardness of combinatorial problems like label
cover, and it applies to a natural numeric optimization
problem.

Comparison with previous work. For clarity,
let us now tabulate our algorithmic and hardness results
in Table 1.1 and show how they compare with known
results for different values of the parameters p, q. Since
our results are primarily approximation algorithms for
matrices with non-negative entries and hardness of

1When p ≤ 2 and q ≥ 2, Nesterov’s algorithm gives a constant
factor approximation.

Table 1: Comparison of results. We give better algorithms for non-negative matrices and obtain almost-
polynomial hardness results when q ≥ p.

Approximation algorithms Hardness of Approximation
for non-negative matrices general matrices

1 < q < 2 q = 2 q > 2 1 < q < 2 q = 2 q > 2

Previous 1 < p < 2 Exact a Exact a p < q:NP-hard NP-hard
Our work p ≤ q : Exact Exact p ≤ q :

Exact 2(logn)1−ǫ

hard

Previous p = 2 Exact Exact a NAb NP-hard
Our work Exact Exact NAb

Previous p > 2 p < q:NP-hard
Our work p ≤ q : p ≤ q :

Exact 2(logn)1−ǫ

hard
a For these parameters, [Nes98] shows an O(1) approximation for arbitrary matrices, and [Ste05]
shows that [Nes98] also gives (exact) polynomial time algorithm.

b Equivalent to eigenvalue computation which has a polytime algorithm for arbitrary matrices.

approximation results for arbitrary matrices (general
matrices), each row and column in the table gives
two facts: the best known algorithm for matrices A
with only non-negative entries in it, and the best
known hardness for this range of p, q. An entry saying
“NP-hard” means that only exact polynomial time
algorithms are ruled out, and an entry saying “Exact”
means that a polynomial time algorithm or an FPTAS
exists for it. For non-negative matrices, when q ≥ p,
Boyd [Boy74] showed that the natural power iteration
method converges to a global maximum, but to the
best of our knowledge, no bounds on the time (or
rate) of convergence was known. From our analysis
of the algorithm, we are able to show polynomial time
convergence, and also establish additional properties,
like the uniqueness of the global maxima and structure
of the level sets. These properties turn out to be useful
in applications (section 5) and also helps explain why we
are able to optimize a non-convex optimization problem.

Discussion and open questions. All our algo-
rithms and hardness results apply to the case p ≤ q, but
we do not know either of these (even for non-negative
matrices) for p > q (which is rather surprising!). The
fact that we can optimize ‖Ax‖p/‖x‖q for non-negative
matrices seems closely tied (no known formal connection
however) to the fact that the set {x : ‖x‖p/‖x‖q > τ}
is convex for any τ > 0 and p ≤ q. Besides, when p > q,
even for non-negative matrices there could be multiple
optima (we prove uniqueness of optimum when p ≤ q).

On the hardness front, the q < p case seems more
related to questions like the Densest k-subgraph prob-
lem (informally, when the matrix is positive and p < q, if
there is a ‘dense enough’ submatrix, the optimum vec-

tor would have most of its support corresponding to
this). Further, hypercontractive norms (corresponding
to q < p) have been well-studied [KKL88], and have also
found prior use in inapproximability results for problems
like maxcut. Also, known integrality gap instances for
unique games [KV05] are graphs that are hypercontrac-
tive. We believe that computability of hypercontractive
norms of a matrix could reveal insights into the approx-
imability of problems like small set expansion [RS10]
and the planted dense k-subgraph problem [BCC+10].

1.2 Related work. A question that is very related
to matrix norm computation is the Lp Grothendieck
problem, which has been studied earlier by [KNS08].
The problem is to compute

max
||x||p≤1

xtBx

The question of computing ‖A‖p 7→2 is a special case of
the Lp Grothendieck problem (where B � 0). [KNS08]
give an optimal (assuming UGC) O(p) approximation
algorithm. For B being p.s.d., constant factor approxi-
mation algorithms are known, due to [Nes98]. Comput-
ing ‖A‖∞7→2 reduces to maximizing a quadratic form
over ±1 domain for p.s.d matrices [CW04, Nes98]. Re-
cently, [DVTV09] study the problem of finding the
best k-dimensional subspace approximation to a set of
points, where one wishes to minimize the ℓp distances
to the subspace. When k = n− 1 this can be shown to
reduce to the Lp Grothendieck problem for the matrix
A−1.

1.3 Paper Outline We start by presenting the al-
gorithm for positive matrices (Section 3.1), and prove
poly time convergence (Section 3.2). Some additional
properties of the optimization problem are discussed in
Section 4 (such as unique maximum, concavity around
optimum), which will be useful for an oblivious routing
application. This will be presented in Section 5. Fi-
nally in Section 6, we study the inapproximability of
the problem: we first show a constant factor hardness
for ‖A‖p 7→p (Section 6.1), and show how to amplify it
(Section 6.2). Then we use this to show hardness for
‖A‖q 7→p in section 6.3.

2 Notation and Simplifications

We write R+ for the set of non-negative reals. For a
matrix A, we let Ai denote the ith row of A. Also
aij denotes the element in the ith row and jth column.
Similarly for a vector x, we denote the ith co-ordinate
by xi. We say that a vector x is positive if the entries
xi are all > 0. Finally, for two vectors x,y, we write
x ∝ y to mean that x is proportional to y, i.e., x = λy
for some λ (in all places we use it, λ will be > 0).

For our algorithmic results, it will be much more
convenient to work with matrices where we restrict the
entries to be in [1/N, 1], for some parameter N (zero
entries can cause minor problems). If we are interested
in a (1 + δ) approximation, we can first scale A such
that the largest entry is 1, pick N ≈ (m+ n)2/δ, where
m,n are the dimensions of the matrix, and work with
the matrix A+ 1

N J (here J is the m×n matrix of ones).
The justification for this can be found in Appendix A.3.
We will refer to such A as a positive matrix.

3 An Iterative Algorithm

In this section, we consider positive matrices A, and
prove that if 1 < p ≤ q, we can efficiently compute
‖A‖q 7→p. Suppose A is of dimensions n× n, and define
f : Rn 7→ R by

f(x) =
‖Ax‖p
‖x‖q

=
(
∑

i |Aix|
p)1/p

(
∑

i |xi|q)1/q
.

We present an algorithm due to Boyd [Boy74], and
prove that it converges quickly to the optimum vector.
The idea is to consider ∇f , and rewrite the equation
∇f = 0 as a fixed point equation (i.e., as Sx = x, for an
appropriate operator S). The iterative algorithm then
starts with some vector x, and applies S repeatedly.
Note that in the case p = 2, this mimics the familiar
power iteration (in this case S will turn out to be
multiplication by the matrix A (up to normalization)).

3.1 Algorithm description Let us start by looking
at ∇f . In particular, ∂f

∂xi
is equal to

(3.1)
‖x‖q‖Ax‖

1−p
p ·

∑

j aij |Ajx|
p−1 − ‖Ax‖p‖x‖

1−q
q · |xi|

q−1

‖x‖2q

At a critical point, ∂f
∂xi

= 0 for all i. Thus for all i,

(3.2) |xi|
q−1 =

‖x‖qq
‖Ax‖pp

·
∑

j

aij |Ajx|
p−1

Define an operator S : Rn
+ → R

n
+, with the ith co-

ordinate of Sx being (note that all terms involved are
positive)

(Sx)i =
(

∑

j

aij(Ajx)
p−1

)1/(q−1)

Thus, at a critical point, Sx ∝ x. Now consider the the
following algorithm:
(Input. An n × n matrix A with all entries in [1N , 1],
error parameter δ.)

