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ABSTRACT
In this paper, we propose two semi-random models for the
Minimum Feedback Arc Set Problem and present approxi-
mation algorithms for them. In the first model, which we call
the Random Edge Flipping model, an instance is generated
as follows. We start with an arbitrary acyclic directed graph
and then randomly flip its edges (the adversary may later
un-flip some of them). In the second model, which we call
the Random Backward Edge model, again we start with an
arbitrary acyclic graph but now add new random backward
edges (the adversary may delete some of them). For the first
model, we give an approximation algorithm that finds a so-
lution of cost (1 + δ) opt-cost+npolylog n, where opt-cost
is the cost of the optimal solution. For the second model,
we give an approximation algorithm that finds a solution of
cost O(planted-cost)+npolylog n, where planted-cost is the
cost of the planted solution.

Additionally, we present an approximation algorithm for
semi-random instances of Minimum Directed Balanced Cut.

Categories and Subject Descriptors
F.2 [Theory of Computation]: Analysis of Algorithms

Keywords
Minimum Feedback Arc Set, semi-random model, average-
case analysis, approximation algorithm

1. INTRODUCTION
The Minimum Feedback Arc Set (FAS) problem is one

of the most basic optimization problems in the context of
directed graphs. The problem asks to find the minimum set
of edges (arcs) whose removal makes a given graph a directed
acyclic graph (DAG). As any directed acyclic graph can be
topologically sorted, this is equivalent to finding an ordering
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of the vertices, which minimizes the number of backward
edges (according to the ordering).

Definition 1.1 Given a directed graph G(V,E) and a ver-
tex ordering π : V → {1, . . . , n}, we say that an edge (arc)
(u, v) ∈ E is a forward edge w.r.t π if π(u) < π(v); other-
wise, we say that the edge is a backward edge w.r.t. π.

Definition 1.2 The Minimum Feedback Arc Set problem is
as follows. Given a directed graph G = (V,E), find a vertex
ordering π : V → {1, . . . , n} that minimizes the number of
backward edges w.r.t. π. The value of the problem equals the
number of backward edges w.r.t. the optimal ordering.

The history of the problem dates back to as early as
1957, when Unger [Ung57] considered it in his paper on
asynchronous logical feedback networks. The interest in
FAS stems from its numerous applications in simplifying
the analysis of feedback systems (removing feedback loops)
[Ung57, SR61], finding inconsistencies and cyclic dependen-
cies [You63], and ranking based on pairwise information
[KS63, ACN08]. It is the complementary problem of the
Maximum Acyclic Subgraph [BS90, CMM07, GMR08], which
asks to find the largest acyclic graph (w.r.t. the number of
edges) in a given digraph.

The problem has been extensively studied in the litera-
ture. Karp [Kar72] showed that the problem is NP-hard
in 1972, and Kann [Kan92] showed that the problem is
APX-hard in 1992. Furthermore, Guruswami, Manokaran,
and Raghavendra [GMR08] showed that there is no con-
stant factor approximation for FAS, assuming the Unique
Games Conjecture. In their seminal paper, Leighton and
Rao [LR99] gave the first polylogarithmic approximation al-
gorithm for the problem with approximation factor O(log2 n).
This result was later improved by Seymour [Sey95], who
used a clever divide and conquer approach to get an approxi-
mation factor of O(log n log log n). His technique was gener-
alized by Even, Naor, Rao, and Schieber to a more general
family of ordering problems by the method of spreading-
metrics [ENRS00]. Several researchers studied the special
case of tournaments, directed graphs in which every pair of
vertices is connected by a directed edge [ACN08, CFR06,
KMS07]; Kenyon-Mathieu and Schudy gave a polynomial-
time approximation scheme (PTAS) for FAS in tournaments
[KMS07]. To summarize, despite our best efforts we only
know polylogarithmic approximation algorithms for the prob-
lem, and, assuming the Unique Games Conjecture, we can-
not get a constant factor approximation for worst-case in-
stances.



However, our primary interest in such optimization prob-
lems comes from many different applications they arise in.
The instances that we encounter in the real world are not
worst-case instances. Besides, instances that are produced
in hardness reductions are often contrived, and we are un-
likely to encounter them in practice. Also it may be too
hard, if not impossible, to design an algorithm that gives
a good approximation guarantee for every instance of FAS.
This motivates the study of the average-case complexity of
the problem.

Question 1 Can we design algorithms with better provable
approximation guarantees for realistic average-case models
for the Minimum Feedback Arc Set problem?

Braverman and Mossel [BM08] studied the problem of
sorting in the presence of random noise. The problem corre-
sponds to FAS on tournaments with random noise. In their
random model, the instance is generated as follows. There
is a planted (complete) ordering of the vertices. An edge is
added between every pair of vertices: the edge is directed to
respect the ordering with probability 1

2
+ε and it is directed

against the ordering with probability 1
2
− ε. Braverman and

Mossel show that with high probability, we can find the op-
timal ordering, and the optimal ordering is at most O(n) far
from the planted ordering (in `1 distance). This result re-
quires that we have complete (but noisy) information; that
is, the digraph must be a tournament. The result does not
apply to more general instances of FAS.

In this paper, we propose and study two new semi-random
models for FAS, which we believe capture many properties of
real world instances. We develop new algorithms for semi-
random instances of FAS which give (1 + δ) and constant
factor approximations in these two models (see below for
the precise statements). In the process, we also develop a
constant factor approximations for a natural semi-random
model for Minimum Directed Balanced Cut.

Our models are geared towards the two chief applications
of FAS: noisy topological sorting and breaking cyclic de-
pendencies. In both of these semi-random models, a semi-
random instance can be seen as an acyclic digraph (a FAS
instance with cost 0), augmented with random noise.

1.1 Semi-random Models
We now describe the two semi-random models for FAS

that we study in this paper.
Our first semi-random model is called the Random Edge

Flipping model. It models the problem of topological sort-
ing in the presence of a noisy oracle. Imagine there is a
unknown ordering of all vertices in a set V . We are given a
set of comparisons between some pairs of vertices. However,
the comparisons are noisy: with some probability ε > 0, the
comparison does not agree with the ordering (we assume
that the noise is independent for different pairs of vertices).
Our goal is to find an ordering which is consistent with as
many comparisons as possible. We represent all compar-
isons by directed edges between vertices. The FAS instance
given by the obtained digraph on V defines a semi-random
instance in the Random Edge Flipping model.

Let us consider an example in the rank aggregation set-
ting to illustrate why this model seems to capture many real
world instances. Suppose that we need to rank web pages
(or movies etc.) for a recommendation system. We are given
comparisons between some (but not all) of the pairs of web

pages, based on the user feedback1. It is natural to assume
that there is a true underlying order among these web pages,
and our goal is to find it. The pairwise comparisons that we
see are likely to be noisy perturbations of the true ordering.
Note that it is unrealistic to expect that we have compar-
isons for all pairs of web pages.

This motivates the following formal definition for our first
semi-random model:

Definition 1.3 (Random Edge Flipping Model)
We are given a set of vertices V of size n, and a parameter
ε. A semi-random instance of the Random Edge Flipping
model is generated as follows.

1. Adversary chooses a directed acyclic graph on V , i.e.
she chooses a set of edges E so that G(V,E) is acyclic.

2. Every edge in E is flipped (its direction is reversed)
with probability ε independently at random. The set of
flipped edges is denoted by ER.

3. The adversary chooses a subset of edges in ER (pos-
sibly empty) and un-flips them (restores the original
direction).

Our second semi-random model for FAS is called the Ran-
dom Backward Edge model. Informally speaking, the in-
stance consists of an adversarial directed acyclic graph and
a set of random backward edges, i.e. random edges directed
opposite to the ordering. The planted solution to FAS con-
sists of these random backward edges. Our goal is to find a
solution whose cost is comparable to the cost of the planted
solution.

Definition 1.4 (Random Backward Edge Model) We
are given a set of vertices V of size n, and a parameter ε. A
semi-random instance of the Random Backward Edge model
is generated as follows.

1. The adversary chooses an ordering π of V .

2. Nature adds a random set of backward edges to G: for
every pair (u, v) with π(u) > π(v), nature adds an edge
(u, v) to G with probability ε. The choices for all edges
are independent. The set of random edges is denoted
by ER.

3. The adversary adds an arbitrary set of forward edges
w.r.t. π. She also removes some set (possibly empty)
of backward edges added by nature.

(Note that this model is stronger than a model where the
adversary first adds forward edges, and nature then adds
random backward edges).

This model tries to capture settings where FAS is used
to remove cyclic dependencies (or feedback loops) in a sys-
tem. As an example, imagine we need to schedule a set of
jobs on a machine. There are dependencies between jobs
described by a digraph: a directed edge from job i to job
j indicates that job i needs to be executed before job j. A
valid schedule is an ordering of these jobs. Ideally, jobs can
be ordered in a way that satisfies all dependencies. How-
ever, some cyclic dependencies may arise due to some ran-
dom unlikely events. So the dependency graph consists of
1As an aside, see [Saa77, Saa08] on why pairwise compar-
isons are often preferred to comparisons between several ob-
jects at once.



a digraph (which encodes “genuine” dependencies) and ran-
dom edges (which encode “accidental” dependencies). Our
second model captures such instances.

1.2 Our Results
In this paper, we obtain the following results.

Informal Theorem 1 For every δ > 0, there is a poly-
nomial-time algorithm that given a semi-random instance
G of FAS in the Random Edge Flipping model (with noise
probability ε < 1/4), finds a feedback arc set of cost at most
(1 + δ) opt-cost+npolylog n w.h.p., where opt-cost is the
cost of the optimal solution in G.

The formal statement of this theorem is given in Theo-
rem 2.2.

Informal Theorem 2 There is a polynomial-time algorithm
that given a semi-random instance G of FAS in the Random
Backward Edge model, finds a feedback arc set of cost at most
O(planted-cost) + npolylog n w.h.p., where planted-cost is
the number of random edges added at step 2 (in other words,
it is the cost of the planted solution in G after step 2).

The formal statement of this theorem is given in Theo-
rem 3.5.

