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Abstract

We give a robust version of the celebrated result of Kruskal on the uniqueness of tensor
decompositions: we prove that given a tensor whose decomposition satisfies a robust form of
Kruskal’s rank condition, it is possible to approximately recover the decomposition if the tensor
is known up to a sufficiently small (inverse polynomial) error.

Kruskal’s theorem has found many applications in proving the identifiability of parameters
for various latent variable models and mixture models such as Hidden Markov models, topic
models etc. Our robust version immediately implies identifiability using only polynomially
many samples in many of these settings. This polynomial identifiability is an essential first step
towards efficient learning algorithms for these models.

Recently, algorithms based on tensor decompositions have been used to estimate the param-
eters of various hidden variable models efficiently in special cases as long as they satisfy certain
“non-degeneracy” properties. Our methods give a way to go beyond this non-degeneracy bar-
rier, and establish polynomial identifiablity of the parameters under much milder conditions.
Given the importance of Kruskal’s theorem in the tensor literature, we expect that this robust
version will have several applications beyond the settings we explore in this work.
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1 Introduction

Statisticians have long studied the identifiability of probabilistic models [Tei61, Tei67, TC82], i.e.
whether the parameters of a model can be learned from data generated by the model. A cen-
tral question in unsupervised learning [Gha04] is the efficient computation of such latent model
parameters from observed data. A necessary step towards efficient (polynomial time) learning is
to show that the parameters are indeed identifiable after observing polynomially many samples.
The method of moments approach, pioneered by Pearson [Pea94], infers model parameters from
empirical moments such as means, pairwise and other higher order correlations. In general, very
high order moments may be needed for this approach to succeed and the unreliability of empirical
estimates of these moments leads to exponential sample complexity [MV10, BS10, GLPR12].

An exciting sequence of recent work [MR06, AHK12, HK12, AGH+12] has met with consider-
able success in cases where the underlying models satisfy a certain non-degeneracy condition (that
we will explain later). Informally, the condition requires that the dimension (n) of the observations
is at least as large as the number of possible values (R) for the hidden variable and that certain
model parameters are in general position. The moments are naturally represented by tensors (high
dimensional analogs of matrices) and low rank decompositions of such tensors can be used to deduce
the parameters of the underlying model. Under suitable non-degeneracy assumptions, the required
tensor decompositions can be computed efficiently using an iterative procedure akin to power iter-
ation for computing matrix eigenvalues. One focus of our work is developing tensor decomposition
techniques that apply in more general settings where these non-degeneracy assumptions are vio-
lated, i.e. n is much smaller than R. Such settings do arise in many cases of practical interest
such as in applications of hidden Markov models to speech recognition and image classification,
where the dimension (n) of the feature space is typically much smaller than the number of values
(R) for the hidden variable. For instance, the (effective) feature space corresponds to just the
low-frequency components in the fourier spectrum in speech, or the local neighborhood of a pixel
in images. These are typically low dimensional than the number of words or image classes.

In fact, the connection of tensor decompositions to learning probabilistic models has been made
earlier in the algebraic statistics literature. In a series of papers, identifiability of several latent
variable models was established [AMR09, APRS11, RS12] via low rank decomposition of certain
moment tensors. A fundamental result of Kruskal [Kru77] on uniqueness of tensor decompositions
plays a crucial role in ensuring that the model parameters are correctly identified by this procedure.
Note that this assumes access to an infinite number of samples and does not give any information
on the number of samples needed to learn the model parameters within specified error bounds.
Kruskal’s theorem by itself is not useful for establishing any such sample complexity bounds since
it only guarantees uniqueness for low rank decompositions of the actual moment tensors. It does
not say anything about the decomposition of empirical moment tensors which are approximations of
these. In order to understand how large a sample size is needed, one would need a robust uniqueness
guarantee of this form: if the empirical moment tensor T ′ is close to the moment tensor T , then a
low rank decomposition of T ′ is (term by term) close to a low rank decomposition of T .

Our main technical contribution in this work is establishing such a robust version of Kruskal’s
classic uniqueness theorem for tensor decompositions. This provides a uniqueness guarantee that
is directly applicable for establishing polynomial identifiability in a host of applications [AMR09]
where Kruskal’s theorem was used to prove identifiability assuming access to exact moment tensors.
Since polynomially many samples from the distribution (typically) yield an approximation to these
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tensors up to 1/poly(n) error, our robust version of Kruskal’s theorem establishes polynomial
identifiability in all such applications. To the best of our knowledge, no such robust version of
Kruskal’s theorem is known in the literature. Given the importance of this theorem in the tensor
literature, we expect that this robust version will have applications beyond the settings we explore
in this work. Our robust uniqueness theorem is accompanied by new algorithms to find low rank
tensor decompositions.

1.1 Tensors and their Decompositions

A tensor is a multidimensional array – a generalization of vectors and matrices e.g. an n1×n2×n3
tensor is a 3-tensor which is an element in Rn1×n2×n3 . Low rank tensor decompositions (analogs of
SVD for matrices) have been studied intensively as methods for extracting structure in data. These
originated in work of Hitchcock [Hit27] and Cattell [Cat44]. They were studied in the 60’s and 70’s
in the psychometrics literature and since the 80’s, in the chemometrics literature. The notion of
tensor rank also plays an important role in algebraic complexity, and is closely connected to the
exponent of matrix multiplication. More recently, tensor decompositions have found applications
in signal processing, numerical linear algebra, computer vision, numerical analysis, data mining,
graph analysis, neuroscience and more.

Carroll and Chang [CC70] introduced CANDECOMP (canonical decomposition) and indepen-
dently, Harshman [Har70] introduced PARAFAC (parallel factors). CANDECOMP/PARAFAC is
now referred to as CP decomposition [Kie00]. It expresses a tensor as a sum of rank-one tensors
where each rank-one tensor is the outer product of column vectors. The rank of a tensor is the
minimum number of terms required for such a decomposition. While the definition of tensor rank
is analogous to that of matrix rank, their properties are quite different. In fact, computing the
rank of a tensor is NP-hard [H̊as90] and in fact several other problems associated with low rank
approximation of tensors are NP-hard as well [HL13].

For matrices, a fundamental result of Eckart and Young [EY36] shows that the best rank-k ap-
proximation consists of the leading k terms of the SVD. This is not the case for CP decomposition of
tensors – the best rank one approximation may not be a factor in the best rank two approximation.
In fact, the best rank k-approximation may not exist. For example, certain tensors of rank-three can
be arbitrarily well approximated by a sequence of rank-two tensors [Knu, Paa00, DSL08, Lan12].
In fact, the set of tensors of a certain size that do not have a best rank-k approximation has positive
volume [DSL08]. To overcome this problem, the concept of border rank was introduced and studied
in the algebraic complexity community. This is defined to be the minimum number of rank-one
tensors that are sufficient to approximate the given tensor with arbitrarily small error. In fact, the
complexity of matrix multiplication is exactly captured by the border rank of the associated tensor
[KB09, Lan12].

An important property of higher order tensors is that (under certain conditions) their minimum
rank decompositions are unique upto trivial scaling and permutation. This is in contrast to matrix
decompositions. Note that the SVD of a matrix is unique (assuming distinct singular values) only
because we impose additional orthogonality constraints.

A classic result of Kruskal [Kru77] gives a sufficient condition for uniqueness of the CP decom-
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position of a 3-tensor. Suppose that a 3-tensor T has the following decomposition:

T = [A B C] ≡
R∑
r=1

Ar ⊗Br ⊗ Cr (1)

Let the Kruskal rank or K-rank kA of matrix A (formed by column vectors Ar) be the maximum
value of k such that any k columns of A are linearly independent. kB and kC are similarly defined.
Kruskal’s result says that a sufficient condition for the uniqueness of the decomposition (1) is

kA + kB + kC ≥ 2R+ 2 (2)

Several alternate proofs of this fundamental result have been given [tBS02, JS04, SS07, Rho10,
Lan12]. Sidiropoulos and Bro [SB00] extended this result to `-order tensors. Let T be a `-order
tensor with decomposition

T =
R∑
r=1

⊗̀
j=1

U (j)
r

Then the decomposition is unique if

∑̀
j=1

kU(j) ≥ 2R+ (`− 1) (3)

We give a robust version of of Kruskal’s uniqueness theorem for decomposition of 3-tensors. To
this end, we need a natural robust analogue of Kruskal rank: we say that K-rankτ (A) ≥ k if every
submatrix of A formed by k of its columns has minimum singular value at least 1/τ . A matrix is
called bounded if its column vectors have bounded length. Finally, we measure closeness between
two tensors or two matrices by the Frobenius norm of their difference. Please see Section 2 for
precise definitions.

Our first result shows that any tensor with bounded decomposition that satisfies the robust
Kruskal condition has a unique decomposition upto small error (formal statement in Section 2):

Informal Theorem. If any order 3 tensor T has a bounded rank R decomposition [A B C],
where the robust K-rankτ kA, kB, kC satisfy kA + kB + kC ≥ 2R + 2, then any decomposition
[A′ B′ C ′] that is ε-close to T has A′, B′, C ′ being individually ε′-close to A,B and C respectively
when ε < ε′ · poly(R,n, τ).

A similar theorem (see Theorem 2.7) also holds for higher order tensors and the analogous
robust Kruskal rank condition is exactly (3) where kU(j) corresponds to the robust Kruskal rank
of U (j). Note that when all the U (j) have the same rank, the robust Kruskal condition becomes
weaker for higher order tensors.

Why is it non-trivial to obtain a robust version from existing proofs? Kruskal’s theorem
gives conditions under which the components of a tensor decomposition can be identified uniquely.
However the proofs that we are aware of strongly use inductive lemmas which prove that subsets of
the components of one decomposition have to necessarily belong in any other potential decomposi-
tion, and use them to conclude that any two decompositions are in fact the same. When working
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with representations that are only nearly equal, these inductive arguments typically accumulate
errors in each step, thereby requiring the initial error to be exponentially small in order to reach
the desired conclusion. Such a result would not be of any value for establishing polynomial sample
complexity bounds, since the sample size would need to be exponentially large for the empirical
moment tensors to approximate the true moment tensor within such a low error. We overcome this
issue by using arguments that are purely combinatorial whenever possible, and carefully avoiding
a loss at each step.

Since finding low-rank decomposition of tensors is of great practical interest, it is natural to
study algorithms for this problem. While this and many related problems are NP-hard in general
[HL13], we give an algorithm which given an approximation to a tensor, finds an approximate low-
rank decomposition in time exponential only in the rank (and not the dimensions of the tensor).

Informal Theorem. Given a tensor with a bounded, rank R decomposition up to an error ε, we
can find a rank R approximation with error O(ε) in time exp(R2 log(n/ε))poly(n).

This can be viewed as a tensor analog of low-rank approximation, which is very well-studied for
matrices. Note that our algorithm does not require the promised decomposition to have additional
well-conditioned properties. If we additionally have such guarantees (for e.g., that the sum of K-
rank of the components is high), then Theorem 2.7 implies that the algorithm finds this particular
decomposition (up to a small error).

1.2 Latent Variable Models

We now describe some of the latent variable models that our results are applicable to. We will
formally state the identifiability and algorithmic results we obtain for each of these in Section 5.

Consider a simple mixture-model, where each sample is generated from mixture of R distri-
butions {Dr}r∈[R], with mixing probabilities {wr}r∈[R]. Here the latent variable h corresponds to
the choice of distribution and it can have [R] possibilities. First the distribution h = r is picked
with probability wr, and then the data is sampled according to Dr, which has mean µr ∈ Rn. Let
Mn×R represent the matrix of these R means. This setting captures many latent variable models
including topic models, Hidden Markov Models (HMMs), gaussian mixtures etc.