1: Initialize x = 1
‖1‖p

.

2: loop {T times (it will turn out T = (Nn) ·
polylog(N,n, 1/δ))}

3: set x← Sx.
4: normalize x to make ‖x‖q = 1.
5: end loop

A fixed point of the iteration is a vector x such that
Sx ∝ x. Thus every critical point of f is a fixed point.
It turns out that every positive fixed point is also a
critical point. Further, there will be a unique positive
fixed point, which is also the unique maximum of f .

3.2 Analyzing the Algorithm We will treat f(x)
as defined over the domain R

n
+. Since the matrix A is

positive, the maximum must be attained in R
n
+. Since

f is invariant under scaling x, we restrict our attention
to points in Snq = {x : x ∈ R

n
+, ‖x‖q = 1}. Thus

the algorithm starts with a point in Snq , and in each
iteration moves to another point, until it converges.

First, we prove that the maximum of f over R
n
+

occurs at an interior point (i.e., none of the co-ordinates
are zero). Let x∗ denote a point at which maximum is
attained, i.e., f(x∗) = ‖A‖q 7→p (x∗ need not be unique).
Since it is an interior point, ∇f = 0 at x∗, and so x∗ is
a fixed point for the iteration.

Lemma 3.1. Let x∗ ∈ Snq be a point at which f attains
maximum. Then each co-ordinate of x∗ is at least

1
(Nn)2 .

The proof of this can be found in Section 4. The
next lemma (shown in [Boy74]) shows that with each
iteration, the value of the function cannot decrease.

Lemma 3.2. ([Boy74]) For any vector x, we have

‖ASx‖p
‖Sx‖q

≥
‖Ax‖p
‖x‖q

The analysis of the algorithm proceeds by maintain-
ing two potentials, defined by

m(x) = min
i

(Sx)i
xi

and M(x) = max
i

(Sx)i
xi

.

If x is a fixed point, then m(x) = M(x). Also, from

Section 3.1, each is equal to
(‖x‖q

q

‖Ax‖p
p

)1/(q−1)
. As observed

in [Boy74], these quantites can be used to ‘sandwich’ the
norm – in particular,

Lemma 3.3. For any positive vector x with ‖x‖q = 1,
we have

m(x)q−1 ≤ ‖A‖pq 7→p ≤M(x)q−1

The lemma is crucial – it relates the norm (which we
wish to compute) to certain quantities we can compute
starting with any positive vector x. We now give a proof
of this lemma. Our proof, however, has the additional
advantage that it immediately implies the following

Lemma 3.4. [Unique maximum] The maximum of f on
Snq is attained at a unique point x∗. Further, this x∗ is
the unique critical point of f on Snq (which also means
it is the unique fixed point for the iteration).

Proof. Let x∗ ∈ Snq denote a vector which maximizes f
over Snq (thus x∗ is one fixed point of S). Suppose,
if possible, that y is another fixed point. By the
calculation in Eq.(3.5) (and since y is a fixed point and
x∗ maximizes f), we have

M(y)q−1 = m(y)q−1 =
‖Ay‖pp
‖y‖qq

= f(y)q ≤ f(x∗)p

Now since y 6= x∗, the argument above (of considering
the smallest θ such that y− θx∗ has a zero co-ordinate,
and so on) will imply that M(y)q−1 > λ = f(x∗)p,
which is a contradiction.

This proves that there is no other fixed point. �

Proof. [Proof (of Lemma 3.3)] Let x ∈ Snq be a positive
vector. Let x∗ ∈ Snq be a vector which maximizes f(x).

The first inequality is a simple averaging argument:

∑

i xi · (Sx)
q−1
i

∑

i xi · x
q−1
i

=

∑

i xi ·
∑

j aij(Ajx)
p−1

∑

i x
q
i

(3.3)

=

∑

j(Ajx)
p−1

∑

i aijxi
∑

i x
q
i

(3.4)

=

∑

j(Ajx)
p

∑

i x
q
i

=
‖Ax‖pp
‖x‖qq

≤ ‖A‖pq 7→p(3.5)

The last inequality uses ‖x‖q = 1. Thus there exists an

index i such that (Sx)q−1
i /xq−1

i ≤ ‖Ax‖q 7→p.
The latter inequality is more tricky – it gives an

upper bound on f(x∗), no matter which x ∈ Snq we
start with. To prove this, we start by observing that x∗

is a fixed point, and thus for all k,

m(x∗)q−1 = M(x∗)q−1 =
(Sx∗)q−1

k

(x∗)q−1
k

.

Call this quantity λ. Now, let θ > 0 be the
smallest real number such that x − θx∗ has a zero co-
ordinate, i.e., xk = θx∗

k, and xj ≥ θx∗
j for j 6= k.

Since ‖x‖q = ‖x∗‖q and x 6= x∗, θ is well-defined,
and xj > θx∗

j (strictly) for some index j. Because
of these, and since each aij is strictly positive, we
have Sx > S(θx∗) = θ(p−1)/(q−1)S(x∗) (clear from the
definition of S).

Now, for the index k, we have

(Sx)q−1
k

xq−1
k

>
θp−1(Sx∗)q−1

k

(θx∗
k)

q−1
= θ(p−q) · λ

Thus we have M(x)q−1 > λ (since q ≥ p, and 0 < θ <
1), which is what we wanted to prove.

The next few lemmas say that as the algorithm
proceeds, the value of m(x) increases, while M(x)
decreases. Further, it turns out we can quantify how
much they change: if we start with an x such that
M(x)/m(x) is ‘large’, the ratio drops significantly in one
iteration. The proofs of these are fairly straightforward.

Lemma 3.5. Let x be a positive vector. Then m(x) ≤
m(Sx), and M(x) ≥M(Sx).

Proof. Suppose m(x) = λ. So for every i, we have
(Sx)i ≥ λxi. Now fix some index i and consider the
quantity

(SSx)q−1
i =

∑

j

aij(AjSx)
q−1.

Since A is a positive matrix and (Sx)i ≥ λxi, we must
have (AjSx) ≥ λ · (Ajx) for every j. Thus

(SSx)q−1
i ≥ λq−1

∑

j

aij(Ajx)
q−1 = λq−1(Sx)q−1

i .

This shows that m(Sx) ≥ λ. A similar argument shows
that M(Sx) ≤M(x). �

Lemma 3.6. Let x be a positive vector with ‖x‖q = 1,
and suppose M(x) ≥ (1 + α)m(x). Then m(Sx) ≥
(

1 + α
Nn

)

m(x).

Proof. Let m(x) = λ, and suppose k is an index such
that (Sx)k ≥ (1+α)λ ·xk (such an index exists because
M(x) > (1 + α)λ. In particular, (Sx) ≥ λx + αλ · ek,
where ek is the standard basis vector with the kth entry
non-zero. Thus we can say that for every j,

Aj(Sx) ≥ λAjx+ αλAjek.

The second term will allow us to quantify the
improvement in m(x). Note that Ajek = ajk ≥

1
NnAj1

(since Ajk is not too small). Now 1 ≥ x since x has
q-norm 1, and thus we have

Aj(Sx) ≥
(

1 +
α

Nn

)

λ ·Ajx

Thus (SSx)q−1
i ≥

(

1+ α
Nn

)q−1
λq−1(Sx)q−1

i , imply-

ing that m(Sx) ≥
(

1 + α
Nn

)

λ. �

This immediately implies that the value ‖A‖q 7→p

can be computed quickly. In particular,

Theorem 3.1. For any δ > 0, after O(Nn ·
polylog(N,n, 1

δ)) iterations, the algorithm of Section 3.1
finds a vector x such that f(x) ≥ (1− δ)f(x∗)

Proof. To start with, the ratio M(x)
m(x) is at most Nn

(since we start with 1, and the entries of the matrix
lie in [1/N, 1]). Lemma 3.6 now implies that the ratio
drops from (1 + α) to (1 + α

2) in Nn iterations. Thus
in T = (Nn)polylog(N,n, 1/δ) steps, the x we end up

with has M(x)
m(x) at most

(

1 + δ
(Nn)c

)

for any constant c.