Note that in the first model the approximation additive
term is much smaller than the cost of the planted solution
if ε∆ � polylog n (where ∆ is the average degree of G). In
the second model, the approximation additive term is much
smaller than the number of random backward edges in ER

if ε � polylog n/n.
There is an important difference between our results for

the first and second models. In our result for the first model,
we compare the performance of our algorithm with the cost
of the optimal solution for FAS. Thus we get a true 1 + δ
approximation scheme (with an extra additive approxima-
tion term) for FAS. In the second model, we compare the
performance of our algorithm with the cost of the planted
solution. The algorithm gives a true approximation only if
the cost of the planted solution is close to the cost of the
optimal solution (which we believe should be the case for
real-world instances).

1.3 Related Work on Semi-random Models
Over the last two decades, there has been extensive re-

search on average-case complexity of many important combi-
natorial optimization problems. Many algorithms has been
proposed for random and semi-random models. In ran-
dom models, an instance is chosen from a fixed probabilis-
tic distribution of instances (of given size), and the adver-
sary has no influence on the choice. Random models have
been studied in the context of graph partitioning problems
[BLCS87, DF86, Bop87, JS93, DI98, CK99, McS01, CO06],
Graph Coloring [AK94, BS95, AKS99], Minimum Steiner
Tree [KMSPT86], Densest Subgraph [BCC+10] and other
problems. On a more related note, Newman [New04] studied
random models for Maximum Acyclic Subgraph, the com-
plementary problem of FAS, and showed how semi-definite
programming relaxations have integrality gap at most 1.64
for these instances with high probability.

In semi-random models, an instance is generated in a se-
ries of steps: some of them are random and some are ad-
versarial. Because of that, semi-random instances may have
much more structure then completely random instances. Re-
search on semi-random models was initiated by Blum and

Spencer [BS95], who introduced and investigated semi-ran-
dom models for k-coloring. Later Feige and Kilian [FK98]
studied a robust semi-random model for Minimum Bisec-
tion, and Feige and Krauthgamer [FK00] studied a semi-
random model for Maximum Clique. In all these models,
the algorithm can actually exactly find the planted solution.
Recently, Kenyon-Mathieu and Schudy [MS10] considered a
semi-random model for Correlation Clustering on complete
graphs, for which they designed a PTAS.

Most related to our current work are recent results by
Kolla, Makarychev and Makarychev [KMM11] on semi-ran-
dom instances of Unique Games and by Makarychev, Maka-
rychev and Vijayaraghavan [MMV12] on semi-random in-
stances of graph partitioning problems. The algorithms for
these models find a solution whose cost is within a constant
factor of the cost of randomly added/corrupted edges (as in
our second model); in these models, it is not possible to find
the planted solution even information theoretically.

1.4 Techniques
The general approach of both our algorithms for semi-

random instances of FAS are influenced by [KMM11] and
[MMV12]. At a very high level, this approach can be out-
lined as follows. We write an SDP relaxation2 for the prob-
lem and find a small family of representative SDP solutions.
Now for a fixed planted solution, we show that every fixed
feasible SDP solution is far from the optimal SDP solution
unless it has certain structural properties. Finally, using
the union bound and the fact that there are much fewer
representative SDP solutions than semi-random instances,
we prove that every feasible SDP solution is far from the
optimal SDP solution unless it has the required structural
properties. Thus the optimal solution has these structural
properties w.h.p.

However, techniques from [KMM11] and [MMV12] deal
with metric SDP relaxations and are not directly applicable
to FAS. In our algorithm for the first model, the Random
Edge Flipping model, we introduce a novel SDP relaxation
for FAS. Roughly speaking, we start with a very basic LP
relaxation for the problem, in which we have an LP variable
xuv for every pair of vertices. Given an ordering π of V , the
intended solution corresponding to π is defined by: xuv =
1 if π(u) > π(v), xuv = 0, otherwise. We require that
xuv + xvu = 1 and 0 ≤ xuv ≤ 1. The objective function is
to minimize

∑
(u,v)∈E xuv. Clearly, this LP is a relaxation.

However, it is a very weak relaxation since the optimal value
is always equal to 0 — just consider the solution in which
xuv = 0 if there is an edge from u to v, xuv = 1 if there
is an edge from v to u, and xuv = 1/2 otherwise (in this
example, we assume that if G contains (u, v) then it does
not contain (v, u)). Now we strengthen this LP by SDP
constraints. We introduce two SDP variables L(u) and R(u)
for every vertex u. We require that xuv = 〈L(u), R(v)〉, and
all vectors L(u) and R(u) have length

√
dlog2 ne. We obtain

an SDP relaxation. Note that this relaxation is very unusual
— it is not even clear right away what the intended values
of vectors L(u) and R(v) are! We show that for almost all
randomly flipped edges (u, v), xuv ≡ 〈L(u), R(v)〉 ≥ 1− δ in
the optimal SDP solution w.h.p. So first we remove all edges
(u, v) with xuv ≥ 1−δ. We obtain an instance with less than
opt-cost /(log n log log n) backward edges. Then we just run

2To obtain some of their results, [KMM11] and [MMV12]
use C-SDP or local SDP relaxations.



the “off-the-shelf” algorithm for FAS by Seymour [Sey95]
and get a linear ordering.

It is interesting that we get a true approximation algo-
rithm for the Random Edge Flipping model: we compare
the cost of the solution with the cost of the optimal solution.
That is different from results for Unique Games [KMM11],
graph partitioning problems [MMV12] and our second model
— all of them compare the cost of the solution with the cost
of the planted solution.

Our algorithm for the second model, the Random Back-
ward Edge model, reduces the problem to the Minimum Di-
rected Balanced Cut problem using the reduction of Leighton
and Rao [LR99]. Recall that Minimum Directed Balanced
Cut asks to cut a directed graph G into two balanced pieces
S and T so as minimize the number of directed edges going
from S to T . In our paper, we present a constant factor
approximation algorithm for a natural semi-random model
for this problem (see Definition 3.3 for details). Then we use
a slightly modified reduction of Leighton and Rao: we find
an approximate directed balanced cut (S, T ) in the graph,
then recursively solve the problem on induced subinstances
on S and T , and finally we combine the obtained solutions.
Since our algorithm for Minimum Directed Balanced Cut
gives a constant factor approximation, the cost of the di-
rected cut performed in the first level of recursion is at most
O(|ER|) (|ER| is the number of random edges). We show
that the total costs of cuts performed in consecutive lev-
els of recursion go down geometrically (roughly speaking).
Thus the total cost of the obtained solution is O(|ER|).
In fact, we slightly change the reduction of Leighton and
Rao [LR99]: we stop the recursion once a subinstance con-
tains fewer that n/(log n log log n) vertices and then run the
algorithm of Seymour [Sey95]; we do that, roughly speak-
ing, because we pay some small additive penalty every time
we find a directed balanced cut. Our algorithm for Min-
imum Directed Balanced Cut resembles the algorithm for
Minimum Balanced Cut (undirected) from [MMV12]. We
use the same iterative approach: in iteration t we solve an
SDP for the problem, preprocess the graph (remove “heavy
vertices”) and then remove all edges that are “longer” then a
threshold value δt = 2−t. The key difference is that we have
to use a directed distance on the graph, and remove edges
that are longer than δ with respect to this directed distance.
Some properties of directed metrics are quite different from
properties of regular undirected metrics. For example, two
balls of radius 0 with distinct centers may overlap; because
of that it is more difficult to remove non-overlapping balls
from a directed metric space. We overcome these difficul-
ties by introducing an additional preprocessing step (which
we run in every iteration) that either returns a good di-
rected balanced cut in the graph or finds a large subset of
the graph where the directed metric is well approximated
with an undirected metric (up to an additive error of Θ(δ)).

Further Applications of Our Techniques. In follow-
up research, we showed how to use methods developed in
this paper to solve semi-random instances of the Correlation
Clustering Problem.

2. RANDOM EDGE FLIPPING MODEL
We set some notation that we use in this section. Denote

by F π,G = {(u, v) ∈ E : π(u) < π(v)} the set of forward
edges in the graph G w.r.t. the ordering π : V → {1, . . . , n}.

Denote by Bπ,G = {(u, v) ∈ E : π(u) > π(v)} the set of
backward edges. For a set of directed edges E′, we denote
the set of reversed edges by reverse(E′) = {(v, u) : (u, v) ∈
E′}. Finally, let D = O(log n log log n) be the approxi-
mation ratio of Seymour’s algorithm [Sey95] for Minimum
Feedback Arc Set.

In the Random Edge Flipping model, the adversary picks
an arbitrary directed acyclic graph G0 = (V,E0). Then the
nature picks a random subset of edges ER ⊂ E0: the nature
independently adds every edge (u, v) ∈ E0 to ER with the
same probability ε. Finally, the adversary may replace each
edge (u, v) ∈ ER with the edge (v, u), remove it, keep it
unchanged, or even add an edge (v, u) without removing
(u, v). Additionally, the adversary can add an arbitrary set
of forward edges. The model is captured in the following
definition.

Definition 2.1 Let G0 = (V,E0) be an acyclic directed graph.
Let π be an ordering V → [n] consistent with G0 (that is, an
ordering such that all edges of G0 are forward edges w.r.t.
G0). We define a random set of graphs SR(G0, ε) as fol-
lows: Let ER be a random subset of E0 such that every
edge (u, v) ∈ E0 belongs to ER with probability ε (random
choices for all edges are independent). Then G = (V,E) ∈
SR(G0, ε) if for each edge (u, v) ∈ E0 ∆E, (u, v) ∈ ER,
(v, u) ∈ ER, or (u, v) ∈ F π,G.

In other words, G = (V, E) ∈ SR(G0, ε) if E0 \ ER ⊂
F π,G, and Bπ,G ⊂ reverse(ER).

Note that the definition given above defines a slightly more
general model than the one discussed in the introduction.
In this model, the adversary may add extra edges which are
consistent with the ordering π at the final step.

Theorem 2.2 There exists a polynomial–time approxima-
tion algorithm satisfying the following condition. For ev-
ery directed acyclic graph G0 = (V,E0) on n vertices with
the average degree ∆ = 2|E0|/|V |, every ε ∈ (0, 1/4), every
δ ∈ (0, 1) with probability 1−o(1) given any graph G = (V,E)
in SR(G0, ε), the algorithm returns an ordering π : V → [n]
of cost at most (1+ δ)OPT +Oδ(n log5 n log∆ (log log n)3),
where OPT is the cost of the optimal solution; the hidden
constant in Oδ(·) may depend on δ.