Multi-view Mixture Model

Multi-view models are mixture models with a discrete latent variable h ∈ [R], such that Pr [h = r] =
wr. We are given multiple observations or views x(1), x(2), . . . , x(`) that are conditionally indepen-

dent given the latent variable h, with E
[
x(j)|h = r

]
= µ

(j)
r . Let M (j) be the n × R matrix whose

columns are the means {µ(j)r }r∈[R]. The goal is to learn the matrices {M (j)}j∈[`] and the mixing
weights {wr}r∈[R].

Multi-view models are very expressive, and capture many well-studied models like Topic Mod-
els [AHK12], Hidden Markov Models (HMMs) [MR06, AMR09, AHK12], random graph mixtures
[AMR09], and the techniques developed for this class have also been applied to phylogenetic tree
models [Cha96, MR06] and certain tree mixtures [AHHK12].
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Exchangeable (single) Topic Model

The simplest latent variable model that fits the multi-view setting is the Exchangeable Single Topic
model as given in [AHK12]. This is a simple bag-of-words model for documents, in which the words
in a document are assumed to be exchangeable. This model can be viewed as first picking the topic
r ∈ [R] of the document, with probability wr. Given a topic r ∈ [R], each word in the document
is sampled independently at random according to the probability distribution µr ∈ Rn (n is the
dictionary size). In other words, the topic r ∈ [R] is a latent variable such that the ` words in a
document are conditionally i.i.d given r.

The views in this case correspond to the words in a document. This is a special case of the
multi-view model since the distribution of each of the views j ∈ [`] is identical.

Hidden Markov Models

Hidden Markov Models (HMMs) are extensively used in speech recognition, image classification,
bioinformatics etc[Edd96, GY08]. We follow the same setting as in [AMR09]: there is a hidden
state sequence Z1, Z2, . . . , Zm taking values in [R], that forms a stationary Markov chain Z1 →
Z2 → · · · → Zm with transition matrix P and initial distribution w = {wr}r∈[R] (assumed to be

the stationary distribution). The observation Xt is represented by a vector in x(t) ∈ Rn. Given the
state Zt at time t, Xt (and hence x(t)) is conditionally independent of all other observations and
states. The matrix M (of size n × R) represents the probability distribution for the observations:
the rth column Mr represents the probability distribution conditioned on the state Zt = r i.e.

∀r ∈ [R], t ∈ [m], i ∈ [n], Pr [Xt = i|Zt = r] = Mir.

As mentioned previously, in many important applications of HMMs, n is much smaller than R.
e.g. in image classification, the commonly used SIFT features [Low99] are 128 dimensional, while
the number of image classes is much larger, e.g. 256 classes in the Caltech-256 dataset [GHP07]
and several thousands in the case of ImageNet [DDS+09]. Similarly, in speech recognition, the
features of an audio signal are typically based on mel-frequency cepstral coefficients (MFCCs) or
an encoding called perceptual linear prediction (PLP) that incorporates psychoacoustic constraints
[GY08], e.g. these are used to obtain a 39 dimensional feature vector in the popular HTK toolkit
for building HMMs for speech recognition [YEG+02, WGPY97]. On the other hand, the number
of states in these HMMs is much larger. Further, in some other applications, even when the feature
vectors lie in a large dimensional space (n� R), the set of relevant features or the effective feature
space could be a space of much smaller dimension (k < R), that is unknown to us.

Mixtures of Spherical Gaussians

Learning mixtures of Gaussians has a long and rich history – our overview is necessarily brief and
focuses on work relevant to our results. We consider the setting where we have a mixture of R
spherical gaussians in Rn, with mixing weights w1, w2, . . . wR, means µ1, µ2, . . . , µr, and the com-
mon variance σ2. Much work on this problem needs certain separation guarantees between the
centers [Das99, AK01, VW04, AM05, DS07, KK10, AS12]. Recently, moment methods were devel-
oped for arbitrary gaussians [KMV10, MV10, BS10], albeit with sample complexity and running
time exponential in R – such dependence is necessary in general. Recent work [AGH+12, HK13]
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developed efficient algorithms for special cases of this problem without needing any separation as-
sumptions. These methods, based on tensor decompositions, need the condition that the means
are linearly independent and hence necessarily n ≥ R. (additionally, the matrix of means need to
be well conditioned, i.e. the means should not be close to a low dimensional subspace).

We apply our results on tensor decompositions to many of the latent variable models described
above. Here is a representative result for multi-view models that applies when the dimension of
the observations (n) is δR where δ is a small positive constant and R is the size of the range of the
hidden variable, and hence the rank of the associated tensors. In order to establish this, we apply
our robust uniqueness result to the `th moment tensor for ` = d2/δe+ 1.

Informal Theorem. For a multi-view model with R topics or distributions, such that each of the
parameter matrices M (j) has robust K-rank of at least δR for some constant δ, we can learn these
parameters upto error ε with high probability using polyδ(n,R) samples. Further, these parameters
can be approximately computed in time expδ

(
R2 log(n/ε)

)
poly(n) time.

Polynomial identifiability was not known previously for these models in the settings that we
consider. Moreover, except for the well studied setting of mixtures of Gaussians, no provably good
algorithms were known (even with running time exp(poly(R))).

For mixtures of Gaussians, our results shed more light on polynomial identifiability: the algo-
rithm of [AGH+12, HK13] shows how to identify mixtures of (spherical) Gaussians efficiently when
we have R Gaussians in d dimensions, when the means satisfy certain well-conditioned properties
(which in particular requires d ≥ R). When d = 2, Moitra and Valiant [MV10] rule out polyno-
mial identifiability by giving two distributions for which we require exponentially many samples to
distinguish one from the other. Thus it is natural to ask what happens in between, when d < R,
but is not too small. Our results imply that a mixture of R Gaussians of known variance in a δR
dimensional space (any δ > 0) can be identified with polynomially many samples.

1.3 Overview of Techniques

Robust Uniqueness of Tensor decompositions. The main technical contribution of our paper
is the Robust Uniqueness theorem for Tensor decompositions. Our proof broadly follows the outline
of Kruskal’s original proof [Kru77]: It proceeds by establishing a certain Permutation lemma, which
gives necessary conditions to conclude that the columns of two matrices are permutations of each
other (up to scaling). Given two decompositions [A B C] and [A′ B′ C ′] for the same tensor, it
is shown that A,A′ satisfy the conditions of the lemma, and thus are permutations of each other.
Finally, it is shown that the three permutations for A,B and C (respectively) are identical. To
prove the robust uniqueness theorem, the key ingredient is a robust version of the permutation
lemma.

The first step in our argument is to prove that if A, B, C are “well-conditioned” (i.e., satisfy the
K-rank conditions of the theorem), then any other “bounded” decomposition which is ε-close is also
well-conditioned. This step is crucial to our argument, while an analogous step was not explicitly
needed for the proofs of exact uniqueness theorem.1 Besides, this statement is interesting in its
own right: it implies, for instance, that there cannot be a smaller rank (bounded) decomposition.

The second and most technical step is to prove the robust permutation lemma. The (robust)

1Note that the uniqueness theorem, in hindsight, establishes that the other decomposition is also well-conditioned.
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Permutation lemma needs to establish that for every column of C ′, there is some column of C close
to it. Kruskal’s proof [Kru77] roughly uses downward induction to establish the following claim:
for every set of i ≤ K-rank columns of C ′, there are at least as many columns of C that are in
the span of the chosen vectors. The downward induction infers this by considering intersections of
columns close to i+ 1 dimensional spaces.

The natural analogue of this approach would be to consider columns of C which are ε-close to the
spans of subsets of columns of C ′. However, the inductive step involves considering combinations
and intersections of the different spans that arise, and such arguments do not seem very tolerant to
noise. In particular, we lose a factor of τn in each iteration, i.e., if the statement was true for i+ 1
with error εi+1, it will be true for i with error εi = τn · εi+1. Since k steps of downward induction
need to be unrolled, we recover a robust permutation lemma only when the error < 1/(τn)k to
start with, which is exponentially small since k is typically Θ(n).

We overcome this issue by showing a different, more tricky inductive statement, whereby we do
not lose any error in the recursion. This is described in Section 3.3. To carry forth this argument
we crucially rely on the fact that C ′ is also “well-conditioned” and other observations.

Algorithms for low-rank tensor decompositions. At a high level, our algorithm for finding a
rank R approximation proceeds by finding a small (O(R)) dimensional space and then exhaustively
searching, which takes time exp(R2 log n)poly(n). Note that a naive exhaustive search using an
ε-net in the entire n dimensional space would incur a run time of exp(Rn)poly(n), which is much
worse if n� R.

Suppose the best rank R approximation to an input tensor has error ε. We first find an
R-dimensional space for each of the (three) dimensions, so that there is an O(ε)-close rank R de-
composition that comprises vectors only from the corresponding R-dimensional spaces. We note
that the spaces we find need not correspond to the span of the components in the optimum de-
composition, but they suffice to obtain an O(ε) approximation. Another feature of the algorithm
is that it does not assume that the tensor has an approximate “well conditioned” decomposition,
and assumes only boundedness.

1.4 Related Work

While our applications to learning latent variable models are inspired by the works of [AHK12,
AGH+12], our results are significantly different, particularly from a tensor decomposition perspec-
tive. Anandkumar et al [AGH+12] give algorithms for tensors which have a symmetric orthogonal
decomposition, i.e. a decomposition of the form

∑R
r=1Ar ⊗ Ar ⊗ Ar where the vectors Ar are or-

thogonal. In general, a rank-R tensor may not have any orthogonal decomposition. Note that any
tensor in n× n× n dimensions, which has rank R > n can not have an orthogonal decomposition.
While this is one source of intractability for general tensor decompositions [HK12], we crucially
use such tensors of rank R > n to give polynomial identifiability beyond the non-degenerate range
(R ≤ n).

For various latent variable models, in the non-degenerate setting (where the number of mixtures/
topics R is larger than the dimension of the space n), Anandkumar et al [AGH+12] use order 3
tensors given by the third moment tensor to identify the hidden parameters. In these tensors,
each rank-1 component corresponds to a hidden parameter, like one of the means. While these

8



parameters may not be orthogonal, a certain “whitening” transform of the space [AHK12, HK12]
produces a new instance in which these means are now orthogonal. For this they crucially rely on
two assumptions:

• The n × R matrix of the means has rank ≥ R (and well conditioned). This of course needs
R ≤ n.

• The algorithm has access to the second moment tensor2. This assumption will not hold in
the case of the general problem of tensor decompositions.

Finally, in the context of learning latent variable models, we go beyond the non-degeneracy
barrier and get polynomial identifiability even when n = δR < R. One interesting aspect of our
results is that we use successively higher O(1)-moments to handle larger values of R (hidden topics/
mixtures). This smooth tradeoff3 is in contrast to the works of [AHK12, HK12, AGH+12], where
they seem to get no additional advantage out of higher moments (larger than 3). Further, even
when using third moments, [AHK12, HK12, AGH+12] only obtain polynomial identifiability when
R ≤ n, whereas we obtain polynomial identifiability till R = 3n/2−1. On the other hand, since we
argue about identifiability directly through uniqueness theorems for tensors, it allows us to handle
larger values of R.

We also mention work on PAC learning of mixtures of k product distributions (see e.g. [FOS05,
FSO06]) that typically run in exp(k)poly(n) time and produce a distribution that is statistically
close to the underlying distribution – however they do not recover the actual mixture components
themselves.

2 Some preliminaries and our results

We start with basic notation on tensors which we will use throughout the paper. We then state
our results formally in these terms, and place them in context. In the process, we will see some
intriguing properties of tensors (relevant to our results) which distinguish them from matrices.