This then implies that f(x) ≥ f(x∗)
(

1 − δ
(Nn)c

)

, after

T iterations.

4 Proximity to the optimum

The argument above showed that the algorithm finds
a point x such that f(x) is close to f(x∗). We proved
that for positive matrices, x∗ is unique, and thus it is
natural to ask if the vector we obtain is ‘close’ to x∗.
This in fact turns out to be important in an application
to oblivious routing which we consider in Section 5.

We can prove that the x we obtain after T =
(Nn)polylog(N,n, 1/δ) iterations is ‘close’ to x∗. The
rough outline of the proof is the following: we first show
that f(x) is strictly concave ‘around’ the optimum 2.
Then we show that the ‘level sets’ of f are ‘connected’
(precise definitions follow). Then we use these to prove
that if f(x) is close to f(x∗), then x− x∗ is ‘small’ (the
choice of norm does not matter much).

Some of these results are of independent interest,
and shed light into why the q 7→ p problem may be easier
to solve when p ≤ q (even for non-negative matrices).

2Note that the function f is not concave everywhere (see
Appendix A.1)

Concavity around the optimum. We now show
that the neighborhood of every critical point (where ∇f
vanishes) is strictly concave. This is another way of
proving that every critical point is a maximum (this
was the way [ER09] prove this fact in the p = q case).

Taking partial derivatives of f(x) =
‖Ax‖p

‖x‖q
, we

observe that

(4.6)
∂f

∂xi
= f(x)

(

∑

k(Akx)
p−1aki

‖Ax‖pp
−

xq−1
i

‖x‖qq

)

where Ak refers to the kth row of matrix A. Now,
consider a critical point z, with ‖z‖q = 1 (w.l.o.g.). We
can also always assume that w.l.o.g. the matrix A is
such that ‖Az‖p = 1. Thus at a critical point z, as in
Eq.(3.2), we have that for all i:

(4.7)
∑

k

(Akz)
p−1aki = zq−1

i

Computing the second derivative of f at z, and
simplifying using ‖Az‖p = ‖z‖q = 1, we obtain

1

p
·

∂2f

∂xi∂xj

∣

∣

∣

∣

z

=

(4.8)

(p− 1)
∑

k

(Akz)
p−2akiakj + (q − p)zq−1

i zq−1
j

1

p
·
∂2f

∂x2
i

∣

∣

∣

∣

z

=

(4.9)

(p− 1)
∑

k

(Akz)
p−2a2ki + (q − p)z2q−2

i − (q − 1)zq−2
i

We will now show that the Hessian Hf is negative
semi-definite, which proves that f is strictly concave
at the critical point z. Let ε be any vector in R

n.
Then we have (the (q − 1)zq−2

i in (4.9) is split as

(p − 1)zq−2
i + (q − p)zq−2

i , and
∑

i,j includes the case
i = j)

εTHfε =

p(p− 1)
(

∑

i,j

∑

k

(Akz)
p−2 · akiakj · εiεj −

∑

i

zq−2
i ε2i

)

+ p(q − p)
(

∑

i,j

(zizj)
q−1εiεj −

∑

i

zq−2
i ε2i

)

≡ T1 + T2 (say)

We consider T1 and T2 individually and prove that they
are negative. First consider T2. Since

∑

i z
q
i = 1,

we can consider zqi to be a probability distribution on

integers 1, . . . , n. Cauchy-Schwartz now implies that

Ei[(εi/zi)
2] ≥

(

Ei[(εi/zi)]
)2
. This is equivalent to

(4.10)
∑

i

zqi ·
ε2i
z2i
≥

(

∑

i

zqi ·
εi
zi

)2

=
∑

i,j

zqi z
q
j ·

εiεj
zizj

Noting that q ≥ p, we can conclude that T2 ≤ 0. Now
consider T1. Since z is a fixed point, it satisfies Eq. (4.7),
thus we can substitute for xq−1

i in the second term of
T1. Expanding out (Akz) once and simplifying, we get

T1

p(p− 1)
=

∑

i,j

∑

k

(Akz)
p−2akiakj

(

εiεj −
zj
zi
· ε2i

)

= −
∑

k

(Akz)
p−2

∑

i,j

akiakj · zizj ·
(εi
zi
−

εj
zj

)2

≤ 0

This proves that f is concave around any critical point
z.

Level sets of f . Let Snq , as earlier, denote the
(closed, compact) set {x ∈ R

n
+ : ‖x‖q = 1}. Let Nτ

denote {x ∈ Snq : f(x) ≥ τ}, i.e., Nτ is an ‘upper level
set’. (it is easy to see that since f is continuous and A
is positive, Nτ is closed).

Let S ⊆ Snq . We say that two points x and y
are connected in S, if there exists a path (a continuous
curve) connecting x and y, entirely contained in S (and
this is clearly an equivalence relation). We say that
a set S is connected if every x, y ∈ S are connected
in S. Thus any subset of Snq can be divided into
connected components. With this notation, we show
([ER09] proves the result when p = q).

Lemma 4.1. The set Nτ is connected for every τ > 0.

This follows easily from techniques we developed so far.

Proof. Suppose if possible, that Nτ has two discon-
nected components S1 and S2. Since there is a unique
global optimum x∗, we may suppose S1 does not contain
x∗. Let y be the point in S1 which attains maximum
(of f) over S1 (y is well defined since N is closed). Now
if ∇f |y = ~0, we get a contradiction since f has a unique

critical point, namely x∗ (Lemma 3.4). If ∇f |y 6= ~0, it
has to be normal to the surface Snq (else it cannot be
that y attains maximum in the connected component
S1). Let z be the direction of the (outward) normal to
Snq at the point y. Clearly, 〈z, y〉 > 0 (intuitively this is
clear; it is also easy to check).

We argued that∇f |y must be parallel to z, and thus
it has a non-zero component along y – in particular if
we scale y (equivalent to moving along y), the value of
f changes, which is clearly false! Thus Nτ has only one
connected component.

Since we need it for what follows, let us now prove
Lemma 3.1.

Proof. [Proof of Lemma 3.1] Let x∗ be the optimum
vector, and suppose ‖x∗‖q = 1. Consider the quantity

f(x∗)p =

∑

i(Aix
∗)p

(
∑

i(x
∗)q

)p/q
.

First, note that x∗
i 6= 0 for any i. Suppose there is such

an i. If we set xi = δ, each term in the numerator
above increases by at least p·δ

Np (because Aix
∗ is at least

1
N , and (1

N + δ
N)p > 1

Np (1+pδ)), while the denominator

increases from 1 to (1 + δq)p/q ≈ 1 + (p/q)δq for small
enough δ. Thus since q > 1, we can set δ small enough
and increase the objective. This implies that x∗ is a
positive vector.

Note that Ajx
∗ ≥

~1
N ·x

∗ ≥ 1
N (because the ‖x∗‖1 ≥

‖x∗‖q = 1). Thus for every i,

(Sx∗)q−1
i =

∑

j

aij(Ajx
∗)p−1 ≥

n

Np
.