Remark 2.3 We can replace the condition ε ∈ (0, 1/4) with
ε ∈ (0, ε0) for any ε0 < 1/2. We chose ε0 = 1/4 to slightly
simplify the proof. However, almost the same proof works
for every ε0 < 1/2.

In the analysis, we assume that δ ≤ 1/2 (otherwise, we
may replace δ with δ′ = 1/2).

SDP Relaxation. We use a novel SDP relaxation for this
problem. The SDP is based on the following observation.
For every n, there exists a collection of vectors

L∗(1), . . . , L∗(n) and R∗(1), . . . , R∗(n)

of length M =
√

dlog2 ne such that

〈L∗(i), R∗(j)〉 =
{
0, if i ≤ j;

1, if i > j.

We show that such vectors exist in Lemma 2.5. This lets us
use the following intended solution. Every ordering of the
vertices π : V → [n] corresponds to the collection of vectors



Lπ(u) = L∗(π(u)) and Rπ(v) = R∗(π(v)). Note, that the
number of backward edges equals

|Bπ,G| =
∑

(u,v)∈E

1(π(u) > π(v)) =
∑

(u,v)∈E

〈Lπ(u), Rπ(v)〉,

here 1(·) denotes the indicator function. The vectors Lπ(u)
and Rπ(v) satisfy the constraints

‖Lπ(u)‖2 = ‖Rπ(v)‖2 = M2,

〈Lπ(u), Rπ(v)〉 ∈ {0, 1} (1)

and

〈Lπ(u), Rπ(v)〉+ 〈Lπ(v), Rπ(u)〉 = 1

for every u, v ∈ V . We relax the constraints (1) and obtain
the following SDP.

min
∑

(u,v)∈E

〈L(u), R(v)〉

subject to: for all u, v ∈ V ,

〈L(u), R(v)〉+ 〈L(v), R(u)〉 = 1 (2)

‖L(u)‖2 = ‖R(v)‖2 = M2 (3)

〈L(u), R(v)〉 ∈ [0, 1] (4)

The variables of the SDP are 2n vectors L(u) and R(v),
u, v ∈ V . We can also add the triangle inequality constraints
〈L(v), R(w)〉 ≤ 〈L(u), R(v)〉 + 〈L(v), R(w)〉, but we do not
need them in this algorithm.

We denote the optimal value of the Minimum Feedback
Arc Set Problem by OPT , and the optimal value of the SDP
by SDP . If π is the optimal ordering of the vertices, then

OPT =
∑

(u,v)∈E

1(π(u) > π(v))

=
∑

(u,v)∈E

〈Lπ(u), Rπ(v)〉 ≥ SDP.

Hence, SDP ≤ OPT .

Algorithm. The algorithm solves the SDP relaxation,
removes all edges (u, v) ∈ E with 〈L(u), R(v)〉 ≥ (1 − δ),
and then runs an “off-the-shelf” algorithm for the Minimum
Feedback Arc Set problem.

Input: a directed graph G = (V,E) on n vertices, pa-
rameter δ ∈ (0, 1)

Output: an ordering of vertices πALG : V → [n]

1. Solve the SDP and obtain a collection of vectors L(u),
R(u) for u ∈ V .

2. Remove all edges (u, v) ∈ E with 〈L(u), R(v)〉 ≥ 1− δ.
Let E+

δ be the set of the remaining edges, i.e., let

E+
δ = {(u, v) ∈ E : 〈L(u), R(v)〉 < 1− δ}.

3. Run the algorithm of Seymour on the instance (V,E+
δ )

and obtain an ordering πALG : V → [n].

4. Return πALG.

Analysis. The proof relies on the following lemma, which
implies that the cost of the optimal solution for the graph
(V,E+

δ ) is small.

Lemma 2.4 Let G0 = (V,E0) be an acyclic graph on n
vertices with the average degree ∆ = 2|E0|/|V |, and let
π : V → {1, . . . , n} be a “planted” ordering such that G0

does not have backward edges w.r.t. π. Then, for every
ε ∈ (0, 1/4), every δ ∈ (0, 1) and D1, D2 ≥ 1 satisfying D2 ≥
CδnD

2
1 log

2 n log∆ (where Cδ is a parameter depending only
on δ) with probability 1− o(1) the set SR(G0, ε) satisfies the
following property ?: For every G = (V,E) ∈ SR(G0, ε), for
every feasible (not necessarily optimal) SDP solution L(u),
R(v) with SDP value at most OPT ,

|Bπ,G ∩E+
δ | ≤ (|Bπ,G|/D1 +D2),

where E+
δ = {(u, v) ∈ E : 〈L(u), R(v)〉 < 1− δ} is the set of

short edges w.r.t. the SDP solution.

We prove the lemma in Section 2.1. Let π : V → {1, . . . , n}
be a“planted”ordering i.e., an ordering such that all edges in
G0 are forward edges. We show that the algorithm returns
a solution of cost at most

(1 + 4δ)OPT +Oδ(n log5 n log∆ (log log n)3)

assuming that the property ? holds with

D1 = δ−1D = Ω(δ−1 log n log log n)

D2 = CδnD
2
1 log

2 n log∆ = Oδ(n log4 n log∆(log log n)2).

Recall, that D = O(log n log log n) is the approximation ra-
tio of Seymour’s algorithm. We first bound the number of
edges removed at the second step. Write,

∑

(u,v)∈E

〈L(u), R(v)〉 = SDP ≤ OPT.

We remove edges (u, v) ∈ E with 〈L(u), R(v)〉 ≥ (1−δ), thus
we remove at most (1− δ)−1OPT ≤ (1 + 2δ)OPT edges.

By our assumption the property ? holds which means that
the optimal solution for the remaining graph (V,E+

δ ) has

cost at most |Bπ,G|/D1 + D2. The approximation ratio of
Seymour’s algorithm is D, thus, the number of backward
edges in E+

δ with respect to the ordering πALG returned by
the algorithm is at most

D×
( |Bπ,G|

D1
+D2

)
≤ δ|Bπ,G|+O(n log5 n log∆(log log n)3).

The total number of backward edges is at most

(1 + 2δ)OPT + δ|Bπ,G|+O(n log5 n log∆(log log n)3).

We now show that

|Bπ,G| ≤ (1 + 2δ)OPT +O(n log5 n log∆(log log n)3),

which concludes the proof. Indeed, let L′(u), R′(v) be the
“integral” SDP solution corresponding to the optimal solu-
tion. This solution satisfies the conditions of Lemma 2.4.
Now, E+

δ is the set of forward edges in the optimal solution.

Hence, |Bπ,G| − OPT ≤ |Bπ,G ∩ E+
δ | ≤ δ|Bπ,G| +D2, and

|Bπ,G| ≤ (1− δ)−1(OPT +D2) ≤ (1 + 2δ)(OPT +D2).

2.1 Proofs

Lemma 2.5 For every natural n > 0, there exists a col-
lection of vectors L(1), . . . , L(n), R(1), . . . , R(n) of length√

dlog2 ne such that 〈L(i), R(j)〉 = 1(i > j).



Proof. Without loss of generality we may assume that n
is a power of 2: otherwise, we construct n′ = 2dlog2 ne vectors
L(i) and R(j), and then pick the first n vectors. Consider
the complete binary tree T of depth log2 n with leafs labeled
with numbers 1, . . . , n from left to right. The coordinates of
the vectors L(1), . . . , L(n) and R(1), . . . , R(n) correspond to
the internal nodes of the tree. We denote the x-th coordinate
of L(i) by Lx(i) and the x-th coordinate of R(j) by Rx(j).
We let Lx(i) = 1, if the number i lies in the subtree rooted at
the right child of x; and Lx(i) = 0, otherwise. Similarly, we
let Rx(j) = 1, if the number j lies in the subtree rooted at
the left child of x; and Rx(j) = 0, otherwise. Let Pi be the
path from the root to the leaf i. Observe, that Lx(i) = 0
and Rx(i) = 0 if x /∈ Pi. Hence, ‖L(i)‖2 ≤ length(Pi) =
log2 n and ‖R(i)‖2 ≤ length(Pi) = log2 n. By definition,
〈L(i), R(j)〉 =∑x∈T Lx(i)Rx(j). Hence, 〈L(i), R(j)〉 equals
the number of x’s such that i is in the right subtree of x and
j is in the left subtree of x. If i > j, then there is exactly
one such x — the least common ancestor of i and j. If i ≤ j,
then clearly there are no such x.

Finally, we pick two vectors A and B orthogonal to all
vectors L(i), R(j) and each other (we do this by appending
all vectors with two extra coordinates). We add to each L(i)
a multiple of A and to each R(j) a multiple of B so that the

length of all vectors L(i) and R(j) is exactly
√

dlog2 ne.
Since A is orthogonal to all R(j)’s and B is orthogonal to
all L(i)’s the inner products 〈L(i), R(j)〉 do not change.

Remark 2.6 The bound on the lengths of the vectors in the
lemma above is nearly optimal. We can show that the lengths
must be at least Ω(

√
log n) to satisfy 〈L(i), R(j)〉 = 1(i > j).

The proof follows from [CMM07]. But, we omit the details
here.

We now show that the set of feasible vector solutions to
the SDP can be approximated by a much smaller family of
representative SDP solutions.

Lemma 2.7 For every graph G = (V,E) on n vertices (V =
{1, . . . , n}) with the average degree ∆ = 2|E|/|V |, real M ≥
1, and γ ∈ (0, 1), there exists a set of matrices W of size at

most |W| ≤ exp(O(nM4 log ∆
2γ2 + n log n)) such that: for ev-

ery collection of vectors L(1), . . . , L(n), R(1), . . . R(n) with
‖L(i)‖ = M , ‖R(j)‖ = M and 〈L(i), R(j)〉 ∈ [0, 1], there
exists W ∈ W satisfying for every (i, j) ∈ E:

wij ≤ 〈L(i), R(j)〉 ≤ wij + γ;

wij ∈ [0, 1].