2.1 Notation and Preliminaries

Tensors are higher dimensional arrays. An `th order, or `-dimensional tensor is an element in
Rn1×n2×···×n` , for positive integers ni. Tensors have classically been defined over complex numbers
for certain applications, but we will consider only real tensors.

A concept that plays a crucial role for us is that of the rank of a tensor. For this, we first define
a rank-1 tensor as a product a(1) ⊗ a(2) ⊗ . . .⊗ a(`), where a(i) is an ni dimensional vector. We can
now define the rank.

Definition 2.1 (Tensor rank, Rank R decomposition). The rank of a tensor T ∈ Rn1×n2×···×n` is
defined to be the smallest R for which there exist R rank-1 tensors T (i) whose sum is T .

2This is certainly a valid assumption when learning latent variable models
3Note that the Rth moment is sufficient to identify the parameters typically [BS10, MV10, FSO06].
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A rank-R decomposition of T is given by a set of matrices U (1), U (2), . . . , U (`) with U (i) of
dimension ni ×R, such that we can write T = [U (1) U (2) . . . U (`)], which is defined by

[U (1) U (2) . . . U (`)] :=
R∑
r=1

U (1)
r ⊗ U (2)

r ⊗ . . .⊗ U (`)
r ,

where we use the notation Ar to denote the rth column vector of matrix A.

Third order tensors (or 3-tensors) play a central role in understanding properties of tensors in
general (as in many other areas of mathematics, the jump in complexity occurs most dramatically
when we go from two to three dimensions, in this case from matrices to 3-tensors). For 3-tensors,
we will often write the decomposition as [A B C], where A,B,C have dimensions nA, nB, nC
respectively.

Definition 2.2 (ε-close). Two tensors, represented by T1 = [U (1) U (2) . . . U (`)] and T2 =
[V (1) V (2) . . . V (`)] (of potentially different rank) are said to be ε-close if the Frobenius norm
of the difference is small, i.e.,∥∥∥[U (1) U (2) . . . U (`)]− [V (1) V (2) . . . V (`)]

∥∥∥
F
≤ ε

We will sometimes write this as T1 =ε T2.

Unless mentioned specifically, the errors in the paper will be `2 (or Frobenius norm, which is
the square root of the sum of squares of entries in a matrix/tensor), since they add up conveniently.

Definition 2.3 (ρ-boundedness). An n×R matrix A is said to be ρ-bounded if each of the columns
has length at most ρ, for some parameter ρ.

A tensor represented as above, [U (1) U (2) . . . U (`)], is (ρ1, ρ2, . . . , ρ`)-bounded if the matrix U (i)

is ρi bounded for all i.

We next define the notion of Kruskal rank, and its robust counterpart.

Definition 2.4 (Kruskal rank, K-rankτ (.)). Let A be an n × R matrix. The K-rank (or Kruskal
rank) of A is the largest k for which every set of k columns of A are linearly independent.

Let τ be a parameter. The τ -robust k-rank is denoted by K-rankτ (A), and is the largest k for
which every n× k sub-matrix A|S of A has σk(A|S) ≥ 1/τ .

Note that we only have a lower bound on the (kth) smallest singular value of A, and not for
example the condition number σmax/σk. This is because we will usually deal with matrices that
are also ρ-bounded, so such a bound will automatically hold, but our definition makes the notation
a little cleaner. We also note that this is somewhat in the spirit of (but much weaker than) the
Restricted Isometry Property (RIP) [CT05] from the Compressed Sensing literature.

Another simple linear algebra definition we use is the following

Definition 2.5 (ε-close to a space). Let V be a subspace of Rn, and let Π be the projection matrix
onto V . Let u ∈ Rn. We say that u is ε-close to V if ‖u−Πu‖ ≤ ε.
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Other notation. For z ∈ Rd, diag(z) is the d×d diagonal matrix with the entries of z occupying
the diagonal. For a vector z ∈ Rd, nz(z) denotes the number of non-zero entries in z. Further,
nzε(z) denotes the number of entries of magnitude ≥ ε. As is standard, we denote by σi(A) the
ith largest singular value of a matrix A. Also, we abuse the notation of ⊗ at times, with u ⊗ v
sometimes referring to a matrix of dimension dim(u) × dim(v), and sometimes a dim(u) · dim(v)
vector. This will always be clear from context.

Normalization. To avoid complications due to scaling, we will assume that our tensors are
scaled such that all the τA, τB, . . . , are ≥ 1 and ≤ poly(n). So also, our upper bounds on lengths
ρA, ρB, . . . are all assumed to be between 1 and some poly(n). This helps simplify the statements
of our lemmas.

Error polynomials. We will, in many places, encounter statements such as “ifQ1 ≤ ε, thenQ2 ≤
(3n2γ) · ε”, with polynomials ϑ (in this case 3n2γ) involving the variables n,R, kA, kB, kC , τ, ρ, . . . .
In order to keep track of these, we use the notation ϑ1, ϑ2, . . . . Sometimes, to refer to a polynomial
introduced in Lemma 3.11, for instance, we use ϑ3.11. Unless specifically mentioned, they will be
polynomials in the parameters mentioned above, so we do not mention them each time.

2.2 Our Results

We are now ready to formally state the results in our work. The first is a robust version of the
uniqueness of decomposition for 3-tensors.

Theorem 2.6 (Unique Decompositions). Suppose a rank-R tensor T = [A B C] is (ρA, ρB, ρC)-
bounded, with K-rankτA(A) = kA,K-rankτB (B) = kB,K-rankτC (C) = kC satisfying kA + kB + kC ≥
2R+ 2. Then for every 0 < ε′ < 1, there exists

ε = ε′/
(
R6ϑ2.6(τA, ρA, ρ

′
A, nA)ϑ2.6(τB, ρB, ρ

′
B, nB)ϑ2.6(τC , ρC , ρ

′
C , nC)

)
,

for some polynomial ϑ2.6 such that for any other (ρ′A, ρ
′
B, ρ

′
C)-bounded decomposition [A′ B′ C ′] of

rank R that is ε-close to [A B C], there exists an (R × R) permutation matrix Π and diagonal
matrices ΛA,ΛB,ΛC such that

‖ΛAΛBΛC − I‖F ≤ ε′ and
∥∥A′ −AΠΛA

∥∥
F
≤ ε′ (similarly for B and C) (4)

We remark that in order to prove the theorem, we did not make any assumptions about the
Kruskal ranks of A′, B′, C ′. We simply assumed that they are bounded. This is an interesting
feature of our proof, and is formalized in Lemma 3.4. Another observation: though we assumed
that the decomposition [A′ B′ C ′] is rank R, we really need only an upper bound. This is because
we can append zeroes and apply the theorem.

Our next result is a higher dimensional analogue of the above.

Theorem 2.7 (Uniqueness of Decompositions for Higher Orders). Suppose we are given an order `
tensor (with ` ≤ R), T = [U (1) U (2) . . . U (`)], where ∀j ∈ [`] the nj-by-R matrix U (j) is ρj-bounded,
with K-rankτj (U

(j)) = kj ≥ 2 satisfying

∑̀
j=1

kj ≥ 2R+ `− 1.

11



Then for every 0 < ε′ < 1, there exists ε =
(
ϑ
(`)
2.7

(
ε′

R

))
·
(∏

j∈[`] ϑ2.7(τj , ρj , ρ
′
j , nj)

)−1
such that,

for any other (ρ′1, ρ
′
2, . . . , ρ

′
`)-bounded decomposition [V (1) V (2) . . . V (`)] which is ε-close to T , there

exists an R×R permutation matrix Π and diagonal matrices {Λ(j)}j∈[`] such that∥∥∥∥∥∥
∏
j∈[`]

Λ(j) − I

∥∥∥∥∥∥
F

≤ ε′ and ∀j ∈ [`],
∥∥∥V (j) − U (j)ΠΛ(j)

∥∥∥
F
≤ ε′ (5)

Setting ϑ
(`)
2.7(x) = x2

`
and ϑ2.7(τj , ρj , ρ

′
j , nj) = (τjρjρ

′
jnj)

O(1) suffice for the theorem.

Since finding a small rank decomposition of a tensor is of great practical interest as we have
seen, it is natural to ask if it is possible to compute it efficiently. We can prove:

Theorem 2.8. Suppose T is a 3-tensor which has an (unknown) ρ-bounded representation [A B C],
where A,B,C have dimensions nA × R,nB × R and nC × R respectively, for some parameter ρ.
Then, given a tensor T ′ which is ε-close to T , we can find a rank-R tensor T ′′ (along with its
decomposition) which is 5ε close to T in time poly(nA, nB, nC) · exp(R2 log(Rρ/ε)).

We can view the above as an approximation algorithm for the low-rank approximation problem
for tensors. We will expound on this viewpoint in Section 4. We also note that although our
algorithm is quite simple, it has a running time better than simply trying to guess the 3R vectors
in the decomposition. The latter typically takes time exp(R(nA +nB +nC)), which could be much
worse than our bound for small values of R (which is when the low rank approximation problem is
typically interesting).

As we mentioned before, the algorithm does not need the promised decomposition [A B C] to
have large K-rank . However, if we are guaranteed that it has additional well-conditioned properties
(for e.g., the sum of K-rank of A,B,C is ≥ 2R+2), then Theorem 2.7 guarantees that the algorithm
finds this particular decomposition (up to a small error).

Also, the algorithm extends naturally to higher dimensional tensors: we state this version in
Section 4, Theorem 4.5.

Finally, we show how the above results on tensor decompositions can be used to learn latent
variable models with polynomial samples, hence showing polynomial identifiability under some weak
conditions involving the K-rank of the matrices. We first show polynomial identifiability for the
Multi-view mixture model, which captures various latent variable models that are used commonly.

Theorem 2.9 (Polynomial Identifiability of Multi-view mixture model). The following statement
holds for any constant integer `. Suppose we are given samples from a multi-view mixture model
(see Def 5.2), with the parameters satisfying:

(a) For each mixture r ∈ [R], the mixture weight wr > γ.

(b) For each j ∈ [`], K-rankτ (M (j)) ≥ k ≥ 2R
` + 1.

then there is a algorithm that given any η > 0 uses N = ϑ2.9
(`)
(
1
η , R, n, τ, 1/γ, cmax

)
samples,

and finds with high probability {M̃ (j)}j∈[`] and {w̃r}r∈[R] (upto renaming of the mixtures {1, 2, . . . , R})
such that

∀j ∈ [`],
∥∥∥M (j) − M̃ (j)

∥∥∥
F
≤ η and ∀r ∈ [R], |wr − w̃r| < η (6)
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Further, this algorithm runs in time exp
(
R2`2

[
22` log(R`η ) + ` log(n · τcmaxγ )

])
poly(n) time.

Polynomial identifiability of the Multi-view mixture model also leads to polynomial identifia-
bility of other latent variable models like topic models and HMMs. The following corollary shows
that Hidden Markov models can be learned from polynomial many samples by observing constant
number of consecutive time steps under mild conditions involving the K-rank (the constant depends
on the exact K-rank condition). Please refer to section 5 to see the implications for other latent
variable and mixture models like topic models, mixtures of gaussians etc.

Corollary 5.5 (Polynomial Identifiability of Hidden Markov models). The following statement
holds for any constant δ > 0. Suppose we are given a Hidden Markov model with parameters as
follows :

(a) The stationary distribution {wr}r∈[R] has ∀r ∈ [R] wr > γ1,

(b) The observation matrix M has K-rankτ (M) ≥ k ≥ δR,

(c) The transition matrix P has minimum singular value σR(P ) ≥ γ2,

then there is a algorithm that given any η > 0 uses N = ϑ2.9
( 1
δ
+1)
(
1
η , R, n, τ,

1
γ1γ2

)
samples

of m = 2d1δ e + 3 consecutive observations (of the Markov Chain), and finds with high probability,
P ′,M ′ and {w̃r}r∈[R] such that∥∥M −M ′∥∥

F
≤ η,

∥∥P − P ′∥∥
F
≤ η and ∀r ∈ [R], |wr − w̃r| < η (7)

Further, this algorithm runs in time n
Oδ(R

2 log( 1
ηγ1

))
(
n · τ

γ1γ2

)Oδ(1)
time.