Further, ‖A‖pp ≤ np+1, because each aij ≤ 1 and
so Ajx ≤ nxmax (where xmax denotes the largest co-
ordinate of x). Now since Eqn.(3.2) holds for x∗, we
have

np+1 ≥ ‖A‖pp =
(Sx∗)q−1

i

(x∗)q−1
i

≥
n

Np(x∗)q−1
i

.

This implies that x∗
i > 1

(Nn)2 , proving the lemma (we

needed to use q ≥ p > 1 to simplify).

We now show that if x ∈ Snq is ‘far’ from x∗, then
f(x) is bounded away from f(x∗). This, along with the
fact that Nτ is connected for all τ , implies that if f(x)
is very close to f(x∗), then ‖x − x∗‖1 must be small.
For ease of calculation, we give the formal proof only
for p = q (this is also the case which is used in the
oblivious routing application). It should be clear that
as long as we have that the Hessian at x∗ is negative
semidefinite, and third derivatives are bounded, the
proof goes through.

Lemma 4.2. (Stability) Suppose x ∈ Snq , with ‖x −

x∗‖1 = δ ≤ 1
(Nn)12 . Then

(4.11) f(x) ≤ f(x∗)
(

1−
δ2

(Nn)6

)

Proof. Let ε denote the ‘error vector’ ε = x−x∗. We will
use the Taylor expansion of f around x∗. Hf denotes
the Hessian of f and gf is a term involving the third

derivatives, which we will get to later. Thus we have:
(note that ∇f and Hf are evaluated at x∗)

(4.12) f(x) = f(x∗) + ε · ∇f|x∗ +
1

2
εTHf |x∗ε+ gf (ε

′)

At x∗, the ∇f term is 0. From the proof above that the
Hessian is negative semidefinite, we have

εTHfε =

(4.13)

− p(p− 1)
∑

s

(Asx
∗)p−2

(

∑

i,j

asiasjx
∗
i x

∗
j

(εi
x∗
i

−
εj
x∗
j

)2
)

We want to say that if ‖ε‖1 is large enough, this
quantity is sufficiently negative. We should crucially
use the fact that ‖x∗‖p = ‖x∗ + ε‖p = 1 (since x is a
unit vector in p-norm). This is the same as

∑

i

|x∗
i + εi|

p =
∑

i

|x∗
i |

p.

Thus not all εi are of the same sign. Now since ‖ε‖1 > δ,
at least one of the εi must have absolute value at least
δ/n, and some other εj must have the opposite sign,
by the above observation. Now consider the terms
corresponding to these i, j in Eqn.(4.13). This gives

εTHfε ≤ −p(p− 1)
∑

s

(Asx
∗)p−2 · asiasj ·

x∗
j

x∗
i

·
δ2

n2

(4.14)

≤ −p(p− 1)
∑

s

(Asx
∗)p−2 (

∑

i asi)
2

(Nn)2
·

1

(Nn)2
·
δ2

n2

≤ −p(p− 1) ·
δ2

N4n6
· ‖Ax∗‖pp

Note that we used the facts that entries aij lie in [1N , 1]
and that x∗

i ∈ [1
(Nn)2 , 1]. Thus it only remains to

bound the third order terms (gf , in Eqn.(4.12)). This
contribution equals

gf (ε) =
1

3!

∑

i

ε3i
∂3f

∂x3
i

+
1

2!

∑

i,j

ε2i εj
∂3f

∂x2
i ∂xj

(4.15)

+
∑

i<j<k

εiεjεk
∂3f

∂xi∂xj∂xk

It can be shown by expanding out, and using the facts
that msi ≤ N(Msx

∗) and 1
x∗
i
≤ (Nn)2, that for i, j, k,

∂3f

∂xi∂xj∂xk
≤ 10p3(Nn)3‖Ax∗‖pp.

Thus, the higher order terms can be bounded by

gf (ε) ≤ 10p3 · n6N3 · ‖Ax∗‖pp · δ
3

So, if δ < 1
10p3 ·

1
(Nn)12 , the Hessian term dominates.

Thus we have, as desired:

f(x) ≤ f(x∗)
(

1−
δ2

(Nn)6

)

This proves that the vector we obtain at the end of
the T iterations (for T as specified) has an ℓ1 distance
at most 1

(Nn)c to x∗. Thus we have a polynomial time

algorithm to compute x∗ to any accuracy.

5 An Application - O(log n) Oblivious routing
scheme for ℓp

We believe that our algorithm for computing the
‖A‖q 7→p (for non-negative matrices) could find good use
as an optimization tool. For instance, eigenvalue com-
putation is used extensively, not just for partitioning
and clustering problems, but also as a subroutine for
solving semi-definite programs [GLS88]. We now give
one application of our algorithm and the techniques we
developed in section 4 to the case of oblivious routing
in the ℓp norm.

Oblivious routing. We are given a graph G =
(V,E) and we need to output a ‘routing scheme’, namely
a unit flow between every pair of vertices. Now, a
set of demands (for a multicommodity flow) are routed
by scaling these unit flows linearly by the demands
(this the oblivious flow), and the total flow on each
edge is obtained. The aim is to compete (in terms of
some objective, like congestion) with the best flow in
hindsight (knowing the demand vector).

Gupta et al. [GHR06] consider the oblivious routing
problem where the cost of a solution is the ℓp norm of
the ‘flow vector’ (the vector consisting of total flow on
each edge). In the case p = ∞, this is the problem of
minimizing congestion, for which the celebrated result
of [R0̈8] gave an O(log n) competitive scheme. For ℓ1,
the optimal solution routes along shortest paths for each
demand pair. The ℓp version tries to trade-off between
these two extremes. By a clever use of zero sum games,
[ER09] recently reduced the question of existence of
good oblivious routing schemes for ℓp to the ℓ∞ case.
This non-constructive argument showed the existence
of an O(log n) oblivious routing scheme for any p ≥ 1.
They give a constructive result only for p = 2 (the proof
relies heavily on eigenvectors being orthogonal). Using
our algorithm for finding the ℓp-norm of a matrix and
the stability of our maxima (Lemma 4.2), we make the
result constructive for all ℓp.

Zero-sum game framework of [ER09]: We first
give a brief overview of the non-constructive proof
from [ER09]. The worst-case demands for any tree-
based oblivious routing scheme can be shown to be
those with non-zero demands only on the edges of the

graph. The competitive ratio of any tree-based oblivious
routing scheme can then be reduced to a matrix p-
norm computation: if OBL is the |E| × |E| dimension
tree-routing matrix which specifies unit flows for each
demands across an edge, then the competitive ration is
given by ‖OBL‖p. We need a matrix OBL such that for
every unit vector u, ‖OBLu‖p ≤ O(log n). However,
if we were given vector u beforehand, a good routing
matrix can be found:

Lemma 5.1. [ER09, R0̈8] For any given vector u ∈
R

|E|, there exists an tree-based Oblivious routing scheme
(denoted by matrix OBL) such that ‖OBL · u‖p ≤
O(log n)‖u‖p.

To show the existence of such a matrix which works
for all vectors u, [ER09] define a two player zero-sum
game: the row player chooses from the set of all tree-
based oblivious routing matrices M (of dimension |E| ×
|E|), the column player’s strategy set is the set of vectors
u ∈ R

|E| with positive entries, and ‖u‖p = 1. The
value of the game is ‖Mu‖p. With a clever use of min-
max duality in zero sum games, they show the existence
of an oblivious routing scheme with competitive ratio
O(log n). Finding such a oblivious routing scheme
requires us to solve this zero-sum game efficiently. We
first present a simple lemma which follows from the
continuity of f below (proof in Appendix C)

Lemma 5.2. Let f =
‖Ax‖p

p

‖x‖p
p
, where An×n has a min-

imum entry 1
N and let y be a vector (n dimensions)

with minimum entry 1
(Nn)2 . Let x be close to y i.e.