Proof. We use the following easy corollary of Grothen-
dieck’s inequality: For every set of vectors L(i), R(j) of
length M , there exists a set of random variables X1, . . . , Xn,

Y1, . . . , Yn taking values in the set {−M̃, M̃} (where M̃ =√
KGM ≤

√
2M , and KG is Grothendieck’s constant), such

that

E[XiYj ] = 〈L(i), R(j)〉
for every i, j. We refer the reader to [AMMN05] (see Lemma
2.3) and [Mak08] (see Theorem 2.8) for more details. Con-
sider T = 8M4γ−2 ln∆ independent copies of X1, . . . , Xn,
Y1, . . . , Yn. We denote the variables in the t-th copy by
Xi(t) and Yj(t). Let Zij(t) = Xi(t)Yj(t). Then, EZij(t) =

E[XiYj ] = 〈L(i), R(j)〉 and Zij(t) ∈ {−M̃2, M̃2}. By the

Chernoff bound, for fixed i and j,

Pr

(∣∣∣ 1
T

T∑

t=1

Zij(t)− 〈L(i), R(j)〉
∣∣∣ ≥ γ

)
≤ 2e

− Tγ2

2M̃4

≤ 2e− ln∆

=
2

∆
.

Hence, there exists a sample X∗
i (t), Y ∗

j (t) such that the

condition | 1
T

∑T
t=1 Zij(t) − 〈L(i), R(j)〉| ≤ γ holds for all

but n edges (i, j) ∈ E. Using this observation we define a
set of matrices W1:

W1 =
{ 1

T

T∑

t=1

X(t)⊗ Y (t) : X(t), Y (t) ∈ {−M̃, M̃}n
}
.

Above, X(t)⊗Y (t) is the rank 1 matrix with entries (X(t)⊗
Y (t))ij = Xi(t)Yj(t). The set W1 has at most 22nT elements
— this is the number of ways to pick 2T vectors X(t), Y (t) ∈
{−M̃, M̃}n. As we just have shown using the probabilistic
method, for every sequence of vectors L(i), R(j) satisfying
the conditions of the lemma, there exists a matrix W ∈ W1

such that the condition |〈L(i), R(j)〉−wij | ≤ γ holds for all
but n edges (i, j) ∈ E. Now we need to truncate all entries
of matrices W ∈ W1 so that they are in the range [0, 1] and
shift them so that wij ≤ 〈L(i), R(j)〉. Let

h(W )ij =





wij − γ, if wij − γ ∈ [0, 1];

0, if wij − γ < 0;

1, if wij − γ > 1.

Since 〈L(i), R(j)〉 ∈ [0, 1], if |〈L(i), R(j)〉 − wij | ≤ γ, then
h(W )ij ≤ 〈L(i), R(j)〉 ≤ h(W )ij + 2γ (�). Let W2 =
h(W1). Clearly, |W2| ≤ |W1| = 22nT .

We are almost done. We only need to take care of n edges
for which (�) does not hold. For each matrix W ∈ W2, we
add to the set W the matrix W and all matrices W ′ that
differ from W in at most n positions and whose entries at
those positions are multiples of γ in the range [0, 1 − γ].
There are at most (n2)n ways to pick at most n positions
(for n > 1), and there are d1/γen ways to pick the new
values for them. So for every matrix W ∈ W, we add at
most exp(2n lnn+ n ln d1/γe) new matrices to W. Then,

|W| ≤ 22nT · e2n lnn+n ln d1/γe = e
O(nM4 log ∆

γ2 +n log n)
.

2.2 Proof of Lemma 2.4

Proof of Lemma 2.4. Let W be the set of matrices for
G0 as in Lemma 2.7 with γ = δ/(2D1) and M2 = dlog2 ne.
We show that if the property ? is violated then there exists
a matrix W in the set W satisfying the condition

2
∑

(u,v)∈ER

wuv ≥
∑

(u,v)∈E0\ER

wuv + δD2. (5)

We call such matrix W a witness. Note that ER constitutes
only an ε fraction of the edge set E. We then argue that a
fixed matrix W is a witness with exponentially small proba-
bility. Using the union bound over all W ∈ W, we conclude
that such witness W ∈ W exists with probability o(1), and,
hence, the property ? is violated with probability o(1).



I. Assume that ? is violated. Pick one of the graphs
G = (V,E) ∈ SR(G0, ε) for which the number of backward
edges in E+

δ with respect to the ordering π is greater than

(|Bπ,G|/D1 + D2). Denote by F = F π,G ⊂ E the set of
forward edges with respect to π, and by B = Bπ,G ⊂ E
the set of backward edges. Then, E0 \ ER ⊂ F and B ⊂
reverse(ER).

Let L(u), R(v) be the SDP solution. We know that

SDP ≤ OPT ≤ |B|,
thus

∑

(u,v)∈E

〈L(u), R(v)〉 =

∑

(u,v)∈F

〈L(u), R(v)〉+
∑

(v,u)∈B

〈L(v), R(u)〉

≤
∑

(v,u)∈B

1.

Consequently,
∑

(v,u)∈B

〈L(u), R(v)〉 =
∑

(v,u)∈B

(1− 〈L(v), R(u)〉)

≥
∑

(u,v)∈F

〈L(u), R(v)〉.

The first equality follows from the SDP constraint

〈L(u), R(v)〉+ 〈L(v), R(u)〉 = 1.

We now obtain another lower bound on the left hand side.
Recall, that we assumed that |E+

δ ∩ B| ≥ (|B|/D1 + D2).
For each (v, u) ∈ E+

δ , we have 〈L(v), R(u)〉 < (1 − δ) (by
definition of E+

δ ) and 〈L(u), R(v)〉 ≥ δ. Hence,
∑

(v,u)∈B

〈L(u), R(v)〉 ≥ δ(|B|/D1 +D2).

Therefore,

2
∑

(v,u)∈B

〈L(u), R(v)〉 ≥
∑

(u,v)∈F

〈L(u), R(v)〉+ δ
( |B|
D1

+D2

)
.

Since E0 \ER ⊂ F ,

2
∑

(v,u)∈B

〈L(u), R(v)〉 ≥
∑

(u,v)∈E0\ER

〈L(u), R(v)〉+δ
( |B|
D1

+D2

)
.

Pick W ∈ W such that wuv ≤ 〈L(u), R(v)〉 ≤ wuv + γ for
(u, v) ∈ E0. We rewrite the inequality above in terms of W ,

2
∑

(v,u)∈B

(wuv + γ) ≥
∑

(u,v)∈E0\ER

wuv + δ
( |B|
D1

+D2

)
.

Thus,

2
∑

(v,u)∈B

wuv ≥
∑

(u,v)∈E0\ER

wuv + δ
( |B|
D1

+D2

)
− 2γ|B|

=
∑

(u,v)∈E0\ER

wuv + δD2.

Finally, using B ⊂ reverse(ER), we obtain the desired in-
equality

2
∑

(u,v)∈ER

wuv ≥
∑

(u,v)∈E0\ER

wuv + δD2. (6)

II. We now estimate the probability (over the choice of
the random set ER) that a fixed matrix W ∈ W is a witness
i.e., satisfies (5). Define a random variable Xuv: Xuv = 2,
if (u, v) ∈ ER and Xuv = −1, otherwise. Then EXuv =
2ε− (1− ε) = 3ε− 1 < −ε. Condition (5) can be rewritten
as follows

S ≡
∑

(u,v)∈E0

wuvXuv ≥ δD2 ≡ λ1.

We denote the left hand side by S, the right hand side by
λ1, we also let λ2 = ε

∑
(u,v)∈E0

wuv. We have

E[S] =
∑

(u,v)∈E0

wuvE[Xuv] ≤ −ε
∑

(u,v)∈E0

wuv = −λ2.

and

Var[S] =
∑

(u,v)∈E0

w2
uv Var[Xuv ] = 9ε(1− ε)

∑

(u,v)∈E0

w2
uv

≤ 9ε
∑

(u,v)∈E0

wuv = 9λ2.

By the Bernstein inequality,

Pr
(
S ≥ λ1

)
= Pr

(
S − ES ≥ λ1 + λ2

)

≤ exp
(
− (λ1 + λ2)

2

2Var[S] + 2(λ1 + λ2)

)

≤ exp(−C(λ1 + λ2)) ≤ exp(−CδD2),

for C = 1/20. By Lemma 2.7,

|W| ≤ exp
(
O
(nM4 log∆

2γ2
+ n log n

))

= exp
(
Oδ

(
n D2

1 log
2 n log∆

))
.

Hence, by the union bound (sinceD2 ≥ CδnD
2
1 log

2 n log∆),
there exists a witness W ∈ W with probability at most
o(e−n).

3. RANDOM BACKWARD EDGE MODEL

3.1 Minimum Feedback Arc Set
We reduce the Minimum Feedback Arc Set problem to the

Minimum Directed Balanced Cut problem. Recall that in
the Minimum Directed Balanced Cut problem, we are given
a directed graph G and our goal is to find a balanced cut
(S, T ) in G so as to minimize the number of edges going from
S to T . The reduction, which was introduced by Leighton
and Rao [LR99] for worst-case instances of FAS, works as
follows. Consider an instance G of FAS. Let π : V → [n]
be an optimal solution for FAS. Let OPT be its cost. Note
that there is a directed bisection cut in G of cost at most
OPT . Specifically, let S = {u : π(u) > n/2} and T = {u :
π(u) ≤ n/2}. Then every edge from S to T is a backward
edge (w.r.t. π); thus, the total number of edges from S to
T is at most OPT .

The reduction approximately finds a directed balanced cut
(S′, T ′) in G, then recursively solves subinstances of FAS on
the induced graphs G[S′] and G[T ′]. Finally, it concatenates
solutions for G[T ′] and G[S′] (so that every vertex in T ′ lies
to the left of every vertex in S′). Note that, for any one level
of the recursion tree defined by this procedure, OPT is an
upper bound on the total sum of the optimal solution costs



of all the Directed Balanced Cut problems on it. Hence,
this reduction gives an O(αMDBC log n) approximation al-
gorithm for worst case instances of FAS, where αMDBC is
the approximation factor for Minimum Directed Balanced
Cut, since the depth of the recursion is O(log n), and the
cost of all cuts we perform at one level of recursion is at
most αMDBC ·OPT . If we use the SDP algorithm of Agar-
wal, Charikar, Makarychev, and Makarychev [ACMM05],
then αMDBC = O(

√
log n); if we use the LP algorithm of

Leighton and Rao [LR99], then αMDBC = O(log n).
In this paper, we present a constant factor approximation

algorithm for semi-random instances of the Minimum Di-
rected Balanced Cut problem. Then we adapt the reduction
to work with this algorithm.