Note that the above results shows polynomial identifiability (for constant δ > 0), and addition-
ally gives an algorithm which takes time nOδ(R

2)poly(n, τ,R) for inverse polynomial error. To the
best of our knowledge such algorithmic results with only a polynomial dependence on n were not
known for learning HMMs and topic models.

2.3 Auxiliary lemmas

In our proofs we will require several simple (mostly elementary linear algebra) lemmas. The Sec-
tion A is a medley of such lemmas. Most of the proofs are reasonably straightforward, and thus we
place them in the Appendix.

3 Uniqueness of Tensor Decompositions

First we consider third order tensors and prove Theorem 2.6 (Sections 3.1 and 3.2). Our proof
broadly follows along the lines of Kruskal’s original proof of the uniqueness theorem [Kru77]. The
key ingredient, which is a robust version of the so-called permutation lemma is presented in Sec-
tion 3.3, since it seems interesting its own right. Finally we will see how to reduce the case of higher
order tensors, i.e. Theorem 2.7, to that of third order tensors (Section 3.4).
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3.1 Uniqueness Theorem for Third Order Tensors

The proof of Theorem 2.6 broadly has two parts. First, we prove that if [A,B,C] = [A′, B′, C ′],
then A is a permutation of A′, B of B′, and C of C ′. Second, we prove that the permutations in
the (three) different “modes” (or dimensions) are indeed equal. Let us begin by describing a lemma
which is key to the first step.

The Permutation Lemma This is the core of Kruskal’s argument for the uniqueness of tensor
decompositions. Given two matrices X and Y , how does one conclude that the columns are per-
mutations of each other? Kruskal gives a very clever sufficient condition, involving looking at test
vectors w, and considering the number of non-zero entries of wTX and wTY . The intuition is that
if X and Y are indeed permutations, these numbers are precisely equal for all w.

Kruskal proves that if this sufficient condition holds, then X and Y must have columns which
are permutations of each other, up to scaling. More precisely, suppose X,Y are n×R matrices of
rank k. Let nz(x) denote the number of non-zero entries in a vector x. The lemma then states
that if for all w, we have

nz(wTX) ≤ R− k + 1 =⇒ nz(wTY ) ≤ nz(wTX),

then the matrices X and Y have columns which are permutations of each other up to a scaling.
That is, there exists an R×R permutation matrix Π, and a diagonal matrix Λ s.t. Y = XΠΛ.

We prove a robust version of this lemma, stated as follows (recall the definition of nzε(.),
Section 2)

Lemma 3.1 (Robust permutation lemma). Suppose X,Y are ρ-bounded n×R matrices such that
K-rankτ (X) and K-rankτ (Y ) are ≥ k, for some integer k ≥ 2. Further, suppose that for ε < 1/ϑ3.1,
the matrices satisfy:

∀w s.t. nz(wTX) ≤ R− k + 1, we have nzε(w
TY ) ≤ nz(wTX), (8)

then there exists an R × R permutation matrix Π, and a diagonal matrix Λ s.t. X and Y satisfy
‖X − YΠΛ‖F < ϑ3.1 · ε. In fact, we can pick ϑ3.1 := (nR2)ϑ3.5.

Outline of the section. In the remainder of this section, we will prove that A′ is a permutation
of A, B′ of B and C ′ of C. We do this by assuming Lemma 3.1 for now (it will be proved in
Section 3.3) and proving that if [A B C] =ε [A′ B′ C ′], then the conditions of the lemma hold for
C ′, C as X,Y in the statement respectively. We can repeat this argument with A,B to obtain the
conclusion.

We now state the key technical lemma which allows us to verify that the hypotheses of Lemma 3.1
hold. It says for any kC − 1 vectors of C ′ there are at least as many columns of C which are close
to the span of the chosen columns from C ′.

Lemma 3.2. Suppose A,B,C,A′, B′, C ′ satisfy the conditions of Theorem 2.6, and suppose [A B C] =ε

[A′ B′ C ′]. Then for any unit vector x, we have

∀ε′, nzε′(x
TC ′) ≤ R− kC + 1 =⇒ nzε′′(x

TC) ≤ nzε′(xTC ′)

for ε′′ = ϑ3.2 · (ε+ ε′), where ϑ3.2 := 4R3(τAτBτC)2ρAρBρC(ρ′Aρ
′
Bρ
′
C)2.
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Remark. This lemma, together with its corollary Lemma 3.4 will imply the conditions of the
permutation lemma. Lemma 3.4 lets us conclude that K-rankτϑ(C ′) ≥ K-rankτ (C) for some error
polynomial ϑ, which is essential in our proof of the permutation lemma. It also has other implica-
tions, as we will see. While the proof of the robust permutation lemma (Lemma 3.1) will directly
apply this Lemma with ε′ = 0, we will need the ε′ > 0 case for establishing Lemma 3.4.

A key component of the proof is to view the three-dimensional tensor [A B C] as a bunch of
matrix slices, and argue about the rank (or conditioned-ness) of weighted combinations of these
slices. One observation, which follows from the Cauchy-Schwarz inequality, is the following: if
[A B C] =ε [A′ B′ C ′], then by taking a combination of slices along the third dimension (with
weights given by x ∈ RnC , i.e., reweighing the ith slice by xi and summing these matrices) we have

∀x ∈ RnC ,
∥∥A diag(xTC) BT −A′ diag(xTC ′) (B′)T

∥∥2
F
≤ ε2 ‖x‖22 . (9)

We now begin the proof of the Lemma.

Proof of Lemma 3.2. W.l.o.g., we may assume that kA ≥ kB (the proof for kA < kB will follow
along the same lines). For convenience, let us define α to be the vector xTC, and β the vector
xTC ′. Let t be the number of entries of β of magnitude > ε′. The assumption of the lemma implies
that t ≤ R− kC + 1. Now from (9), we have

M :=
∑
i

αiAi ⊗Bi =
∑
i

βiA
′
i ⊗B′i + Z, (10)

where Z is an error matrix satisfying ‖Z‖F ≤ ε. Now, since the RHS has at most t terms with
|βi| > ε′, we have that σt+1 of the LHS is at most Rρ′Aρ

′
Bε
′ + ε. Using the value of t, we obtain

σR−kC+2(M) ≤ σt+1(M) < ε+ (Rρ′Aρ
′
B)ε′ (11)

We will now show that if xTC has too many co-ordinates which are larger than ε′′ then we
will contradict (11). One tricky case we need to handle is the following: while each of these non-
negligible co-ordinates of xTC will give rise to a large rank-1 term, they can be canceled out by
combinations of the rank-1 terms corresponding to entries of xTC which are slightly smaller than
ε′′. Hence, we will also set a smaller threshold δ and first handle the case when there are many
co-ordinates in xTC which are larger than δ. δ is chosen so that the terms with (xTC)i < δ can
not cancel out any of the large terms ((xTC)i ≥ ε′′).

Define S1 = {i : |(xTC)i| > ε′′} and S2 = {i : |(xTC)i| > δ}, where δ = ε′′/ϑ for some error
polynomial ϑ = 2R2ρAρBρCρ

′
Aρ
′
Bρ
′
CτAτBτC (which is always > 1). Thus we have S1 ⊆ S2. We

consider two cases.

Case 1: |S2| ≥ kB.

In this case we will give a lower bound on σR−kC+2(M), which gives a contradiction to (11). The
intuition is roughly that A,B have kA, kB large singular values, and thus the product should have
enough large ones as well. To formalize this, we use the following well-known fact about singular
values of products, which is proved by considering the variational characterization of singular values:

Fact 3.3. Let P,Q be matrices of dimensions p×m and m× q respectively. Then for all `, i such
that ` ≤ min{p, q}, we have

σ`(PQ) ≥ σ`+m−i(P )σi(Q) (12)
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Now, let us view M as PQ, where P = A, and Q = diag(α)BT . We will show that σkB (Q) ≥
δ/τB, and that σ2R+2−kB−kC (A) ≥ 1/τA. These will then imply a contradiction to (11) by setting
` = R− kC + 2 and i = kB since

δ

τAτB
=

ε′′

ϑτAτB
> (Rρ′Aρ

′
Bε
′ + ε) by our choice of ϑ3.2.

(It is easy to check that ` ≤ min{kA, kB} ≤ min{nA, nB}, and thus we can use the fact above.)

Thus we only need to show the two inequalities above. The latter is easy, because by the
hypothesis we have 2R + 2 − kB − kC ≤ kA, and we know that σkA(A) ≥ 1/τA, by the definition
of K-rankτA(A). Thus it remains to prove the second inequality. To see this, let J ⊂ S2 of size
kB. Let BT

J and QJ be the submatrices of BT and Q restricted to rows of J . Thus we have
QJ = diag(α)JB

T
J . Because of the Kruskal condition, every kB sized sub matrix of B is well-

conditioned, and thus σkB (BJ) = σkB (BT
J ) ≥ 1/τB.

Further, since |αj | > δ ∀j ∈ J , multiplication by the diagonal cannot lower the singular values by
much, and we get σkBQJ ≥ δ/τB. This can also be seen formally by noting that σkB (diag(α)J) ≥ δ,
and applying Fact 3.3 with P = diag(α)J , Q = BT

J and ` = m = i = kB.

Finally, since Q is essentially QJ along with additional rows, we have στB (Q) ≥ στB (QJ) ≥ δ/τB.
From the argument earlier, we obtain a contradiction in this case.

Case 2: |S2| < kB.

Roughly, by defining S1, S2, we have divided the coefficients αi into large (≥ ε′′), small, and
tiny (< δ). In this case, we have that the number of large and small terms together (in M , see
Eq. (10)) is at most kB. For contradiction, we can assume the number of large ones is ≥ t + 1,
since we are done otherwise. The aim is to now prove that this implies a lower bound on σt+1(M),
which gives a contradiction to Eq. (11).

Now let us define M ′ =
∑

i∈S2
αi(Ai⊗Bi). Thus M and M ′ are equal up to tiny terms. Further,

let Π be the matrix which projects a vector onto the span of {B′i : |βi| ≥ ε′}, i.e., the span of the
columns of B′ which correspond to |βi| ≥ ε′. Because there are at most t such βi, this is a space of
dimension ≤ t. Thus we can rewrite Eq. (10) as

M ′ =
∑
i∈S1

αi(Ai ⊗Bi) +
∑

j∈S2\S1

αj(Aj ⊗Bj) =
t∑
i=1

βi(A
′
i ⊗B′i) + Err, (13)

where we assumed w.l.o.g. that |βi| ≥ ε′ for i ∈ [t], and Err is an error matrix of Frobenius norm
at most ε+R(ρAρBδ + ρ′Aρ

′
Bε
′) ≤ ε+ (RρAρBρ

′
Aρ
′
B)(δ + ε′).

Now because |S1| ≥ t + 1, and K-rankτB (B) ≥ kB ≥ t + 1, there must be one vector among
the Bi, i ∈ S1, which has a reasonably large projection orthogonal to the span above, i.e., which
satisfies

‖Bi −ΠBi‖2 ≥ 1/(τB
√
R).

Let us pick a unit vector y along Bi −ΠBi. Consider the equality (13) and multiply by y on both
sides. We obtain ∑

i∈S2

αi 〈Bi, y〉Ai = (Err)y.