‖x− y‖1 = δ ≤ 1
(Nn)12 . Then, f(x) ≤ f(y) + 1.

Theorem 5.1. There exists a polynomial time algo-
rithm that computes an oblivious routing scheme with
competitive ratio O(log n) when the aggregation func-
tion is the ℓp norm with p > 1 and the load function on
the edges is a norm.

Proof. [sketch] The algorithm and proof follow roughly
along the lines of the constructive version for p = 2 in
[ER09]. We want a tree-based oblivious routing matrix
OBL such that ‖OBL‖p ≤ c log n for some large enough
constant c.

Let Jε be an |E| × |E| matrix will all entries being
ε. Let f(M) = ‖M + J 1

|E|
‖p. We want a tree-based

oblivious routing matrix OBL such that f(OBL) ≤
c log n for some large enough constant c. We follow an
iterative procedure to obtain this matrix OBL starting
with an arbitrary tree-based routing matrix M0. At
stage i, we check if for the current matrix Mi , ‖Mi‖p ≤
c log n. If not, using the iterative algorithm in Section
3, we obtain unit vector x∗

(i) which maximizes ‖M(i)x‖p.

Let M̃(i) be the tree-based oblivious routing matrix from

Lemma 5.1 such that ‖M̃(i)x
∗
(i)‖p ≤ c log n/2 − 2. We

now update

Mi+1 = (1− λ)Mi + λM̃i

Observe that this is also a tree-based oblivious routing
matrix. We now show that ‖Mi+1‖p decreases by an
amount Ω(1

poly(n)).

At step i, roughly speaking, for all vectors y that
are far enough from x∗

(i), ‖Miy‖p ≤ ‖Miy‖p −
1

poly(n)

from Lemma 4.2 (stability). Choosing λ = Θ(n−c) for
some large enough constant c > 0, it easily follows
that ‖Mi+1y‖p ≤ ‖Miy‖p −

1
poly(n) . On the other

hand, consider y in the δ-neighborhood of x∗
(i). Using

Lemma 5.2,

‖M̃iy‖p ≤
c log n

2

Hence,

‖Mi+1y‖p = (1− λ)‖Miy‖p + λ
c

2
log n

≤ ‖Miy‖p − λ×
c

2
log n

(since ‖Miy‖p ≥ c log n)

≤ ‖Miy‖p −
1

poly(n)

Hence, it follows that the matrices Mi decrease in their
p-norm by a small quantity Ω(1

poly(n)) in every step. It

follows that this iterative algorithm finds the required
tree-based oblivious routing scheme in poly(n) steps.

6 Inapproximability results

We will now prove that it is NP-hard to approximate
‖A‖q 7→p-norm of a matrix to any fixed constant, for any
q ≥ p > 2. We then show how this proof carries over to
the hardness of computing the ∞ 7→ p norm.

6.1 Inapproximability of ‖A‖p 7→p Let us start with
the question of approximating ‖A‖p 7→p. We first show
the following:

Proposition 6.1. For p ≥ 2 it is NP-hard to approxi-
mate that ‖A‖p to some (small) constant factor η > 1.

Proof: We give a reduction from the gap version of the
MaxCut problem, whose hardness is well-known

Theorem 6.1. ([Hås01]) There exist constants 1/2 ≤
ρ < ρ′ < 1 such that given a regular graph G = (V,E) on
n vertices and degree d, it is hard to distinguish between:
Yes case: G has a cut containing at least ρ′(nd/2)
edges, and
No case: No cut in G cuts more that ρ(nd/2) edges.

Suppose we are given a graph G = (V,E) which
is regular and has degree d. The p-norm instance
we consider will be that of maximizing g(x0, . . . , xn)
(xi ∈ R

n), defined by

g(x0, x1, . . . , xn) =
∑

i∼j |xi − xj |p + Cd ·
(
∑

i |x0 + xi|p + |x0 − xi|p
)

n|x0|p +
∑

i |xi|p
.

Here C will be chosen appropriately later. Writing
t(u) = |x0 + u|p + |x0 − u|p for convenience, we can
see g(x) as the ratio

∑

i∼j

(

|xi − xj |
p + C[t(xi) + t(xj)]

)

∑

i∼j 2|x0|p + |xi|p + |xj |p
.(6.16)

The idea is to do the analysis on an edge-by-edge
basis. Define

f(x, y) :=

|x− y|p + C
(

|1 + x|p + |1− x|p + |1 + y|p + |1− y|p
)

2 + |x|p + |y|p

Definition. A tuple (x, y) is good if both |x| and |y|
lie in the interval (1− ε, 1+ ε), and xy < 0. A technical
lemma concerning f is the following, which is proven in
Appendix B

Lemma 6.1. For any ε > 0, there is a large enough
constant C such that
(6.17)

f(x, y) ≤

{

C · 2p−1 + (1+ε)2p

2+|x|p+|y|p , if (x, y) is good

C · 2p−1 otherwise

Soundness. Assuming the lemma, let us see why
the analysis of the No case follows. Suppose the graph
has a Max-Cut value at most ρ, i.e., every cut has
at most ρ · nd/2 edges. Now consider the vector x
which maximizes g(x0, x1, . . . , xn). It is easy to see
that we may assume x0 6= 0, thus we can scale the
vector s.t. x0 = 1. In the following lemma, let S ⊆ V
denote the set of ‘good’ vertices (i.e., vertices for which
|xi| ∈ (1− ε, 1 + ε)).

Lemma 6.2. The number of good edges is at most ρ ·
(|S|+n)d

4 .

Proof. Recall that good edges have both end-points in
S, and further the corresponding x values have opposite
signs. Thus the lemma essentially says that there is no

cut in S with ρ · (|S|+n)d
4 edges.

Suppose there is such a cut. By greedily placing the
vertices of V \ S on one of the sides of this cut, we can

extend it to a cut of the entire graph with at least

ρ·
(|S|+ n)d

4
+

(n− |S|)d

4

=
ρnd

2
+

(1− ρ)(n− |S|)

4
>

ρnd

2

edges, which is a contradiction. This finishes the proof
of the lemma. �

Let N denote the numerator of Eq.(6.16). We have

N =
∑

i∼j

f(xi, xj)(2 + |xi|
p + |xj |

p)

≤ C · 2p−1 ·
(

nd+ d
∑

i

|xi|
p
)

+
∑

i∼j, good

(1 + ε)2p

≤ Cd · 2p−1 ·
(

n+
∑

i

|xi|
p
)

+
ρd(n+ |S|)

4
· 2p(1 + ε).

Now observe that the denominator is n +
∑

i |xi|
p ≥

n+ |S|(1−ε)p, from the definition of S. Thus we obtain
an upper bound on g(x)

g(x) ≤ Cd · 2p−1 +
ρd

4
· 2p(1 + ε)(1− ε)−p.

Hardness factor. In the Yes case, there is clearly
an assignment of ±1 to xi such that g(x) is at least

Cd·2p−1+ ρ′d
4 ·2

p. Thus if ε is small enough (C is chosen
sufficiently large depending on ǫ), the gap between the
optimum values in the Yes and No cases can be made
(

1 + Ω(1)
C

)

, where the Ω(1) term is determined by the
difference ρ′−ρ. This proves that the p-norm is hard to
approximate to some fixed constant factor. Note that
in the analysis, ε was chosen to be a small constant
depending on p and ρ′ − ρ.