Definition 3.1 We say that (S, T ) is a partition of V if
V = S ∪ T and S ∩ T = ∅. A partition (S, T ) is b-balanced
if |S| ≥ b|V |, |T | ≥ b|V | (where b ∈ [0, 1/2]). A partition
(S, T ) is a bisection of V if ||S| − |T || ≤ 1. We say that
a cut (S, T ) in a graph G = (V,E) is b-balanced if (S, T )
is a b-balanced partition of V ; similarly, a cut (S,T ) is a
bisection cut if (S, T ) is a bisection partition of V .

We say that a directed edge (u, v) is cut by a directed cut
(S, T ) if u ∈ S and t ∈ V (note that if u ∈ T and v ∈ S
then the edge is not cut). The cost of a cut (S, T ) in a
directed graph G is the number of edges in G cut by (S, T ).
We denote the cost of (S, T ) by cost(S, T ). Given a set of
edges E, we denote the number of edges in E cut by (S, T )
by costE(S,T ).

Definition 3.2 Let V be a set of vertices and ε > 0. Con-
struct a random set ER of directed edges as follows. Choose
every pair (u, v) ∈ V × V independently with probability ε
and add it to ER. We say that ER is an ε-random set of
edges.

Our algorithm proceeds by considering semi-random in-
stances of Minimum Directed Balanced Cut, defined recur-
sively based on the partitioning in the previous steps. This
motivates the definition of the following semi-random family
of graphs.

Definition 3.3 Let V be a set of vertices and ε > 0. Let
ER be an ε-random set of edges. Define the random family
of graphs SRD(V,ER) by SRD(V,ER) =

{
H = (U,EH) : U ⊂ V, (S, T ) is a bisection of U

and EH ∩ (S × T ) ⊂ ER

}
.

In other words, graphs SRD(V,ER) are those graphs H that
can be obtained as follows. Choose a subset U ⊂ V and
a bisection (S, T ) of U . Then choose a set of edges E1 ⊂
ER∩(S×T ) and a set of edges E2 ⊂ (S×S)∪(T×S)∪(T×T ).
Finally, let H = (U,E1 ∪E2).

We call graphs in the family SRD(V,ER) semi-random di-
rected graphs.

We present an approximation algorithm for the Minimum
Directed Balanced Cut problem in semi-random directed
graphs in the following theorem.

Theorem 3.4 There is a randomized polynomial-time al-
gorithm for the Minimum Directed Balanced Cut problem
that does the following. Let V be a set of vertices, ε > 0,
and ER be an ε-random set of edges. With probability at

least 1 − e−cn over ER, for every graph H = (U,EH) ∈
SRD(V,ER), the algorithm given H finds a b-balanced cut
(S′, T ′) of H such that

cost(S′, T ′) ≤ Cmax(ε|U |2, g(n)),
where g(n) = n

√
log n(log log n)2, and c > 0, C > 0 and

b > 0 are some absolute constants.

We will prove this theorem in the next subsection. We
show now how to get a constant factor approximation for
semi-random instances of FAS using this algorithm. While
we follow essentially the same reduction as in the worst-
case, from FAS to Minimum Directed Balanced Cut (except
that we stop recursing when the instance size is roughly
O(n/ log n)), we only lose a constant factor in the approx-
imation guarantee for semi-random instances, because the
total cost we incur in each level of the recursion goes down
geometrically.

Theorem 3.5 There is a randomized polynomial-time algo-
rithm for semi-random instances of the Minimum Feedback
Arc Set problem that does the following. Let V be a set of
vertices, ε > 0, and ER be an ε-random set of edges. Then
with probability 1−o(1) over ER, for every vertex ordering π
and every directed graph G in which all backward edges w.r.t.
π belong to ER, the algorithm given G finds an ordering
π′ such that G has at most O(εn2 + (log n)3/2(log log n)3n)
backward edges w.r.t. π′.

Proof. Wemay assume that ε > (logn)3/2(log log n)3/n;

as otherwise we let ε′ = (log n)3/2(log log n)3n and let E′
R ⊃

ER. We use the recursive approach that we outlined above.
Let π be the planted solution for FAS on G. First, we ob-
serve that for every U ⊂ V , G[U ] ∈ SRD(V,ER). Indeed, let
T be the set of the first d|U |/2e elements of U w.r.t. π and
and S be the set of the last b|U |/2c elements of U w.r.t. π.
Note that all edges from S to T are backward edges in the
planted solution and therefore they belong to ER. Hence
G[U ] ∈ SRD(V,ER) and we can apply Theorem 3.4 to G[U ].

We write a recursive procedure that given a set U ⊂ V
finds a linear ordering of vertices in U .

1. If |U | ≤ n/(log n log log n) the algorithm applies the
algorithm of Seymour [Sey95] to the induced graph
G[U ] and returns the obtained ordering of U .

2. If |U | > n/(log n log log n), the algorithm finds an ap-
proximate directed balanced cut (S′, T ′) using the al-
gorithm from Theorem 3.4. Then it recursively finds
linear orderings πT ′ for T ′ and πS′ for S′. It returns
the concatenation of orderings πT ′ and πS′ .

Let us bound the cost of the solution returned by the algo-
rithm. Consider its recursion tree. We charge every back-
ward edge (u, v) to the node of the recursion tree where we
separate u and v.

First consider leaf nodes of the recursion tree. Let us prove

that with probability 1 − e−Ω(n/
√

log n), for every subset U
of size Θ(n/(log n log log n)) the induced graph G[U ] con-

tains at most 2ε|U |2 edges from ER. There are eO(n/ log n)

sets U of size Θ(n/(log n log log n)). For each U , the in-
duced graph G[U ] contains at most ε|U |2 edges from ER

in expectation. Thus by Chernoff’s bound, G[U ] contains at

most 2ε|U |2 edges from ER with probability 1−e−Ω(ε|U|2) =

1 − e−Ω(n/
√

log n). By the union bound, we get that with



probability 1 − e−Ω(n/
√

logn) all subgraphs G[U ] contain at
most 2ε|U |2 random edges.

Since the set U for every leaf of the recursion tree has size
|U | = Θ(n/(log n log logn)), we get that G[U ] contains at

most 2ε|U |2 = O
(

εn
log n log log n

)
|U | edges (w.h.p. for all leaf

nodes). Therefore, the algorithm of Seymour finds a solution
of cost at most O(εn) · |U | in G[U ]. So the total cost charged
to all leaf nodes is at most O(εn) ·∑ |U | = O(εn2).

Now consider internal nodes of the recursion tree. An
internal node pays for edges from S′ to T ′ in G[U ]. By
Theorem 3.4, the total number of such edges is at most
Cmax(ε|U |2, g(n)) ≤ C(ε|U |2 + g(n)). Since sizes of sets U
decrease geometrically in the recursion, the sum of Cε|U |2
over all internal nodes of the recursion tree is at mostO(εn2).
The sum of all terms g(n) is at most g(n) ·O(log n log log n)
since there are O(log n log log n) nodes in the recursion tree.

We get that w.h.p. the cost of the solution is

O(ε|U |2 + g(n) log n log log n).

4. PROOF OF THEOREM 3.4

4.1 Proof Overview
Our algorithm is similar to the algorithm for undirected

Minimum Balanced Cut from [MMV12]. It iteratively re-
moves edges and vertices from the graph H . It starts with
H0 = H . Then it iteratively constructs a sequence of sub-
graphs H0 ⊃ H1 ⊃ H2 ⊃ . . . . In iteration t, the algorithm
solves an SDP relaxation for the Minimum Directed Bal-
anced Cut problem in Ht, performs some preprocessing by
removing some vertices from Ht and then cuts some edges
in the remaining graph. In the obtained graph Ht+1, the
number of edges from ER drops by a constant factor (com-
pared to Ht). After at most O(log log n) rounds, the algo-
rithm gets a graph with at most ε|U |2/

√
log n edges from

ER. Then it finds a balanced directed cut in this graph us-
ing the algorithm of Agarwal, Charikar, Makarychev, and
Makarychev [ACMM05].

The SDP that we solve in each iteration (given in Sec-
tion 4.2) defines a “directed distance” on the vertices. We
show that the edges from ER get successively “sparsified” by
a constant factor in the subgraphs Ht as mentioned above,
that follows from Theorem 4.6 (Structutal Theorem): af-
ter the preprocessing step, most of the edges from ER are
“longer” (according to this directed distance) than a certain
threshold δt = 2−t (at most O(δ2t ) fraction of the edges are
longer than δt). However, the use of the directed distance (as
opposed to an undirected distance in [MMV12]) introduces
some difficulties, which we handle by performing a prepro-
cessing step (see Lemma 4.3) at the start of each iteration.
This ensures that the directed distance from the SDP at step
t can be well approximated by an undirected distance (up
to an additive error of δt) in the remaining graph. Now, we
can use the ideas from [MMV12] to identify the vertices to
remove, and edges to cut to obtain Ht+1.

4.2 SDP relaxation
We now describe the SDP relaxation for Minimum Di-

rected Balanced Cut. Our algorithm will iteratively con-
struct a sequence of subgraphs H = H0 ⊃ H1 ⊃ H2 ⊃ . . . .
The SDP will be a relaxation for the following problem: find

a bisection (S, T ) of U that minimizes the number of cut
edges in a given set E′ ⊂ EH . In iteration i, E′ will be the
set of edges in the graph Hi.

We have a unit vector variable ū for every vertex u ∈ U .
We also have a special unit vector v̄0. Denote by d(u, v) the
directed distance ([ACMM05]):

d(u, v) = ‖ū− v̄‖2 + 2〈v̄0, ū− v̄〉.

We write an SDP relaxation as follows. subject to: for every
u, v, w ∈ U ,

1

2

∑

u,v∈U

‖ū− v̄‖2 ≥ |U |2 − 1 (7)

‖ū− v̄‖2 + ‖v̄ − w̄‖2 ≥ ‖ū− w̄‖2 (8)

d(u, v) ≥ 0 (9)

We denote this SDP relaxation by SDP(U,E′). We denote
the value of the optimal SDP solution by sdp-cost(U,E′).
The constraints of the SDP define an undirected distance
between the vertices (given by ‖ū− v̄‖2), that is referred to
as the `22 metric. Further, d(u, v) defines a directed distance
(directed semi-metric, to be precise) between the vertices
(see Lemma 4.2 for details).

Suppose that (S, T ) is a bisection of U . Then in the in-
tended solution, we assign ū = v̄0 if u ∈ S and ū = −v̄0 if
u ∈ T . Note that only edges (u, v) that go from S to T con-
tribute to the objective function. And for every such edge
(u, v), we have 1

8
d(u, v) = 1. Thus the objective function

equals costE′(S,T ). Thus sdp-cost(U,E′) ≤ costE′(S, T ).