Thus we have a combination of the Ai’s, with at least one coefficient being > ε′′/(RτB), having a
magnitude at most ‖(Err)y‖2 < ϑ1(δ + ε′ + ε), where ϑ1 was specified above.
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Now kA ≥ kB ≥ |S2|. So, we obtain a contradiction by Lemma A.1 since:

‖(Err)y‖2 < ϑ1(δ + ε′ + ε) = RρAρBρ
′
Aρ
′
B(δ + ε′ + ε)

= RρAρBρ
′
Aρ
′
B(
ε′′

ϑ
+ ε′ + ε)

<
1

τA
· ε′′

RτB

The last inequality follows because ϑ = 2R2ρAρBρCρ
′
Aρ
′
Bρ
′
CτAτBτC .

This completes the proof in this case, hence concluding the proof of the lemma.

The next lemma uses the above to conclude that K-rankϑτ (C ′) ≥ K-rankτ (C), for some poly-
nomial ϑ.

Lemma 3.4. Let A,B,C,A′, B′, C ′ be as in the setting of Theorem 2.6. Suppose [A B C] =ε

[A′ B′ C ′], with

ε < 1/ϑ3.4, where ϑ3.4 = RτAτBτCϑ3.2 = 4R4τ3Aτ
3
Bτ

3
CρAρBρC(ρ′Aρ

′
Bρ
′
C)2.

Then A′, B′, C ′ have K-rankτ ′ to be at least kA, kB, kC respectively, where τ ′ := ϑ3.4.

Remark. The lemma implies that if T has a well-conditioned decomposition which satisfies the
Kruskal conditions, then any other bounded decomposition which is a sufficiently good approxima-
tion should also be reasonably well-conditioned. Further, it says that the decomposition [A′ B′ C ′]
can not be of rank < R. Otherwise, we could add some zero-columns to each of A′, B′, C ′ and
apply this lemma to conclude K-rank of A′ is ≥ 2, a contradiction if there exists a zero column.

Proof. By symmetry, let us just show this for matrix C ′ (dimensions n × R), and let k = kC for
convenience. We need to show that every n-by-k submatrix of C ′ has minimum singular value
≥ δ = 1/τ ′C .

For contradiction let C ′S be the submatrix corresponding to the columns in S (|S| = k), such
that σk(C

′
S) < δ. Let us consider a left singular vector z which corresponds to σk(C

′
S), and suppose

z is normalized to be unit length. Then we have∑
i∈S

〈
z, C ′i

〉2
< δ2

Thus | 〈z, C ′i〉 | < δ for all i ∈ S, so we have nzδ(z
TC ′) ≤ n− k. Now from Lemma 3.2, we have

nzε1(zC) ≤ n− k, where ε1 = ϑ3.2(ε+ δ).

Let J denote the set of indices in zTC which are < ε1 in magnitude (by the above, we have |J | ≥
k). Thus we have ‖zCJ‖2 < Rε1, which leads to a contradiction if we have K-rank1/(Rε1)(C) ≥ k.

Since this is true for our choice of parameters, the claim follows.

Once we have the lemmas above, let us check that the conditions of the robust permutation
lemma hold with C ′, C taking the roles of X,Y in Lemma 3.1, and k = kC , and τ = ϑ3.4 · τC .
From Lemma 3.4, it follows that K-rankτ (C) and K-rankτ (C ′) are both ≥ k, and setting ε′ = 0
in Lemma 3.2, the other condition of Lemma 3.1 holds. Thus we can conclude that there exists a
permutation matrix ΠC and a diagonal matrix of scalars ΛC such that ‖C ′ − CΠCΛC‖F is small.
We will see the quantitative details in what follows.
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3.2 Wrapping up the proof

We are now ready to complete the robust Kruskal’s theorem. From what we saw above, the main
part that remains is to prove that the permutations in the various dimensions are equal.

Proof of Theorem 2.6. Suppose we are given an ε′ < 1 as in the statement of the theorem. For a
moment, suppose ε is small enough, and A,B,C,A′, B′, C ′ satisfying the conditions of the theorem
produce tensors which are ε-close.

From the hypothesis, note that kA, kB, kC ≥ 2 (since kA, kB, kC ≤ R, and kA+kB+kC ≥ 2R+2).
Thus from the Lemmas 3.4 and 3.2 (setting ε′ = 0), we obtain that C,C ′ satisfy the hypothesis of the
Robust permutation lemma (Lemma 3.1) with C ′, C set to X,Y respectively, and the parameters

“τ” := ϑ3.4 ; “ε” := ϑ3.2ε.

Hence, we apply Lemma 3.1 to A,B and C, and get that there exists permutation matrices ΠA,
ΠB and ΠC and scalar matrix ΛA,ΛB,ΛC such that for ε2 = ϑ3.1ϑ3.2 · ε,∥∥A′ −AΠAΛA

∥∥
F
< ε2,

∥∥B′ −BΠBΛB
∥∥
F
< ε2 and

∥∥C ′ − CΠCΛC
∥∥
F
< ε2 (14)

We now need to prove that these three permutations are in fact identical, and that the scalings
multiply to the identity (up to small error).

To show ΠA = ΠB = ΠC :

Let us assume for contradiction that ΠA 6= ΠB. We will use an index where the permutations
disagree to obtain a contradiction to the assumptions on the K-rank .

For notational convenience, let πA : [R] → [R] correspond to the permutation given by ΠA,
with πA(r) being the column that A′r maps to. Permutation πB : [R] → [R] similarly corresponds
to ΠB. Using (14) for A we have∥∥∥∥∥∥

∑
r∈[R]

(
A′r − ΛA(r)AπA(r)

)
⊗B′r ⊗ C ′r

∥∥∥∥∥∥
F

≤
∑
r∈[R]

∥∥(A′r − ΛA(r)AπA(r)
)
⊗B′r ⊗ C ′r

∥∥
F

≤ ε2
√
Rρ′Bρ

′
C using Cauchy-Schwarz

By a similar argument, and using triangle inequality ( along with ε2 ≤ 1 ≤ ρ′B) we get∥∥∥∥∥∥
∑
r∈[R]

A′r ⊗B′r ⊗ C ′r −
∑
r∈[R]

ΛA(r)ΛB ·AπA(r) ⊗BπB(r) ⊗ C ′r

∥∥∥∥∥∥
F

≤ 2ε2
√
R(ρ′Bρ

′
C + ρ′Aρ

′
C)

Let us take linear combinations given by unit vectors v and w, of the given tensor T = [A B C]
along the first and second dimensions. By combining the above inequality along with the fact that

the two decompositions are ε-close i.e.
∥∥∥∑r∈[R]Ar ⊗Br ⊗ Cr −A′r ⊗B′r ⊗ C ′r

∥∥∥
F
≤ ε, we have∥∥Z − Z ′∥∥ ≤ ε3 = ε+ 2ε2Rρ

′
C(ρ′A + ρ′B) where

Z =
∑
r∈[R]

〈v,Ar〉 〈w,Br〉Cr and Z ′ =
∑
r∈[R]

ΛA(r)ΛB(r)
〈
v,AπA(r)

〉 〈
w,BπB(r)

〉
C ′r

18



Note that the ε term above is negligible compared to the second term involving ε2.
We know that πA 6= πB, so there exist s 6= t ∈ [R] such that r∗ = πA(s) = πB(t). We will now use
this r∗ to pick v and w carefully so that the vector Z ′ is negligible while Z is large. We partition
[R] into V,W with |V | = kA − 1 and |W | ≤ kB − 1, so that πA(t) ∈ V and πB(s) ∈ W and
for each r ∈ [R] − {s, t}, either πA(r) ∈ V or πB(r) ∈ W . Such a partitioning is possible since
R ≤ kA + kB − 2.

Let V = span(V ) and W = span(W ). We know that r∗ = πA(s) /∈ S and r∗ = πA(t) /∈ T .
Hence, pick v as unit vector along Π⊥VAr∗ and w as unit vector along Π⊥WBr∗ . By this choice, we
ensure that Z ′ = 0 (since v ⊥ V and w ⊥ W).

However, K-rankτA(A) ≥ kA and K-rankτB (B) ≥ kB, so 〈v,Ar∗〉 〈w,Br∗〉 ≥ 1/τAτB (by
Lemma A.2). Further, |V | = kA − 1 implies that at most R − kA + 1 ≤ kC − 1 terms of Z is
non-zero. ∥∥∥∥∥∥

∑
r∈[R]\V

βrCr

∥∥∥∥∥∥ ≤ ε3 where βr = 〈v,Ar〉 〈w,Br〉

Further, |βr∗ | ≥ (τAτB)−1, and since K-rankτC (C) = kC ≥ R− |V |+ 1, we have a contradiction
if ε3 < (τAτBτC)−1 due to Lemma A.2. This will be true for our choice of parameters. Hence
ΠA = ΠB, and similarly ΠA = ΠC . Let us denote Π = ΠA = ΠB = ΠC . In the remainder, we
assume Π is the identity, since this is without loss of generality.

To show ΛAΛBΛC =ε′ IR:

Let us denote βi = λA(i)λB(i)λC(i). From (14) and triangle inequality, we have as before∥∥∥∥∥∥
∑
r∈[R]

A′r ⊗B′r ⊗ C ′r −
∑
r∈[R]

ΛA(r)ΛB(r)ΛC(r) ·AπA(r) ⊗BπB(r) ⊗ CπC(r)

∥∥∥∥∥∥
F

≤ 5ε2
√
Rρ′Aρ

′
Bρ
′
C

Combining this with the fact that the decompositions are ε-close we get∥∥∥∥∥∥
∑
r∈[R]

(1− βr)Ar ⊗Br ⊗ Cr

∥∥∥∥∥∥ < ε4 = ε+ 5
√
Rρ′Aρ

′
Bρ
′
Cε2 ≤ 6

√
Rρ′Aρ

′
Bρ
′
Cε2.

By taking linear combinations given by unit vectors x, y along the first two dimensions (i.e. xA
and yB) we have ∥∥∥∥∥∥

∑
r∈[R]

(1− βr)(xAr)(yBr)Cr

∥∥∥∥∥∥ < ε4.

We will show each βr is negligible. Since R+ 2 ≤ kA + kB, let S,W ⊆ [R]−{r} be disjoint sets
of indices not containing r, such that |S| = kA − 1 and |W | ≤ kB − 1. Let S = span({Aj : j ∈ S})
and W = span({Bj : j ∈W}). Let x and y be unit vectors along Π⊥SAr and Π⊥WBr respectively.

Since K-rankτA(A) ≥ kA and K-rankτB (B) ≥ kB, we have that
∥∥Π⊥SAr

∥∥ ≥ 1/τA (similarly for
Br). Hence, from Lemma A.2

(1− βr)(
1

τAτB
) ‖Cr‖ < ε4 =⇒ 1− βr < ε4τAτBτC .
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Thus, ‖ΛAΛBΛC − I‖ ≤ ε4τAτBτC ≤ ε′ (our choice of ε will ensure this). This implies the
theorem.

Let us now set the ε for the above to hold (note that ϑ3.1 involves a τ term which depends on
ϑ3.4)

ε :=
ε′

6(RτAτBτC)ρ′Aρ
′
Bρ
′
C · ϑ3.2ϑ3.1

,

which can easily be seen to be of the form in the statement of the theorem. This completes the
proof.

3.3 A Robust Permutation Lemma

Let us now prove the robust version of the permutation lemma (Lemma 3.1). Recall that K-rankτ (X)
and K-rankτ (Y ) are ≥ k, and that the matrices X,Y are n×R.