The Instance. We have argued about the hard-
ness of computing the function g(x0, x1, . . . , xn) to some
constant factor. We now give the formal description of
the instance (matrix) as this will be useful when arguing
about certain properties of the tensored instance, which
we need for proving hardness of ‖A‖q 7→p for p < q. First
we do a simple change of variable and let z = n1/px0.
Now, we construct the 5|E| × (n + 1) matrix M (we
have 5 rows per edge e = (u, v)). This matrix takes the
same value ‖M‖p as g. Further in the Yes case, there
is a vector x = (n1/p, x1, x2, . . . , xn) with xi = ±1, that
attains the high value (C.d.2p−1 + ρ′d.2p−2).

6.2 Amplifying the gap by tensoring We observe
that the matrix p 7→ p-norm is multiplicative under
tensoring (it is well known to be true for eigenvalues
i.e. for p = 2). The tensor product M ⊗N is defined in
the standard way – we think of it as an m ×m matrix
of blocks, with the i, jth block being a copy of N scaled
by mij . More precisely,

Lemma 6.3. Let M , N be square matrices with dimen-
sions m×m and n×n respectively, and let p ≥ 1. Then
‖M ⊗N‖p = ‖M‖p · ‖N‖p.

(Proof in Appendix B.1)3.We note that it is crucial that
we consider ‖A‖p. Matrix norms ‖A‖q 7→p for p 6= q do
not in general multiply upon tensoring.

Hence, given any γ > 0, we repeatedly tensor
the instance of the matrix M from Proposition 6.1
k = logη γ times (M ′ = M⊗k), to obtain the following:

Theorem 6.2. For any γ > 0 and p ≥ 2, it is NP-hard
to approximate the p-norm of a matrix within a factor
γ. Also, it is hard to approximate the matrix p-norm to
a factor of Ω(2(log n)1−ε

) for any constant ε > 0, unless
NP ⊆ DTIME(2polylog(n))).

Further, in the Yes case, there is a vector y′ =
(n1/p, x1, x2, . . . , xn)

⊗k where xi = ±1 (for i =
1, 2, . . . n) such that ‖M ′y′‖p ≥ τC , where τC is the
completeness in Theorem 6.2.

We now establish some structure about the tensored
instance, which we will use for the hardness of q 7→ p
norm. Let the entries in vector y′ be indexed by k-tuple
I = (i1, i2, . . . , ik) where ik ∈ {0, 1, . . . , n). It is easy to
see that y′I = ±nw(I)/p where w(I) is the niumber of 0s
in tuple I.

Let us introduce variables xI = n−w(I)/pyI where
w(I) = number of 0s in tuple I.
It is easy to observe that there is a matrix B such that

‖M ′y‖p
‖y‖p

=
‖Bx‖p

∑

I n
w(I)|xI |p

= g′(x)

Further, it can also be seen that in the Yes case,
there is a ±1 assignment for xI which attains the value
g′(x) = τC .

6.3 Approximating ‖A‖q 7→p when p 6= q. Let us
now consider the question of approximating ‖A‖q 7→p.
The idea is to use the hardness of approximating
‖A‖p 7→p. We observed in the previous section that
the technique of amplifying hardness for computing the
q 7→ p-norm by tensoring a (small) constant factor
hardness does not work when q 6= p. However, we
show that we can obtain such amplified label-cover like
hardness if the instance has some additional structure.
In particular, we show the instances that we obtain
from the tensoring the hard instances of ‖A‖p can be
transformed to give such hard instances for ‖A‖q 7→p.

We illustrate the main idea by first showing a
(small) constant factor hardness: let us start with the

3While Lemma 6.3 is stated for square matrices, it also works
with rectangular matrices by padding 0s to make it square

following maximization problem (which is very similar
to Eqn.(6.16))

g(x0, x1, . . . , xn)(6.18)

=

(

∑

i∼j |xi − xj |
p + Cd ·

(
∑

i t(xi)
)

)1/p

(

n|x0|q +
∑

i |xi|q
)1/q

,

where t(xi), as earlier, is |x0 + xi|p + |x0 − xi|p. Notice
that x0 is now ‘scaled differently’ than in Eq.(6.16).
This is crucial. Now, in the Yes case, we have

max
x

g(x) ≥

(

ρ′(nd/2) · 2p + Cnd · 2p
)1/p

(2n)1/q
.

Indeed, there exists a ±1 solution which has value at
least the RHS. Let us write N for the numerator of
Eq.(6.18). Then

g(x) =
N

(

n|x0|p +
∑

i |xi|p
)1/p
×

(

n|x0|
p +

∑

i |xi|
p
)1/p

(

n|x0|q +
∑

i |xi|q
)1/q

.

Suppose we started with a No instance. The proof of
the q = p case implies that the first term in this product

is at most (to a (1 + ε) factor)

(

ρ(nd/2)·2p+Cnd·2p
)

1/p

(2n)1/p
.

Now, we note that the second term is at most
(2n)1/p/(2n)1/q. This follows because for any vec-
tor y ∈ R

n, we have ‖y‖p/‖y‖q ≤ n(1/p)−(1/q).
We can use this with the 2n-dimensional vector
(x0, . . . , x0, x1, x2, . . . , xn) to see the desired claim.

From this it follows that in the No case, the
optimum is at most (upto a (1 + ε) factor),

(

ρ(nd/2) ·

2p+Cnd · 2p
)1/p

(2n)−1/q. This proves that there exists
an α > 1 s.t. it is NP-hard to approximate ‖A‖q 7→p to
a factor better than α.

A key property we used in the above argument is
that in the Yes case, there exists a ±1 solution for the
xi (i ≥ 0) which has a large value. It turns out that this
is the only property we need. More precisely, suppose
A is an n×n matrix, let αi be positive integers (we will
actually use the fact that they are integers, though it
is not critical). Now consider the optimization problem
maxy∈Rn g(y), with

(6.19) g(y) =
‖Ay‖p

(
∑

i αi|yi|p)1/p

In the previous section, we established the following
claim from the proof of Theorem 6.2.

Lemma 6.1. For any constant γ > 1, there exist thresh-
olds τC and τS with τC/τS > γ, such that it is NP-hard
to distinguish between:

Yes case. There exists a ±1 assignment to yi
in (6.19) with value at least τC , and
No case. For all y ∈ R

n, g(y) ≤ τS.

Proof. Follows from the structure of Tensor product
instance.

Using techniques outlined above, we can now show
that Claim 6.1 implies the desired result.

Theorem 6.3. It is NP-hard to approximate ‖A‖q 7→p

to any fixed constant γ for q ≥ p > 2 and hard to
approximate within a factor of Ω(2(logn)1−ε

) for any
constant ε > 0, assuming NP /∈ DTIME(2polylog(n)).

Proof. As in previous proof (Eq.(6.18)), consider the
optimization problem maxy∈Rn h(y), with

(6.20) h(y) =
‖Ay‖p

(
∑

i αi|yi|q)1/q

By definition,

(6.21) h(y) = g(y) ·
(
∑

i αi|yi|p)1/p

(
∑

i αi|yi|q)1/q
.

Completeness. Consider the value of h(y) for A,αi

in the Yes case for Claim 6.1. Let y be a ±1 solution
with g(y) ≥ τC . Because the yi are ±1, it follows that

h(y) ≥ τC ·
(

∑

i

αi

)(1/p)−(1/q)
.

Soundness. Now suppose we start with an A,αi in the
No case for Claim 6.1.