Definition 4.1 Given an SDP solution on U , we define di-
rected balls Ball+(u, r) and Ball−(u, r) as follows

Ball+(u, r) = {v : d(u, v) ≤ r}

and

Ball−(u, r) = {v : d(v, u) ≤ r}.
Let Ball0(u, r) = {v : ‖ū − v̄‖2 ≤ r}. The width of a sub-
set M ⊂ U is width(M) = maxu,v∈M 〈v̄0, ū− v̄〉. The `22-
diameter of a set M is diam(M) = maxu,v∈M ‖ū− v̄‖2.

Lemma 4.2 Consider the directed distance function d(u, v)
defined by a feasible solution to SDP(U,E′).

1. The function d(u, v) defines a directed semi-metric on
U . That is, d(u, v) ≥ 0 and d(u, v)+d(v,w) ≥ d(u,w).

2. For every u and v in U ,

4〈v̄0, ū− v̄〉 ≤ d(u, v) ≤ 2‖ū− v̄‖2.

3. Suppose that M is a subset of U of width w then for
every u, v ∈ M , we have ‖ū − v̄‖2 − 2w ≤ d(u, v) ≤
‖ū− v̄‖2 + 2w.

4. If width(M) ≤ w (as in part 3), then for u ∈ M ,

Ball0(u, r/2) ∩M ⊂ Ball+(u, r) ∩M

⊂ Ball0(u, r + 2w) ∩M,

and

Ball0(u, r/2) ∩M ⊂ Ball−(u, r) ∩M

⊂ Ball0(u, r + 2w) ∩M.



Proof. 1. The condition d(u, v) ≥ 0 is ensured by an
SDP constraint. Then d(u, v)+d(v,w) = ‖ū−v̄‖2+2〈v̄0, ū−
v̄〉+‖v̄−w̄‖2+2〈v̄0, v̄−w̄〉 ≥ ‖ū−w̄‖2+2〈v̄0, ū−w̄〉 = d(u,w).

2. We have, 4〈v̄0, ū − v̄〉 = d(u, v) − d(v, u) ≤ d(u, v) ≤
d(u, v) + d(v, u) = 2‖ū− v̄‖2.

3. The inequality immediately follows from the definition
of d(u, v):

d(u, v) = ‖ū− v̄‖2 + 2〈v̄0, ū− v̄〉 ≤ ‖ū− v̄‖2 + 2width(M).

d(u, v) = ‖ū− v̄‖2 + 2〈v̄0, ū− v̄〉 ≥ ‖ū− v̄‖2 − 2width(M).

4. If v ∈ Ball0(u, r/2), then ‖ū − v̄‖2 ≤ r/2, and, con-
sequently, d(u, v) ≤ r (by item 2). If v ∈ Ball+(u, r) ∩ M ,
then d(u, v) ≤ r and u, v ∈ M . Thus, by item 3, ‖ū− v̄‖2 ≤
d(u, v) + 2w ≤ r + 2w.

4.3 Preprocessing
The directed semi-metric d(u, v) defined by a feasible SDP

solution has two components: the undirected `22 component
‖ū− v̄‖2 and the projection of u−v on to v0. Here, we show
how to preprocess the graph, so that in the remaining graph,
the directed semi-metric d(u, v) can be approximated well by
the undirected `22 distance. The preprocessing algorithm is
motivated by the following observation: edges (u, v) whose
distance d(u, v) has a large contribution from the projection
〈v̄0, ū − v̄〉, can be separated cheaply by looking at their
projections on v̄0. We now describe the preprocessing step,
along with its guarantees.

Lemma 4.3 There is an algorithm that given a H ′(U ′, E′),
a parameter δ > 0 and an SDP solution {ū} of cost sdp-cost
does the following. Either it finds a 0.1-balanced cut in H ′ of
cost O(sdp-cost /δ), or it partitions U ′ into sets L, C, and
R such that

1. each of the sets L and R contains at most |U ′|/10 ver-
tices;

2. the total cost of directed cuts (R,C), (C,L) and (R,L)
is O(sdp-cost /δ),

3. width(C) ≤ δ/8.

Proof. We run the following algorithm.

Preprocessing Algorithm

Input: Graph H(U ′, E′), parameter δ > 0 and a feasible
SDP solution {ū}, as in Lemma 4.3.
Output: A directed balanced cut or a partition of U ′ into
three sets L, C, and R.

1. Let µ be the median of the set {〈v̄0, ū〉 : u ∈ U ′}.
2. Let Lτ = {u ∈ U : 〈v̄0, ū〉 < µ − τ}, Cτ = {u ∈ U :

|〈v̄0, ū〉−µ| ≤ τ}, and Rτ = {u ∈ U : 〈v̄0, ū〉 > µ+ τ}.
3. Choose τ ∈ (0, δ/16) that minimizes the total cost of

directed cuts (Rτ , Cτ ), (Cτ , Lτ ) and (Rτ , Lτ ).

4. If |Lτ | > |U ′|/10 return the cut (Cτ∪Rτ , Lτ ); if |Rτ | >
|U ′|/10 return the cut (Rτ , Cτ ∪ Lτ ).

5. Otherwise, return sets L = Lτ , C = Cτ , and R = Rτ .

Note that if the algorithm outputs a directed cut, the side
of the cut that equals Lτ or Rτ contains at least |U ′|/10
vertices, and the other side, which equals Lτ∪Cτ or Rτ∪Cτ ,
contains at least |U ′|/2 vertices since |Lτ ∪ Cτ | ≥ |{u ∈ U :
〈v̄0, ū〉 ≤ µ}| ≥ |U ′|/2 (by the definition of µ); similarly,
|Rτ ∪ Cτ | ≥ |U ′|/2. Therefore, the cut is 0.1-balanced. If
the algorithm outputs sets L, C, and R then condition (1)
clearly holds.

Now we will prove that if the algorithm outputs a directed
cut then its cost is at most 32 sdp-cost /δ, and if the algo-
rithm outputs sets L, C, R then condition (2) holds. To this
end, we show that the total cost of cuts (Rτ , Cτ ), (Cτ , Lτ )
and (Rτ , Lτ ) is at most 32 sdp-cost /δ. Suppose that we
choose τ uniformly at random from (0, δ/16). Consider an
edge (u, v) ∈ E′. We compute the probability that (u, v)
is cut by one of the directed cuts (Cτ , Lτ ) and (Rτ , Lτ ).
If 〈v̄0, u〉 ≤ 〈v̄0, v〉 then the edge (u, v) cannot be cut. If
〈v̄0, u〉 ≥ 〈v̄0, v〉 then the probability that (u, v) is cut is at
most 〈v̄0, ū− v̄〉/(δ/16) ≤ 4d(u, v)/δ (by Lemma 4.2). Since
1
8

∑
(u,v)∈EH

d(u, v) ≤ sdp-cost, the expected total number

of cut edges is at most 32 sdp-cost /δ. Thus for the optimal
value of τ ∈ (0, δ), the total number of cut edges is also at
most 32 sdp-cost /δ.

Finally, width(C) = maxu,v∈C(〈v̄0, ū〉 − 〈v̄0, v̄〉) ≤ (µ +
δ/16) − (µ− δ/16) = δ/8.

4.4 Heavy Vertices and Geometric Expansion
In this subsection, we first remind the definitions of heavy

vertices and geometric expansion from [MMV12] and state
some related results from [MMV12]. Then we describe the
heavy vertex removal procedure for directed graphs (which
is a modification of the vertex removal procedure for undi-
rected graphs from [MMV12]).

Definition 4.4 Let U be a set of vertices, and M ⊆ U .
Suppose that {ū} is a feasible SDP solution. We say that a
vertex u ∈ M is δ–heavy in M if |Ball0(u, δ) ∩M | ≥ δ2|U |.
We denote the set of all heavy vertices by Hvδ(M). (Note
that the set of heavy vertices depends on the SDP solution.)

Definition 4.5 (Geometric Expansion) A graph H = (U,EH)
satisfies the geometric expansion property with cut value X
at scale δ if for every feasible SDP solution {ū} and every
subset of vertices M ⊆ U satisfying Hvδ(M) = ∅ w.r.t {ū},

|{(u, v) ∈ E ∩ (M ×M) : ‖ū− v̄‖2 ≤ δ/2}| ≤ 2δ2X.

A graph H = (U,EH) satisfies the geometric expansion prop-
erty with cut value X up to scale δ∗ if it satisfies the geomet-
ric expansion property for every δ ∈ [δ∗, 1]∩{2−t : t ∈ N≥0}.

We will also use the following theorem, which is a simple
variant of Theorem 5.1 proved in [MMV12]. (We omit the
proof of Theorem 4.6 in this paper.)

Theorem 4.6 Let V be a set of vertices of size n, ε ∈ (0, 1),
and D > 2. Let ER be an ε-random set of edges. Then
with probability 1− 2−Ω(n) the random set SRD(V,ER) sat-
isfies the following property: every graph H = (U,EH) ∈
SRD(V,ER) is geometrically expanding with cut cost

X = Cmax{ε2|U |, nD(log2 D)}

up to scale 1/
√
D.

Now we present a procedure that removes heavy vertices
from a graph. This procedure is similar to the Heavy Vertex
Removal Lemma from [MMV12].



Lemma 4.7 There exists a polynomial-time algorithm that
given sets U ′ ⊂ U , a feasible SDP solution {ū}, and a subset
M ⊆ U ′ of width w ≤ δ/4, finds a set of vertices M ′ ⊂ M
and a partition of M \M ′ into disjoint sets Z1, . . . , Zk (for
some k ≥ 0) such that

• the set M ′ does not contain any δ–heavy vertices (i.e.,
Hvδ(M

′) = ∅) w.r.t. the SDP solution {ū}.
• |Zi| ≤ 3

4
|U | for each set Zi;

• for every two vertices u∗ and v∗ in M , we have

Pr(∃i s.t. u∗ ∈ Zi and v∗ /∈ Z1 ∪ · · · ∪ Zi) ≤

≤ C
(
δ−1 + δ−2 E[|M \M ′|]

|U |
)
d(u∗, v∗).

Proof. We use the following algorithm. If δ ≥ 1/128, we
run the algorithm with δ′ = 1/128.