Kruskal’s proof of the permutation lemma proceeds by induction. Roughly, he considers the
span of some set of i columns of X (for i < k), and proves that there exist at least i columns of
Y which lie in this span. The hypothesis of his lemma implies this for i = k − 1, and the proof
proceeds by downward induction. Note that i = 1 implies for every column of X, there is at least
one column of Y in its span. Since no two columns of X are parallel, and the number of columns
is equal in X,Y , there must be precisely one column, and this completes the proof.

A natural way to mimic this proof is to say: for each set of i columns in X, there exist a set of
at least i columns in Y which are εi close to the span of the chosen columns in X. The difficulty
with this is that we lose a factor of τn in each iteration, i.e., if the statement was true for i+1 with
error εi+1, it will be true for i with error εi = τn · εi+1. This means that to obtain a small error
at the end, we should have started off with error < 1/(τn)k, which is exponentially small. Thus
we need a more tricky inductive statement and additional observations (including Lemma 3.4) to
overcome this issue.

We start by introducing some notation. If V is a matrix and S a subset of the columns, we
denote by span(VS) the span of the columns of V indexed by S. The next two lemmas are crucial
to the analysis.

Lemma 3.5. Let X be a matrix as above. Let A,B ⊆ [R], with |B| = q and A ∩ B = ∅. For
1 ≤ i ≤ q, define Ti to be the union of A with all elements of B except the ith one (when indexed
in some way). Suppose further that |A|+ |B| ≤ k. Then if y ∈ Rn is ε-close to span(XTi) for each
i, it is in fact ϑ3.5 · ε close span(XA), where ϑ3.5 := 4nτρ.

Proof. W.l.o.g., let us suppose B = {1, . . . , q}. Also, let xj denote the jth column of X. From the
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hypothesis, we can write:

y = u1 +
∑
j 6=1

α1jxj + z1

y = u2 +
∑
j 6=2

α2jxj + z2

...

y = uq +
∑
j 6=q

αrjxj + zq,

where ui ∈ span(XA) and zi are the error vectors, which by hypothesis satisfy ‖zi‖2 < ε. We will
use the fact that |A| + |B| ≤ k to conclude that each αij is tiny. This then implies the desired
conclusion.

By equating the first and ith equations (i ≥ 2), we obtain

u1 +
∑
j 6=1

α1jxj + z1 = ui +
∑
j 6=1

αijxj + zi.

Thus we have a combination of the vectors xi being equal to zi − z1, which by hypothesis is small:
‖zi − z1‖2 ≤ 2ε. Now the key is to observe that the coefficient of xi is precisely α1i, because it is
zero in the ith equation. Thus by Lemma A.1 (since K-rankτ (X) ≥ k), we have that |α1i| ≤ 2τε.

Since we have this for all i, we can use the first equation to conclude that

‖y − u1‖2 ≤
∑
j 6=1

|α1j | ‖xj‖2 + ‖z1‖2 ≤ 2qτρε+ ε < 4nτρε

The last inequality is because q < n, and this completes the proof.

A counting argument lies at the core of the inductive proof. We present it in terms of sunflower
set systems, since it allows for a clean presentation.

Definition 3.6 (Sunflower set system). A set system F is said to be a “sunflower on [R] with core
T ∗” if F ⊆ 2[R], and for any F1, F2 ∈ F , we have F1 ∩ F2 ∈ T ∗.

Lemma 3.7. Let {T1, T2, . . . , Tq}, q ≥ 2, be a sunflower on [R] with core T ∗, and suppose |T1| +
|T2| + · · · + |Tq| ≥ R + (q − 1)θ, for some θ. Then we have |T ∗| ≥ θ, and furthermore, equality
occurs iff T ∗ ⊆ Ti for all 1 ≤ i ≤ q.

Proof. The proof is by a counting argument. By the sunflower structure, each Ti has some inter-
section with T ∗, and some elements which do not belong to Ti′ for any i′ 6= i. Call the number of
elements of the latter kind ti. Then we must have

R+ (q − 1)θ ≤
∑
i

|Ti| =
∑
i

(ti + |Ti ∩ T ∗|) ≤
∑
i

ti + q|T ∗|.

Now since all Ti ⊆ [R], we have ∑
i

ti + |T ∗| ≤ R.
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Combining the two, we obtain

R+ (q − 1)θ ≤ R+ (q − 1)|T ∗| =⇒ |T ∗| ≥ θ,

as desired. For equality to occur, we must have equality in each of the places above, in particular,
we must have |Ti ∩ T ∗| = |T ∗| for all i, which implies T ∗ ⊆ Ti for all i.

Finally, we introduce a bit more notation before getting to the proof. For S ⊆ [R] of size (k−1),
we define TS to be the set of indices corresponding to columns of Y which are ε1-close to span(XS),
where ε1 := (nR)ε, and ε is as defined in the statement of Lemma 3.1. For smaller sets S, we
define:

TS :=
⋂

|S′|=(k−1),S′⊃S

TS′ .

With the above lemmas in place, we can prove Lemma 3.1.

Proof of Lemma 3.1. We first prove the following claim by induction:

Claim. For every S ⊆ [R] of size ≤ (k − 1), we have |TS | = |S|.

We do this by downward induction on |S|. For |S| = k − 1, the hypothesis of the theorem implies
that |TS | ≥ k − 1. To see this, let V be the (n− k + 1) dimensional space orthogonal to the span
of XS , and let t be the number of columns of Y which have a projection > ε1 onto V . From
Lemma A.3 (applied to the projections to V ), there is a unit vector w ∈ V with dot-product
of magnitude > ε1/Rn = ε with each of the t columns. From the hypothesis, since w ∈ V
( =⇒ nz(wTX) ≤ R − k + 1), we have t ≤ R − k + 1. Thus at least (k − 1) of the columns are
ε1-close to span(XS). Now since K-rankτ (Y ) ≥ k, it follows that k columns of Y cannot be ε1-close
the (k − 1)-dimensional space span(XS) (Lemma A.2). Thus |TS | = k − 1.

Now consider some S of size |S| ≤ k−2. W.l.o.g., we may suppose it is {R−|S|+1, . . . , R}. Let
Wi denote TS∪{i}, for 1 ≤ i ≤ R − |S|, and let us write q = R − |S|. By the inductive hypothesis,
|Wi| ≥ |S|+ 1 for all i.

Let us define T ∗ to be the set of indices of the columns of Y which are ε1 ·ϑ3.5-close to span(XS).
We claim that Wi ∩Wj ⊆ T ∗ for any i 6= j. This can be seen as follows: first note that Wi ∩Wj

is contained in the intersection of TS′ , where the intersection is over S′ such that |S′| = k − 1, and
S′ contains either i or j. Now consider any k − |S| element set B which contains both i, j (note
|S| ≤ k − 2). The intersection above includes sets which contain S along with all of B except the
rth element (indexed arbitrarily), for each r. Thus by Lemma 3.5, we have that Wi ∩Wj ⊆ T ∗.

Thus the sets {W1, . . . ,Wq} form a sunflower family with core T ∗. Further, we can check that
the condition of Lemma 3.7 holds with θ = |S|: since |Wj | ≥ |S| + 1 by the inductive hypothesis,
it suffices to verify that

R+ (q − 1)|S| ≤ q(|S|+ 1), which is true since R = q + |S|.

Thus we must have |T ∗| ≥ |S|.
But now, note that T ∗ is defined as the columns of Y which are ε1 ·ϑ3.5-close to span(XS), and

thus |T ∗| ≤ |S| (by Lemma A.2), and thus we have |T ∗| = |S|. Now we have equality in Lemma 3.7,
and so the ‘furthermore’ part of the lemma implies that T ∗ ⊆Wi for all i.
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Thus we have TS =
⋂
iWi = T ∗ (the first equality follows from the definition of TS), thus

completing the proof of the claim, by induction.

Once we have the claim, the theorem follows by applying to singleton sets. Let S = {i}. Now
if y is a column of Y which is in span(XS′) for all (k− 1) element subsets S′ (of [R]) which contain
i, by Lemma 3.5, we have y being ε1 ·ϑ3.5-close to span(X{i}), which implies ‖y − αxi‖2 ≤ ε1 ·ϑ3.5.
Since this is true for each column i, and since k ≥ 2 the lemma follows.

3.4 Uniqueness Theorem for Higher Order Tensors

We show the uniqueness theorem for higher order tensors by a reduction to third order tensors as
in [SB00]. This reduction will proceed inductively, i.e., the robust uniqueness of order ` tensors is
deduced from that of order (` − 1) tensors. We will convert an order ` tensor to a order (` − 1)
tensor by combining two of the components together (say last two) as a n`−1n` dimensional vector
(U (`−1) ⊗ U (`) say). This is precisely captured by the Khatri-Rao product of two matrices:

Definition 3.8 (Khatri-Rao product). Given two matrices A (size n1 × R) and B (size n2 × R),
the (n1n2)×R matrix M = A�B constructed with the ith column equal to Mi = Ai⊗Bi (viewed
as a vector) is the Khatri-Rao product.

Lemma A.4 in the appendix relates the K-rank of A � B with kA = K-rankτ1(A) and kB =
K-rankτ2(B). It shows that K-rankτ1τ2ϑ(A � B) = min{kA + kB − 1, R}, for some ϑ. This turns
out to be crucial to the proof of uniqueness in the general case, which we present now.

Outline. The proof proceeds by induction on `. The base case is ` = 3, and for higher `, the
idea is to reduce to the case of ` − 1 by taking the Khatri-Rao product of the vectors in two of
the dimensions. That is, if [U (1) U (2) . . . U (`)] and [V (1) V (2) . . . V (`)] are close, we conclude that
[U (1) U (2) . . . (U (`−1) � U (`))] and [V (1) V (2) . . . (V (`−1) � V (`))] are close, and use the inductive
hypothesis, which holds because of Lemma A.4 we mentioned above. We then need an additional
step to conclude that if A � B and C � D are close, then so are A,C and B,D up to some loss
(Lemma A.5 – this is where we have a square root loss, which is why we have a bad dependence on
the ε′ in the statement). We now formalize this outline.

Proof of Theorem 2.7. We will prove by induction on `. The base case of ` = 3 is established by
Theorem 2.6. Thus consider some ` ≥ 4, and suppose the theorem is true for `− 1. Furthermore,
suppose the parameters ε and ε′ in the statement of Theorem 2.7 for (`− 1) be ε`−1 and ε′`−1. We
will use these to define ε` and ε′` which correspond to parameters in the statement for `.

Now consider U (i) and V (i) as in the statement of the theorem. Let us assume without loss of
generality that k1 ≥ k2 ≥ · · · ≥ k`. Also let K =

∑
j∈[`] kj . We will now combine the last two

components (`− 1) and ` by the Khatri-Rao product.

Ũ = U (`−1) � U (`) and Ṽ = V (`−1) � V (`).

Since we know that the two representations are close in Frobenius norm, we have∥∥∥∥∥∥
∑
r∈[R]

U (1)
r ⊗ U (2)

r ⊗ · · · ⊗ U (`−2)
r ⊗ Ũr −

∑
r∈[R]

V (1)
r ⊗ V (2)

r ⊗ · · · ⊗ V (`−2)
r ⊗ Ṽr

∥∥∥∥∥∥
F

< ε` (15)
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Let us first check that the conditions for (` − 1)-order tensors hold for τ̃ = (τ`−1τ`
√
K) ≤

(τ`−1τ`
√

3R). From Lemma A.4, K-rankτ̃ (Ũ) ≥ min{k` + k`−1 − 1, R}.
Suppose first that k` + k`−1 ≤ R+ 1, then∑

j∈[`−1]

k′j ≥
∑

j∈[`−2]

kj + k`−1 + k` − 1 ≥ 2R+ (`− 1)− 1.