First, note that the second term in Eq.(6.21) is at

most
(
∑

i αi

)(1/p)−(1/q)
. To see this, we note that αi

are positive integers. Thus by considering the vector
(y1, . . . , y1, y2, . . . , y2, . . .), (where yi is duplicated αi

times), and using ‖u‖p/‖u‖q ≤ d(1/p)−(1/q) for u ∈ R
d,

we get the desired inequality.
This gives that for all y ∈ R

n,

h(y) ≤ g(y)·
(

∑

i

αi

)(1/p)−(1/q)
≤ τS ·

(

∑

i

αi

)(1/p)−(1/q)
.

This proves that we cannot approximate h(y) to
a factor better than τC/τS , which can be made an
arbitrarily large constant by Claim 6.1. This finishes the
proof, because the optimization problem maxy∈Rn h(y)
can be formulated as a q 7→ p norm computation for an
appropriate matrix as earlier.

Note that this hardness instance is not obtained
by tensoring the q 7→ p norm hardness instance. It
is instead obtained by considering the ‖A‖p hardness
instance and transforming it suitably.

Approximating ‖A‖∞7→p The problem of com-
puting the∞ 7→ p norm of a matrix A turns out to have
a very simple alternative formulation in terms of column
vectors of the matrix A: given vectors a1,a2, . . . ,an,
find the maxx∈{−1,1}n‖

∑

i xiai‖p (longest vector in the
ℓp norm 4). As mentioned earlier there is a constant
factor approximation for 1 ≤ p ≤ 2 using [Nes98]. How-
ever, for the other norms (p > 2), using similar tech-
niques we can show

Theorem 6.4. It is NP-hard to approximate ‖A‖∞7→p

to any constant γ for p > 2 and hard to approximate
within a factor of Ω(2(logn)1−ε

) for any constant ε > 0,
assuming NP /∈ DTIME(2polylog(n)).

7 Acknowledgements

We would like to thank our advisor Moses Charikar
for many useful suggestions and comments throughout
the progress of the work. We would also like to thank
David Steurer for several discussions and pointing out
connections to other problems. Finally we would like
to thank Rajsekar Manokaran for various interactions
about the inapproximability results.

References

[AN04] Noga Alon and Assaf Naor. Approximating the
cut-norm via grothendieck’s inequality. In STOC ’04:
Proceedings of the thirty-sixth annual ACM symposium
on Theory of computing, pages 72–80, New York, NY,
USA, 2004. ACM.

[BCC+10] Aditya Bhaskara, Moses Charikar, Eden Chlam-
tac, Uriel Feige, and Aravindan Vijayaraghavan. De-
tecting high log-densities – an o(n1/4) approximation
for densest k-subgraph. CoRR, abs/1001.2891, 2010.

[Boy74] David W. Boyd. The power method for p norms.
Linear Algebra and its Applications, 9:95 – 101, 1974.

[CW04] Moses Charikar and Anthony Wirth. Maximiz-
ing quadratic programs: Extending grothendieck’s in-
equality. Foundations of Computer Science, Annual
IEEE Symposium on, 0:54–60, 2004.

[DVTV09] Amit Deshpande, Kasturi R. Varadarajan, Mad-
hur Tulsiani, and Nisheeth K. Vishnoi. Algorithms
and hardness for subspace approximation. CoRR,
abs/0912.1403, 2009.

[ER09] Matthias Englert and Harald Räcke. Oblivious
routing in the l p-norm. In Proc. of the 50th FOCS,
2009.

[GHR06] Anupam Gupta, Mohammad T. Hajiaghayi, and
Harald Räcke. Oblivious network design. In SODA

4Note that this problem differs from the well-studied Shortest
Vector Problem [Kho04] for lattices,which has received a lot of
attention in the cryptography community over the last decade
[Reg06]. The shortest vector problem asks for minimizing the
same objective as defined here, when xi ∈ Z.

’06: Proceedings of the seventeenth annual ACM-SIAM
symposium on Discrete algorithm, pages 970–979, New
York, NY, USA, 2006. ACM.

[GLS88] Martin Grötschel, László Lovász, and Alexander
Schrijver. Geometric Algorithms and Combinatorial
Optimization. Springer-Verlag, New York, 1988.

[Gro53] Alexander Grothendieck. Resume de la theorie
metrique des produits tensoriels topologiques. Bol.
Soc. Mat. Sao Paulo, 8:1–79, 1953.

[H̊as01] Johan H̊astad. Some optimal inapproximability
results. J. ACM, 48(4):798–859, 2001.

[Hig92] Nicholas J. Higham. Estimating the matrix p-norm.
Numer. Math, 62:511–538, 1992.

[HJ85] Roger A. Horn and Charles R. Johnson. Matrix anal-
ysis / Roger A. Horn, Charles R. Johnson. Cambridge
University Press, Cambridge [Cambridgeshire] ; New
York, 1985.

[Kho04] Subhash Khot. Hardness of approximating the
shortest vector problem in lattices. Foundations
of Computer Science, Annual IEEE Symposium on,
0:126–135, 2004.

[KKL88] J. Kahn, G. Kalai, and N. Linial. The influence of
variables on boolean functions. In SFCS ’88: Proceed-
ings of the 29th Annual Symposium on Foundations
of Computer Science, pages 68–80, Washington, DC,
USA, 1988. IEEE Computer Society.

[KNS08] Guy Kindler, Assaf Naor, and Gideon Schechtman.
The ugc hardness threshold of the ℓp grothendieck
problem. In SODA ’08: Proceedings of the nineteenth
annual ACM-SIAM symposium on Discrete algorithms,
pages 64–73, Philadelphia, PA, USA, 2008. Society for
Industrial and Applied Mathematics.

[KV05] Subhash A. Khot and Nisheeth K. Vishnoi. The
unique games conjecture, integrality gap for cut prob-
lems and embeddability of negative type metrics into
ℓ1. In FOCS ’05: Proceedings of the 46th Annual
IEEE Symposium on Foundations of Computer Sci-
ence, pages 53–62, Washington, DC, USA, 2005. IEEE
Computer Society.

[Nes98] Yurii Nesterov. Semidefinite relaxation and noncon-
vex quadratic optimization. Optimization Methods and
Software, 9:141–160, 1998.

[R0̈8] Harald Räcke. Optimal hierarchical decompositions
for congestion minimization in networks. In STOC
’08: Proceedings of the 40th annual ACM symposium
on Theory of computing, pages 255–264, New York,
NY, USA, 2008. ACM.

[Reg06] Oded Regev. Lattice-based cryptography. In In
Proc. of the 26th Annual International Cryptology
Conference (CRYPTO, pages 131–141, 2006.

[RS10] Prasad Raghavendra and David Steurer. Graph
expansion and the unique games conjecture. In STOC
’10: Proceedings of the 42nd ACM symposium on
Theory of computing, pages 755–764, New York, NY,
USA, 2010. ACM.

[Ste05] Daureen Steinberg. Computation of matrix norms
with applications to robust optimization. Research
thesis, Technion - Israel University of Technology, 2005.

A Miscellany

A.1 Non-convex optimization Note that comput-
ing the p 7→ p norm is in general not a convex op-
timization problem. i.e., the function f defined by

f(x) =
‖Ax‖p

‖x‖p
is not in general concave. For example,

consider

A =

(

1 2
3 1

)

; x =

(

0.1
0.1

)

; y =

(

0.2
0.5

)

In this case, with p = 2.5, for instance, it is easy to
check that f((x + y)/2) < (f(x) + f(y))/2. Thus f is
not concave. However, it could still be that f raised to
a certain power is concave.