Heavy Vertices Removal Procedure

Input: a set of vertices U , a subsetM ⊆ U , an SDP solution
{ū}, a parameter δ ∈ (0, 1/128];
Output: a set M ′ ⊆ M , partition M \ M ′ = Z1 ∪ . . . Zk

(for some k ≥ 0);

• while (Hvδ(M) 6= ∅)

– Connect heavy vertices in M at `22 distance at
most 8δ with an undirected edge and denote the
new set of undirected edges by A; that is,

A = {(u, v) ∈ Hvδ(M)×Hvδ(M) : ‖ū−v̄‖2 ≤ 8δ}.

– Break undirected graph (Hvδ(M), A) into connected
components.

– Pick a random r ∈ [2δ, 3δ).

– Remove components of small diameter: For each
connected component Q with

diam(Q) ≡ max
u,v∈Q

‖ū− v̄‖2 ≤ 1/8,

let

BQ =
⋃

u∈Q

Ball+(u, r) ∩M

= {v ∈ M : ∃u ∈ Q s.t. d(u, v) ≤ r}.
Denote the set of all connected components of di-
ameter at most 1/8 by Q.

– Remove a maximal independent set: In the re-
maining set Hvδ(M) \ ⋃Q∈Q Q find a maximal

independent set I (this is done independently of
the random variable r, e.g., using a determinis-
tic greedy algorithm). For each u ∈ I , let Bu =
Ball+(u, r) ∩M .

– Remove sets BQ and Bu from M :

M = M \
( ⋃

U∈U
BU ∪

⋃

u∈S

Bu

)
;

• Let sets Z1, . . . , Zk be the sets that we removed from
M (in the order in which we removed them).

• return M ′ = M and sets {Zi}.

Analysis. It is clear that the algorithm always terminates
in polynomial-time (since at every step at least one vertex is
removed). When the algorithm terminates Hvδ(M) = ∅ by
the condition of the “while” loop. In order to bound the size
of sets Zi, we prove that the `22-diameter of every set Zi is
at most 1/4. Each set Zi is either equal to some Bu or some
BQ. Every set Bu removed from M at one of the iterations
is contained in Ball+(u, 3δ) ∩ M ⊂ Ball0(u, 3δ + 2w) ∩ M
by Lemma 4.2; thus its `22-diameter is at most 6δ + 4w ≤
1/4. Every set BQ is contained in

⋃
u∈Q Ball+(u, 3δ)∩M ⊂⋃

u∈Q Ball0(u, 3δ + 2w) ∩ M . Since the `22-diameter of Q is

at most 1/8, the `22-diameter of Q is at most 1/8+6δ+4w <
1/4. We get that for every Zi:

∑

u,v∈U

‖ū− v̄‖2 ≤ (|U |2 − |Zi|2) · max
u,v∈U

‖ū− v̄‖2
︸ ︷︷ ︸

at most 4

+ |Zi|2 · max
u,v∈Zi

‖ū− v̄‖2
︸ ︷︷ ︸

at most 1/4

≤ 4|U |2 − 15

4
|Zi|2.

By the SDP spreading constraint, the left hand side is
greater than or equal to 2(|U |2 − 1), thus |Zi|2 ≤ (8|U |2 +
8)/15, and |Zi| ≤ 3

4
|U | (when |U | ≥ 5). Now we verify the

third item of the lemma. Fix two vertices u∗ and v∗; and
consider one iteration of the algorithm. We may assume
that the algorithm first picks the independent set I and a
collection of connected componentsQ, and only then chooses
random r ∈ [2δ, 3δ). Observe, that the `22-distance between
(SDP vectors corresponding to) any two vertices in I is at
least 8δ (because I is an independent set), the `22-distance
between every two sets in Q is at least 8δ (otherwise, these
two sets would form one connected component), and the `22-
distance between every Q ∈ Q and u ∈ I is at least 8δ (again
because Q is a connected component, and u /∈ Q). Thus, u∗

may belong to at most one
⋃

u∈Q Ball0(u, 4δ) or Ball0(u, 4δ).

By Lemma 4.2, Ball+(u, 3δ) ⊂ Ball0(u, 4δ) (since w < δ/2),
thus u∗ may belong to at most one

⋃
u∈Q Ball+(u, 3δ) or

Ball+(u, 3δ). If u∗ ∈ Ball+(u, 3δ) ∩M and v∗ ∈ M , then

Pr(u∗ ∈ Ball+(u, r), v∗ /∈ Ball(u, r))

= Pr(d(u, u∗) ≤ r ≤ d(u, v∗))

≤ Pr(d(u, u∗) ≤ r ≤ d(u, u∗) + d(u∗, v∗))

≤ d(u∗, v∗)

3δ
.

Of course, if u∗ /∈ Ball+(u, 3δ), then

Pr(u∗ ∈ Ball+(u, r), v∗ /∈ Ball+(u, r)) ≤
≤ Pr(u∗ ∈ Ball+(u, r)) = 0.

The same statements hold if we replace u ∈ I with Q ∈ Q.
Thus, at one iteration, the probability that u∗ belongs to a
removed ball but v∗ does not belong to the same ball (and
v∗ was not removed previously) is at most O(d(u, v)/δ).
Denote by T the number of iterations of the algorithm.
Then, the probability that u∗ is cut from M at one iter-
ation and v∗ is not cut from M at this or prior iteration is
O(δ−1

E[T ]d(u, v)).
We now prove that at every iteration but possibly the

last, the algorithm removes at least Ω(δ|U |) vertices from



M . Thus, E[T ] ≤ 1 + O(E|M ′ \ M |/(δ|U |)), and the third
item of Lemma 4.7 follows. Observe, that if I = ∅, then
the algorithm terminates. If I 6= ∅, there exists at least one
connected component L with diam(L) ≥ 1/8. The maximal
independent set in L must contain at least Ω(δ−1) vertices,
since for every edge (u, v) ∈ A, ‖ū − v̄‖2 ≤ 8δ. Thus, |I | ≥
Ω(δ−1). Since each u ∈ I is δ–heavy and r ≥ 2δ, |Bu| ≥
|Ball+(u, 2δ)∩M | ≥ |Ball0(u, δ)∩M | ≥ δ2|U |. Hence (using
the fact that sets Bu are disjoint),

∣∣∣
⋃

u∈I

Bu

∣∣∣ =
∑

u∈S

|Bu| ≥ Ω(δ|U |).

Now we combine Lemma 4.7 and Lemma 4.3 and obtain
the following lemma.

Lemma 4.8 There is a polynomial-time algorithm that given
a graph H(U,EH), its subgraph H ′(U ′, E′) and a feasible
SDP solution {ū} of cost at most sdp-cost = sdp-cost(U,E′),
partition U ′ into three sets S∗, T ∗ and U ′′ satisfying the fol-
lowing conditions:

• The set U ′′ does not contain any δ–heavy vertices w.r.t.
{ū} (Hvδ(U

′′) = ∅).

• |S∗| ≤ 0.9|U | and |T ∗| ≤ 0.9|U |.

• The total cost of directed cuts (S∗, U ′′), (S∗, T ∗) and
(U ′′, T ∗) is at most

C
(
δ−1 + δ−2 E[|U \ U ′|]

|U |
)
· sdp-cost .

Proof. We run the algorithm from Lemma 4.3. If the
algorithm returns a directed balanced cut in (U,E′) of cost
O(sdp-cost /δ), we let (S∗, T ∗) be this cut, and let U ′′ =
∅. The first condition trivially holds since U ′′ = ∅. The
second and third conditions hold by Lemma 4.3. Otherwise,
the algorithm returns three sets L, C and R. We run the
algorithm from Lemma 4.7 on M = C and get a partition
of M into a set M ′ and a family of sets Z1, . . . , Zk.

We consider two cases. First, assume that |R ∪ Z1 ∪ · · · ∪
Zk| ≤ 0.9|U |. Then we let S∗ = R ∪ Z1 ∪ · · · ∪ Zk, T

∗ = L
and U ′′ = M ′. The first property holds by Lemma 4.7.
By our assumption, |S∗| ≤ 0.9|U |; by Lemma 4.3, |T ∗| =
|L∗| < 0.1|U ′′| < 0.9|U |. It follows from Lemmas 4.3 and 4.7
that the total cost of cuts (S∗, U ′′), (S∗, T ∗) and (U ′′, T ∗)

is O
(
δ−1 + δ−2 E[|U′\U′′|]

|U|

)
· sdp-cost.

Now let us assume that |R∪Z1∪· · ·∪Zk| > 0.9|U |. We find
the last index i such that |R∪Z1∪· · ·∪Zi| ≤ 0.9|U |. Let S∗ =
R∪Z1∪. . . Zi, T

∗ = C∪L∪Zi+1∪· · ·∪Zk and U ′′ = ∅. The
first property trivially holds since U ′′ = ∅. We verify that
the second property holds. By our choice of i, |S∗| ≤ 0.9|U |.
Since |S∗ ∪ Zi+1| > 0.9|U | and |Zi+1| < 0.75|Ui |, we have
|S∗| > 0.15|U |, and therefore |T ∗| = |U ′| − |S∗| < 0.85|U |.
Finally, it follows from Lemmas 4.3 and 4.7 that the cost

of the cut (S∗, T ∗) is at most O
(
δ−1 + δ−2 E[|U′\U′′|]

|U|

)
·

sdp-cost.

4.5 Algorithm for Minimum Directed
Balanced Cut

Now we are ready to present our algorithm.

Input: a graph H(U,EH);
Output: a directed balanced cut (S′, T ′);

• Let t = 0, H0 = H , U0 = U , E0 = EH .

• while (δt ≥ (log n)−1/4) do

A. Let δ = δt = 2−t.

B. Solve the SDP relaxation SDP(U,Et) for the Min-
imum Directed Balanced Cut.

C. Run the algorithm from Lemma 4.8, and obtain
sets St+1 = S∗, Tt+1 = T ∗ and Ut+1 = U ′′.

D. Consider the induced graph Ht[Ut+1]. Remove all
edges (u, v) ∈ Ht[Ut+1] with d(u, v) ≥ δt/4. De-
note the obtained graph by Ht+1 = (Ut+1, Et+1).

E. Let t = t+ 1.

• Find a directed 0.1-balanced cut (S∗∗, T ∗∗) in the graph
(U,Et) using the algorithm of Agarwal, Charikar, Maka-
rychev and Makarychev [ACMM05].