Otherwise, if k` + k`−1 > R+ 1, then k`−3 + k`−2 ≥ R+ 2 (due to our ordering, and ` ≥ 4). Hence∑
j∈[`−1]

k′j ≥ (`− 4) + (R+ 2) + (R+ 1) ≥ 2R+ `− 1

We now apply the inductive hypothesis on this (`− 1)th order tensor. Note that ρ̃ ≤ (ρ`−1ρ`),

ρ̃′ ≤ (ρ′`−1ρ
′
`), τ̃ ≤

(
2τ`−1τ`

√
R
)

and ñ = n`−1n`.

We will in fact apply it with ε′`−1 < min{(R · τ`−1τ` · ρ′`−1ρ′`)−2, (ε′`)
2/R}, so that we can later

use Lemma A.5. To ensure these, we will set

ε−1` = ϑ`2.7

(
R

ε′`

)
·

 ∏
j∈[`−2]

ϑ2.7(τj , ρj , ρ
′
j , nj)

ϑ2.7(τ̃ , ρ̃, ρ̃′, ñ),

where ϑ`2.7 = xO(2`). From the values of τ̃ , ρ̃, ñ above, this can easily be seen to be of the form in
the statement of the theorem.

The inductive hypothesis implies that there is a permutation matrix Π and scalar matrices
{Λ(1),Λ(2), . . . ,Λ(`−2),Λ′}, such that

∥∥Λ(1)Λ(2) . . .Λ(`−2)Λ′ − I
∥∥ < ε′`−1 and

∀j ∈ [`− 2]
∥∥∥V (j) − U (j)ΠΛ(j)

∥∥∥
F
< ε′`−1∥∥∥Ṽ − ŨΠΛ′

∥∥∥
F
< ε′`−1

Since ε′`−1 < ε′`, equation (5) is satisfied for j ∈ [`−2]. We thus need to show that
∥∥V (j) − U (j)ΠΛ(j)

∥∥
F
<

ε′` for j = `− 1 and `. To do this, we appeal to Lemma A.5, to say that if the Frobenius norm of
the difference of two tensor products u ⊗ v and u′ ⊗ v′ is small, then the component vectors are
nearly parallel.

Let us first set the parameters for applying Lemma A.5. Each column vector is of length at
most Lmax ≤ ρ̃′ ≤ (ρ′`−1ρ

′
`) and length at least Lmin ≥ 1/τ̃ ≥ (2τ`−1τ`

√
R). Hence, because of our

choice of ε′`−1 �
(

4
√
R(τ`−1τ`)(ρ

′
`−1ρ

′
`)
)−1

earlier, the conditions of Lemma A.5 are satisfied with

δ ≤ ε′`. Let δr =
∥∥∥Ṽr − Ũπ(r)Λ′(r)∥∥∥

2
.

Now applying Lemma A.5 with δ = δr, to column r, we see that there are scalars αr(`− 1) and
αr(`) such that

|1− αr(`− 1)αr(`)| <
ε′`−1
L2
min

≤ ε′`.
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By setting for all r ∈ [R], Λ(`−1)(r) = α(`− 1)r and Λ(`)(r) = α(2)Λ′(r), we see that the first part
of (5) is satisfied. Finally, Lemma A.5 shows that

∀j ∈ {`− 1, `}
∥∥∥V (j)

r − U (j)
π(r)Λ

(j)(r)
∥∥∥
2
<
√
δr , ∀r ∈ [R]∥∥∥V (j) − U (j)ΠΛ(j)

∥∥∥
F
< R1/4

√
ε′`−1 ( by Cauchy-Schwartz inequality).

< ε′`

This completes the proof of the theorem.

We show a similar result for symmetric tensors, which shows robust uniqueness upto permuta-
tions (and no scaling) which will be useful in applications to mixture models (Section 5).

Corollary 3.9 (Unique Symmetric Decompositions). For every 0 < η < 1, τ, ρ, ρ′ > 0 and `, R ∈ N,

∃ε` = ϑ
(`)
3.9(

1
η , R, n, τ, ρ, ρ

′) such that, for any `-order symmetric tensor (with ` ≤ R)

T =
∑
r∈[R]

⊗̀
j=1

Ur

where the matrix U is ρ-bounded with K-rankτ (U) = k ≥ 2R−1
` + 1, and for any other ρ′ bounded,

symmetric, rank-R decomposition of T which is ε-close, i.e.,∥∥∥∥∥∥
∑
r∈[R]

⊗̀
j=1

Vr −
∑
r∈[R]

⊗̀
j=1

Ur

∥∥∥∥∥∥
F

≤ ε

there exists an R×R permutation matrix Π such that

‖V − UΠ‖F ≤ η (16)

The mild intricacy here is that applying Theorem 2.7 gives a bunch of scalar matrices whose
product is close to the identity, while we want each of the matrices to be so. This turns out to be
easy to argue – see Section A.1.

4 Computing Tensor Decompositions

For matrices, the theory of low rank approximation is well understood, and they are captured using
singular values. In contrast, the tensor analog of the problem is in general ill-posed: for instance,
there exist rank-3 tensors with arbitrarily good rank 2 approximations [Lan12]. For instance if u, v
are orthogonal vectors, we have

u⊗ v ⊗ v + v ⊗ u⊗ v + v ⊗ v ⊗ u =
1

ε

[
(v + εu)⊗ (v + εu)⊗ (v + εu)− v ⊗ v ⊗ v

]
+N ,

where ‖N‖F ≤ O(ε), while it is known that the LHS has rank 3. However note that the rank-
2 representation with error ε uses vectors of length 1/ε, and such cancellations, in a sense are
responsible for the ill-posedness.

Hence in order to make the problem well-posed, we will impose a boundedness assumption.
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Definition 4.1 (ρ-bounded Low-rank Approximation). Suppose we are given a parameter R and
an m× n× p tensor T which can be written as

T =
R∑
i=1

ai ⊗ bi ⊗ ci +N , (17)

where ai ∈ Rm, bi ∈ Rn, ci ∈ Rp satisfy max{‖ai‖2 , ‖bi‖2 , ‖ci‖2} ≤ ρ, and N is a noise tensor which
satisfies ‖N‖F ≤ ε, for some small enough ε. The ρ-bounded low-rank decomposition problem asks
to recover a good low rank approximation, i.e.,

T =
R∑
i=1

a′i ⊗ b′i ⊗ c′i +N ′,

such that a′i, b
′
i, c
′
i are vectors with norm at most ρ, and ‖N ′‖F ≤ O(1) · ε.

We note that if the decomposition into [A B C] above satisfies the conditions of Theorem 2.6,
then solving the ρ-bounded low-rank approximation problem would allow us to recover A,B,C up
to a small error. The algorithmic result we prove is the following (restated version of Theorem 2.8).

Theorem 4.2. The ρ-bounded low-rank approximation problem can be solved in time poly(n) ·
exp(R2 log(Rρ/ε)).

In fact, the O(1) term in the error bound N ′ ≤ O(1)·ε will just be 5. Our algorithm is extremely
simple conceptually: we identify three R-dimensional spaces by computing appropriate SVDs, and
prove that for the purpose of obtaining an approximation with O(ε) error, it suffices to look for
ai, bi, ci in these spaces. We then find the approximate decomposition by a brute force search using
an epsilon-net. Note that the algorithm has a polynomial running time for constant R, which is
typically when the low rank approximation problem is interesting.

Proof. In what follows, let MA denote the m × np matrix whose columns are the so-called j, kth
modes of the tensor T , i.e., the m dimensional vector of Tijk values obtained by fixing j, k and
varying i. Similarly, we define MB (n×mp) and MC (p×mn). Also, we denote by A the m× R
matrix with columns being ai. Similarly define B (n×R), C (p×R).

The outline of the proof is as follows: we first observe that the matrices MA,MB,MC are all
approximately rank R. We then let VA, VB and VC be the span of the top R singular vectors of
MA,MB and MC respectively, and show that it suffices to search for ai, bi, and ci in these spans.
We note that we do not (and in fact cannot, as simple examples show) obtain the true span of the
ai, bi and ci’s in general. Our proof carefully gets around this point. We then construct an ε-net for
VA, VB, VC , and try out all possible R-tuples. This gives the roughly exp(R2) running time claimed
in the Theorem.

We now make formal claims following the outline above.

Claim 4.3. Let VA be the span of the top R singular vectors of MA, and let ΠA be the projection
matrix onto VA (i.e., ΠAv is the projection of v ∈ Rn onto VA). Then we have

‖MA −ΠAMA‖F ≤ ε
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Proof. Because the top R singular vectors give the best possible rank-R approximation of a matrix
for every R, for any R-dimensional subspace S, if ΠS is the projection matrix onto S, we have

‖MA −ΠAMA‖F ≤ ‖MA −ΠSMA‖F
Picking S to be the span of the vectors {a1, . . . , aR}, we obtain

‖MA −ΠSMA‖F ≤ ‖N‖F ≤ ε.
The first inequality above is because the j, kth mode of the tensor

∑
i ai ⊗ bi ⊗ ci is a vector in

the span of {a1, . . . , aR}, in particular, it is equal to
∑

i bi(j)ci(k)ai, where bi(j) denotes the jth
coordinate of bi.

This completes the proof.

Next, we will show that looking for ai, bi, ci in the spaces VA, VB, VC is sufficient. The natural
choices are ΠAai,ΠBbi,ΠCci, and we show that this choice in fact gives a good approximation. For
convenience let ãi := ΠAai, and a⊥i := ai − ãi.
Claim 4.4. For T, VA, ãi, . . . as defined above, we have∥∥∥∥∥T −N −∑

i

ãi ⊗ b̃i ⊗ c̃i
∥∥∥∥∥
F

≤ 3ε.

Proof. The proof is by a hybrid argument. We write

T −N −
∑
i

ãi ⊗ b̃i ⊗ c̃i =
(∑

i

ai ⊗ bi ⊗ ci − ãi ⊗ bi ⊗ ci
)

+
(∑

i

ãi ⊗ bi ⊗ ci − ãi ⊗ b̃i ⊗ ci
)

+
(∑

i

ãi ⊗ b̃i ⊗ ci − ãi ⊗ b̃i ⊗ c̃i
)
.

We now bound each of the terms in the parentheses, and then appeal to triangle inequality (for
the Frobenius norm). Now, the first term is easy:∥∥∥∥∥∑

i

ai ⊗ bi ⊗ ci − ãi ⊗ bi ⊗ ci
∥∥∥∥∥
F

= ‖MA −ΠAMA‖F ≤ ε.

One way to bound the second term is as follows. Note that:∑
i

ai ⊗ bi ⊗ ci − ai ⊗ b̃i ⊗ ci =
(∑

i

ãi ⊗ bi ⊗ ci − ãi ⊗ b̃i ⊗ ci
)

+
(∑

i

a⊥i ⊗ bi ⊗ ci − a⊥i ⊗ b̃i ⊗ ci
)
.

Now let us denote the two terms in the parenthesis on the RHS by G,H – these are tensors which
we view as mnp dimensional vectors. We have ‖G+H‖2 ≤ ε, because the Frobenius norm of the
LHS is precisely ‖MB −ΠBMB‖F ≤ ε. Furthermore, 〈G,H〉 = 0, because 〈ãi, a⊥j 〉 = 0 for any i, j
(one vector lies in the span VA and the other orthogonal to it). Thus we have ‖G‖2 ≤ ε (since in
this case ‖G+H‖22 = ‖G‖22 + ‖H‖22).

A very similar proof lets us conclude that the Frobenius norm of the third term is also ≤ ε.
This completes the proof of the claim, by our earlier observation.
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The claim above shows that there exist vectors ãi, b̃i, c̃i of length at most ρ in VA, VB, VC resp.,
which give a rank-R approximation with error at most 4ε. Now, we form an ε/(Rρ2)-net over the
ball of radius ρ in each of the spaces VA, VB, VC . Since these spaces have dimension R, the nets
have size (O(Rρ2)

ε

)R
≤ exp(O(R) log(Rρ/ε)).