A.2 Duality The following equality is useful in ‘mov-
ing’ from one range of parameters to another. We use
the fact that ‖u‖p = maxy : ‖y‖p′=1 y

Tx, where p′ is the

‘dual norm’, satisfying 1/p + 1/p′ = 1. (similarly q′

denotes the dual norm of q)

‖A‖q 7→p = max
‖x‖q=1

‖Ax‖p = max
‖x‖q=1
‖y‖p′=1

yTAx(A.1)

= max
‖x‖q=1
‖y‖p′=1

xTAT y = ‖AT ‖p′ 7→q′

A.3 Moving to a positive matrix We now show
that by adding a very small positive number to each
entry of the matrix, the q 7→ p-norm does not change
much.

Lemma A.1. Let A be an n × n matrix where the
maximum entry is scaled to 1. Let Jǫ be the matrix
with all entries being ǫ.

‖A+ Jε‖q 7→p ≤ ‖A‖q 7→p

(

1 + ǫn1+ 1

p−
1

q
)

Proof. We first note that ‖A‖q 7→p ≥ 1 (because the
maximum entry is 1). It is also easy to see that Jε is
maximized by the vector with all equal entries. Hence

‖Jε‖q 7→p ≤ n1+ 1

p−
1

q ǫ. Hence, by using the fact that
‖·‖q 7→p is a norm, the lemma follows.

B Inapproximability of ‖A‖p 7→p

We now present the proof of Lemma 6.1. We first start
with a simpler inequality - note that this is where the
condition p > 2 comes in.

Lemma B.1. For all x ∈ R, we have

|1 + x|p + |1− x|p

1 + |x|p
≤ 2p−1.

Further, for any ε > 0, there exists a δ > 0 such that if
|x| 6∈ [1− ε, 1 + ε], then

|1 + x|p + |1− x|p

1 + |x|p
≤ 2p−1 − δ.

Proof. We may assume x > 0. First consider x > 1.
Write x = 1+2θ, and thus the first inequality simplifies
to

[

(1 + 2θ)p − (1 + θ)p
]

≥ (1 + θ)p − 1 + 2θp.

Now consider

I =

∫ 1+θ

x=1

(

(x+ θ)p−1 − xp−1
)

dx.

For each x, the function being integrated is ≥ θp−1,
since p > 2 and x > 0. Thus the integral is at least
θp. Now evaluating the integral independently and
simplifying, we get

(1 + 2θ)p − 2(1 + θ)p + 1 ≥ p · θp,

which gives the inequality since p > 2. Further there is
a slack of (p − 2)θp. Now suppose 0 < x < 1. Writing
x = 1 − 2θ and simplifying similarly, the inequality
follows. Further, since we always have a slack, the
second inequality is also easy to see.

Proof. [Proof (of Lemma 6.1)] The proof is a straight-
forward case analysis. Call x (resp. y) ‘bad’ if |x| 6∈
[1− ε, 1 + ε]. Also, b(x) denotes a predicate which is 1
if x is bad and 0 otherwise.
Case 1. (x, y) is good. The upper bound in this case is
clear (using Lemma B.1).
Case 2. Neither of x, y are bad, but xy > 0. Using
Lemma B.1, we have f(x, y) ≤ C · 2p−1 + ε, which is
what we want.
Case 3. At least one of x, y are bad (i.e., one of
b(x), b(y) is 1). In this case Lemma B.1 gives (writing
t(x) = 1 + |x|p, and ∆(x) = 2p−1 − δb(x))

f(x, y) ≤
|x− y|p + C

(

t(x)∆(x) + t(y)∆(y)
)

2 + |x|p + |y|p

= C · 2p−1 +
|x− y|p − C

(

δb(x)t(x) + δb(y)t(y)
)

2 + |x|p + |y|p

Since |x−y|p ≤ 2p−1(|x|p+ |y|p), and one of b(x), b(y) >
0, we can choose C large enough (depending on δ), so
that f(x, y) ≤ C · 2p−1.

Lemma B.2. 6.2 The number of good edges is at most

ρ · (|S|+n)d
4 .

Proof. Recall that good edges have both end-points in
S, and further the corresponding x values have opposite
signs. Thus the lemma essentially says that there is no

cut in S with ρ · (|S|+n)d
4 edges.

Suppose there is such a cut. By greedily placing the
vertices of V \ S on one of the sides of this cut, we can
extend it to a cut of the entire graph with at least

ρ·
(|S|+ n)d

4
+
(n− |S|)d

4
=

ρnd

2
+
(1− ρ)(n− |S|)

4
>

ρnd

2

edges, which is a contradiction. This gives the bound.

B.1 Tensoring for ‖A‖p 7→p

Proof. Let λ(A) denote the p-norm of a matrix A. Let
us first show the easy direction, that λ(M ⊗ N) ≥
λ(M)·λ(N). Suppose x, y are the vectors which ‘realize’
the p-norm for M,N respectively. Then

‖(M ⊗N)(x⊗ y)‖pp =
∑

i,j

|(Mi · x)(Nj · y)|
p

=
(

∑

i

(Mi · x)
p
)(

∑

j

(Nj · y)
p
)

= λ(M)p · λ(N)p

Also ‖x⊗ y‖p = ‖x‖p · ‖y‖p, thus the inequality follows.
Let us now show the other direction, i.e., λ(M ⊗

N) ≤ λ(M) · λ(N). Let x, z be mn dimensional vectors
such z = (A⊗B)x. We will think of x, z as being divided
into m blocks of size n each. Further by x(i) (and z(i)),
we denote the vector in R

n which is formed by the ith
block of x (resp. z).

For ease of notation, let us consider n×m matrix X
with the ith column ofX being vector x(i) (and similarly
define Z). At the expense of abusing notation, let Xt

j

refer to the jth row of matrix X. Also, let the element-
wise p-norm of matrix M be defined as

|M |⊙p =
(

∑

i,j

mp
ij

)1/p

It is easy to observe that Zt = AXtBT . Further,
‖z‖p = |Z|⊙p.

We now expand out Z and rearrange the terms to
separate out the operations of B and A, in order to
bound |Z|⊙p using the p-norms of A and B. Hence, we
have

‖z‖pp = |AXtBt|p⊙p

=

m
∑

i=1

n
∑

j=1

(

(AiX1, AiX2, . . . , AiXn)B
t
j

)p

But from definition, ‖Mx‖pp =
∑

k(Bkx)
p ≤

λ(M)‖x‖pp.
Hence, by applying the operator p-norm bound of

B,

‖z‖pp ≤ λ(B)p
∑

i

‖(AiX1, AiX2, . . . , AiXn)‖
p
p

= λ(B)p
m
∑

i=1

n
∑

k=1

(AiXk)
p = λ(B)p

∑

k

∑

i

(AiXk)
p

≤ λ(B)pλ(A)p
∑

k

‖Xk‖
p
p

= λ(A)pλ(B)p|X|p⊙p

Since |X|⊙p = ‖x‖p = 1, we have ‖z‖p ≤ λ(A)λ(B).

C Oblivious routing in the ℓp norm

Proof. [Proof of Lemma 5.2]
The proof follows just from the continuity and

differentiability of the p-norm function at every point.
Using the Taylor’s expansion of f , we see that

(C.2) f(x) = f(y) + ε · ∇fy +
1

2
ε′THf |yε

′

where 0 ≤ ε′ ≤ ε. Choosing ε = δ = 1
(Nn)12 and using

the lower bounds the matrix entries and the co-ordinates
of y as in Lemma 4.2, we see that the lemma follows.