• Let A1 = S1, . . . , At = St, At+1 = S∗∗ ∩ Ut, At+2 =
T ∗∗ ∩ Ut, At+3 = T1, . . . , A2t+2 = Tt.

• Find the last j∗ s.t.
∑j∗

i=1 |Aj | < 0.95|U |.
• Let S′ =

⋃j∗

i=1 Ai and T ′ =
⋃2t+2

i=j∗+1 Ai.

• return (S′, T ′)

Analysis. By Theorem 4.6, graph (U,ER ∩ (U × U)) is
geometrically expanding with cut value

X = Cmax{ε2|U |, n
√

log n(log2 log n)}

up to scale (log n)−1/4. Consider iteration t of the algorithm.
By Lemma 4.8, the set U ′

t+1 contains no δt-heavy vertices.
Therefore, by the definition of geometric expansion, there
are at most 2δ2tX edges (u, v) ∈ ER ∩ (U ′ × U ′) with ‖ū −
v̄‖2 ≤ δt/2. Note that if ‖ū− v̄‖2 > δt/2 then

d(u, v) ≥ ‖ū− v̄‖2 − 2width(U ′) ≥ δt/4.

Thus at step D, we remove all but at most 2δ2tX random
edges from Ht. That is, |ER ∩ Et+1| ≤ δ2tX. Therefore,
sdp-cost(U,Et+1) ≤ 2δ2tX.

Now we bound the cost of the cut. Note that the total
number of edges cut at step C — edges that go from St+1

and Tt+1, from St+1 to Ut+1, or from Ut+1 to Tt+1 — is

at most O
(
(δtX +

E[|Ut\Ut+1|]
|U| )X

)
. Since

∑
t δt < 2, and

∑
t E[|Ut \ Ut+1|]/ |U | < 1, we get that the total number of

edges cut at step C in all iterations is O(X). We cut at
most sdp-cost(U,Ei)/(δt/4) = O(δtX) edges at step D in
one iteration; and we cut at most O(X) edges in total all
iterations. Finally, we bound the cost of (S ∗ ∗, T ∗∗). The
planted cut (S, T ) in U cuts at most |Et ∩ER| ≤ δ2tX edges

in Et. Thus (here, δt < (logn)−1/4)

costEt(S
∗∗, T ∗∗) ≤ O(

√
log n) costEt(S, T )

≤ O(
√

log n)δ2tX = O(X).



Finally, we verify that the cut (S′, T ′) is balanced. By our
choice of j∗, |S′| < 0.95|U |. Since |Ai| ≤ 0.9|U | for all i,

|T ′| = |U | − |S| = |U | −




j∗+1∑

i=1

|Ai|


+ |Aj∗+1|

≤ |U | − 0.95|U | + 0.9|U | = 0.95|U |.

5. REFERENCES
[ACMM05] Amit Agarwal, Moses Charikar, Konstantin

Makarychev, and Yury Makarychev.
O(

√
log n) approximation algorithms for Min

UnCut, Min 2CNF Deletion, and directed cut
problems. In Proceedings of the
Thirty-Seventh Annual ACM Symposium on
Theory of Computing, pages 573–581, 2005.

[ACN08] Nir Ailon, Moses Charikar, and Alantha
Newman. Aggregating inconsistent
information: Ranking and clustering. J.
ACM, 55(5):23:1–23:27, November 2008.

[AK94] Noga Alon and Nabil Kahale. A spectral
technique for coloring random 3-colorable
graphs. In Proceedings of the Twenty-Sixth
ACM Symposium on Theory of Computing,
pages 346–355, 1994.

[AKS99] Noga Alon, Michael Krivelevich, and Benny
Sudakov. List coloring of random and
pseudo-random graphs. Combinatorica,
19:453–472, 1999.

[AMMN05] Noga Alon, Konstantin Makarychev, Yury
Makarychev, and Assaf Naor. Quadratic forms
on graphs. Invent. Math, 163:486–493, 2005.

[BCC+10] Aditya Bhaskara, Moses Charikar, Eden
Chlamtac, Uriel Feige, and Aravindan
Vijayaraghavan. Detecting high log-densities:
an O(n1/4) approximation for densest
k-subgraph. In Proceedings of the 42nd ACM
Symposium on Theory of Computing, pages
201–210, 2010.

[BLCS87] Thang Nguyen Bui, F. Thomson Leighton,
Soma Chaudhuri, and Michael Sipser. Graph
bisection algorithms with good average case
behavior. Combinatorica, 7:171–191, June
1987.

[BM08] Mark Braverman and Elchanan Mossel. Noisy
sorting without resampling. In Proceedings of
the Nineteenth Annual ACM-SIAM
Symposium on Discrete Algorithms, pages
268–276, 2008.

[Bop87] Ravi B. Boppana. Eigenvalues and graph
bisection: An average-case analysis. In 28th
Annual Symposium on Foundations of
Computer Science, pages 280–285, 1987.

[BS90] Bonnie Berger and Peter W. Shor.
Approximation alogorithms for the maximum
acyclic subgraph problem. In Proceedings of
the First Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 236–243, 1990.

[BS95] Avrim Blum and Joel Spencer. Coloring
random and semi-random k-colorable graphs.
J. Algorithms, 19:204–234, September 1995.

[CFR06] Don Coppersmith, Lisa Fleischer, and Atri
Rudra. Ordering by weighted number of wins
gives a good ranking for weighted
tournaments. In Proceedings of the
Seventeenth Annual ACM-SIAM Symposium
on Discrete Algorithm, pages 776–782, 2006.

[CK99] Anne Condon and Richard Karp. Algorithms
for graph partitioning on the planted partition
model. In Randomization, Approximation,
and Combinatorial Optimization. Algorithms
and Techniques, volume 1671 of Lecture Notes
in Computer Science, pages 221–232. Springer
Berlin / Heidelberg, 1999.

[CMM07] Moses Charikar, Konstantin Makarychev, and
Yury Makarychev. On the advantage over
random for maximum acyclic subgraph. In
Proceedings of the 48th Annual IEEE
Symposium on Foundations of Computer
Science, pages 625–633, 2007.

[CO06] Amin Coja-Oghlan. A spectral heuristic for
bisecting random graphs. Random Structures
& Algorithms, 29(3):351–398, 2006.

[DF86] M. E. Dyer and A. M. Frieze. Fast solution of
some random NP-hard problems. In 27th
Annual Symposium on Foundations of
Computer Science, pages 331–336, 1986.

[DI98] Tassos Dimitriou and Russell Impagliazzo. Go
with the winners for graph bisection. In
Proceedings of the Ninth Annual ACM-SIAM
Symposium on Discrete Algorithms, pages
510–520, 1998.

[ENRS00] Guy Even, Joseph Seffi Naor, Satish Rao, and
Baruch Schieber. Divide-and-conquer
approximation algorithms via spreading
metrics. J. ACM, 47(4):585–616, July 2000.

[FK98] Uriel Feige and Joe Kilian. Heuristics for
finding large independent sets, with
applications to coloring semi-random graphs.
In Proceedings of the 39th Annual Symposium
on Foundations of Computer Science, pages
674 –683, 1998.

[FK00] Uriel Feige and Robert Krauthgamer. Finding
and certifying a large hidden clique in a
semirandom graph. Random Struct.
Algorithms, 16:195–208, March 2000.

[GMR08] Venkatesan Guruswami, Rajsekar Manokaran,
and Prasad Raghavendra. Beating the
random ordering is hard: Inapproximability of
maximum acyclic subgraph. In Proceedings of
the 49th Annual IEEE Symposium on
Foundations of Computer Science, pages
573–582, 2008.

[JS93] Mark Jerrum and Gregory Sorkin. Simulated
annealing for graph bisection. In Proceedings
of the 34th Annual IEEE Symposium on
Foundations of Computer Science, pages
94–103, 1993.

[Kan92] V. Kann. On the Approximability of
NP-complete Optimization Problems. PhD



thesis, Department of Numerical Analysis and
Computing Science, Royal Institute of
Technology, Stockholm, 1992.

[Kar72] R. Karp. Reducibility among combinatorial
problems. In R. Miller and J. Thatcher,
editors, Complexity of Computer
Computations, pages 85–103. Plenum Press,
1972.

[KMM11] Alexandra Kolla, Konstantin Makarychev,
and Yury Makarychev. How to play unique
games against a semi-random adversary:
Study of semi-random models of unique
games. In Proceedings of the 52nd Annual
Symposium on Foundations of Computer
Science, pages 443–452, 2011.

[KMS07] Claire Kenyon-Mathieu and Warren Schudy.
How to rank with few errors. In Proceedings of
the Thirty-Ninth Annual ACM Symposium on
Theory of Computing, pages 95–103, 2007.

[KMSPT86] Ludek Kucera, Alberto
Marchetti-Spaccamela, Marco Protasi, and
Maurizio Talamo. Near optimal algorithms for
finding minimum steiner trees on random
graphs. In Mathematical Foundations of
Computer Science, pages 501–511, London,
UK, UK, 1986. Springer-Verlag.

[KS63] John G. Kemeny and J. Laurie Snell.
Mathematical models in the social sciences.
Blaisdell Publ., 1963.

[LR99] Tom Leighton and Satish Rao.
Multicommodity max-flow min-cut theorems
and their use in designing approximation
algorithms. J. ACM, 46:787–832, November
1999.

[Mak08] Konstantin Makarychev. Quadratic Forms on
Graphs and Their Applications. PhD thesis,
Department of Computing Science, Princeton,
University, Princeton, NJ, USA, 2008.

[McS01] Frank McSherry. Spectral partitioning of
random graphs. In Proceedings of the 42nd
IEEE Symposium on Foundations of
Computer Science, pages 529–537, 2001.

[MMV12] Konstantin Makarychev, Yury Makarychev,
and Aravindan Vijayaraghavan.
Approximation algorithms for semi-random

graph partitioning problems. In Proceedings of
the 44th symposium on Theory of Computing,
pages 367–384, 2012.

[MS10] Claire Mathieu and Warren Schudy.
Correlation clustering with noisy input. In
Proceedings of the Twenty-First Annual
ACM-SIAM Symposium on Discrete
Algorithms, pages 712–728, 2010.

[New04] Alantha Newman. Cuts and orderings: On
semidefinite relaxations for the linear ordering
problem. In Klaus Jansen, Sanjeev Khanna,
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