Thus let us try all possible candidates for ãi, b̃i, c̃i from these nets. Suppose we have âi, b̂i, ĉi
being vectors which are ε/(6Rρ2)-close to ãi, b̃i, c̃i respectively, it is easy to see that∥∥∥∥∥∑

i

ãi ⊗ b̃i ⊗ c̃i − âi ⊗ b̂i ⊗ ĉi
∥∥∥∥∥
F

≤
∑
i

∥∥∥ãi ⊗ b̃i ⊗ c̃i − âi ⊗ b̂i ⊗ ĉi∥∥∥
F

Now by a hybrid argument exactly as above, and using the fact that all the vectors involved are
≤ ρ in length, we obtain that the LHS above is at most ε.

Thus the algorithm finds vectors such that the error is at most 5ε. The running time depends
on the time taken to try all possible candidates for 3R vectors, and evaluating the tensor for each.
Thus it is poly(m,n, p) · exp(O(R2) log(Rρ/ε)).

This argument generalizes in an obvious way to order ` tensors, and gives the following. We
omit the proof.

Theorem 4.5. There is an algorithm, that when given an order ` tensor of size n with a rank R
approximation of error ε (in ‖·‖F ), finds a rank-R approximation of error O(`ε) in time poly(n) ·
exp(O(`R2) log(`Rρ/ε)).

5 Polynomial Identifiability of Latent Variable and Mixture Mod-
els

We now show how our robust uniqueness theorems for tensor decompositions can be used for
learning latent variable models, with polynomial sample complexity bounds.

Definition 5.1 (Polynomial Identifiability). An instance of a hidden variable model of size m with
hidden variables set Υ is said to be polynomial identifiable if there is an algorithm that given any
η > 0, uses only N ≤ poly(m, 1/η) samples and finds with probability 1 − o(1) estimates of the
hidden variables Υ′ such that ‖Υ′ −Υ‖∞ < η.

Consider a simple mixture-model, where each sample is generated from mixture of R distri-
butions {Dr}r∈[R], with mixing probabilities {wr}r∈[R]. Here the latent variable h corresponds to
the choice of distribution and it can have [R] possibilities. First the distribution h = r is picked
with probability wr, and then the data is sampled according to Dr, which has mean µr ∈ Rn. Let
Mn×R represent the matrix of these R means. The goal is to learn these hidden parameters (M and
weights {wr}) after observing many samples. This setting captures many latent variable models
including topic models, HMMs, gaussian mixtures etc.

While practitioners typically use Expectation-Maximization (EM) methods to learn the param-
eters, a good alternative in the case of mixture models is using the method of moments approach
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( starting from the work by Pearson [Pea94] for univariate gaussians ), which tries to identify the
parameters by estimating higher order moments. However, one drawback is that the number of
moments required is typically as large as the number of mixtures R (or parameters), resulting in a
sample complexity that is exponential in R [MV10, BS10, FOS05, FSO06].

In a recent exciting line of work [MR06, AHK12, HK12, AFH+12, AGH+12], it is shown
that poly(R,n) samples suffice for identifiability in a special case called the non-singular or non-
degenerate case i.e. when the matrix M has full rank (rank = R)4 for many of these models.
Their algorithms for this case proceed by reducing the problem of finding the latent variables
(the means and weights) to the problem of decomposing Symmetric Orthogonal Tensors of or-
der 3, which are known to be solvable in poly(n,R) time using power-iteration type methods
[KR01, ZG01, AGH+12].

However, their approach crucially relies on these non-degeneracy conditions, and are not robust:
even in the case when these R-means reside in a (R − 1)-dimensional space, these algorithms fail,
and the best known sample complexity bounds in many of these settings are exp(R)poly(n). In
many settings like speech recognition and image classification, the dimension of the feature space
n is typically much smaller than R, the number of topics or clusters. For instance, the (effective)
feature space corresponds to just the low-frequency components in the fourier spectrum for speech,
or the local neighborhood of a pixel in images (SIFT features [Low99]). These are typically much
smaller than the different kinds of objects or patterns (topics) that are possible. Further, in other
settings, the set of relevant features (the effective feature space) could be a space of much smaller
dimension (k < R) that is unknown to us even when the feature vectors are actually represented
in a large dimensional space (n� R).

In this section, we show that we can use our Robust Uniqueness results for Tensor Decom-
positions (Theorem 2.6 and Theorem 2.7) to go past the non-degeneracy barrier and prove that
poly(R,n) samples suffice even under the milder condition that no k = δR gaussians lie in a (k−1)
dimensional space (for some constant δ > 0). Further, these results generalize to other hidden
variable models like Topic Modeling, Hidden Markov models, Mixture models etc. One interesting
aspect of our approach is that, unlike previous works, we get a smooth tradeoff : we get polynomial
identifiability under successively milder conditions by using higher order tensors (` ≈ 2/δ). This
reinforces the intuition that higher moments capture more information at the cost of efficiency.

In the rest of this section, we will first describe Multi-view models and show how the robust
uniqueness theorems for tensor decompositions imply polynomial identifiability in this model. We
will then see two popular latent variable models which fit into the multi-view mixture model: the
exchangeable (single) Topic Model and Hidden Markov models. We note that the results of this
section (for ` = 3 views) also apply to other latent variable models like Latent Dirichlet Allocation
(LDA) and Independent Component Analysis (ICA) that were studied in [AGH+12]. We omit the
details in this version of the paper.

5.1 Multi-view Mixture Model

Multi-view models are mixture models with a latent variable h, where we are given multiple ob-
servations or views x(1), x(2), . . . , x(`) that are conditionally independent given the latent variable
h. Multi-view models are very expressive, and capture many well-studied models like Topic Mod-

4For polynomial identifiability, σR ≥ 1/poly(n).
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els [AHK12], Hidden Markov Models (HMMs) [MR06, AMR09, AHK12], random graph mixtures
[AMR09]. We first introduce some notation, along the lines of [AMR09, AHK12].

Definition 5.2 (Multi-view mixture models).

• The latent variable h is a discrete random variable having domain [R], so that Pr [h = r] =
wr,∀r ∈ [R].

• The views {x(j)}j∈[`] are random vectors ∈ Rn that are conditionally independent given h,

with means µ(j) ∈ Rn i.e.

E
[
x(j)|h = r

]
= µ(j)r and E

[
x(i) ⊗ x(j)|h = r

]
= µ(i)r ⊗ µ(j)r for i 6= j

• Denote by M (j), the n×R matrix with the means {µ(j)r }r∈[R] comprising its columns i.e.

M (j) = [µ
(j)
1 | . . . |µ(j)r | . . . |µ

(j)
R ].

• The entries (domain) of x(j) are bounded by cmax i.e.
∥∥x(j)∥∥∞ ≤ cmax. 5

The parameters of the model to be learned are the matrices {M (j)}j∈[`] and the mixing weights

{wr}r∈[R]. In many settings, the n-dimensional vectors x(j) are actually indicator vectors (hence
cmax = 1): this is commonly used to encode the case when the observation is one of n discrete
events. Allman et al [AMR09] refer to these models by finite mixtures of finite measure products.

The following lemma shows how to obtain a higher order tensor (to apply our results from
previous sections) in terms of the hidden parameters that we need to recover. It follows easily
because of conditional independence.

Lemma 5.3 ([AMR09, AHK12]). In the notation established above for multi-view models, ∀` ∈ N
the `th moment tensor

E
[
x(1) ⊗ . . . x(j) ⊗ . . . x(`)

]
=
∑
r∈[R]

wrµ
(1)
r ⊗ µ(2)r · · · ⊗ µ(j)r ⊗ · · · ⊗ µ(`)r .

In our usual representation of tensor decompositions,

E
[
x(1) ⊗ . . . x(j) ⊗ . . . x(`)

]
=
[
M (1) M (2) . . . M (`)

]
.

Recall that K-rankτ (M) corresponds to the minimum number k such that every n×k submatrix
M ′ of M has σk(M

′) > 1/τ . Intuitively this says that, no set of k vectors from µr∈[R] all lie close
to a k − 1 dimensional space.

When k ≡ K-rankτ (M) ≥ R for each of these matrices (the non-degenerate or non-singular
setting), Anandkumar et al. [AHK12] give a polynomial time algorithm to learn the hidden variables
using only poly(R, τ, n) samples (hence polynomial identifiability). However, their algorithm fails

5in general, we can also allow them to be continuous distributions like multivariate gaussians.
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even when k = R− 1. We now how to achieve polynomial identifiability even when k = δR for any
constant δ > 0.

Theorem 2.9 (Polynomial identifiability of Multi-view mixture model). The following statement
holds for any constant integer `. Suppose we are given samples from a multi-view mixture model
(see Def 5.2), with the parameters satisfying:

(a) For each mixture r ∈ [R], the mixture weight wr > γ.

(b) For each j ∈ [`], K-rankτ (M (j)) ≥ k ≥ 2R
` + 1.

then there is a algorithm that given any η > 0 uses N = ϑ2.9
(`)
(
1
η , R, n, τ, 1/γ, cmax

)
samples,

and finds with high probability {M̃ (j)}j∈[`] and {w̃r}r∈[R] (upto renaming of the mixtures {1, 2, . . . , R})
such that

∀j ∈ [`],
∥∥∥M (j) − M̃ (j)

∥∥∥
F
≤ η and ∀r ∈ [R], |wr − w̃r| < η (18)

Further, this algorithm runs in time exp
(
R2`2

[
22` log(R`η ) + ` log(n · τcmaxγ )

])
poly(n) time.

Note that the above theorem shows polynomial identifiability (for constant `), and additionally
gives an algorithm which takes time nO`(R

2)poly(τ,R, cmax) for inverse polynomial error. The func-

tion ϑ2.9
(`)(·, . . . , ·) = poly(Rn/(γη))2

`
poly(n, τ, 1/γ)` is a polynomial for constant ` and satisfies

the theorem.

Remarks:

1. Note that the condition (a) in the theorem about the mixing weights wr > γ is required to
recover all the parameters, since we need poly(1/wr) samples before we see a sample from
mixture r. However, by setting γ � ε′, the above algorithm can still be used to recover the
mixtures components of weight larger than ε′.

2. While these results give new polynomial sample complexity guarantees when n < R, they are
interesting even when the dimension of the space n� R. A natural setting where this arises
is when many of the vectors lie in a unknown space of much smaller dimension (k-dims),
while the whole space has high dimension.

3. The theorem also holds when for different j, the K-rankτ (M (j)) have bounds kj which are
potentially different, and satisfy the same condition as in Theorem 2.7.

Proof. We will consider the `th moment tensor for ` = d2/δe+1. The proof is simple, and proceeds
in three steps. First, we use enough samples to obtain an estimate T̃ of the `th moment tensor T ,
upto inverse polynomial error. Then we find a good rank-R approximation to T̃ (it exists because
T has rank R). We then use the Robust Uniqueness theorem for tensor decompositions to claim
that the terms of this decomposition are in fact close to the hidden parameters.

Set η′ = ηγ
16`n . We know from Lemma C.1 that the `th moment tensor can be estimated to

accuracy

ε1 =
(
` · ϑ2.7(`)(R/η′) · ϑ2.7(τ/γ, cmax

√
n, cmax

√
n, n)

)−1
in ‖·‖F norm usingN = O(ε−21 R(cmax)`

√
` log n)

samples. This estimated tensor T̃ has a rank-R decomposition upto error ε1.
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Next, we will apply our algorithm for getting approximate low-rank tensor decompositions from

Section 4 on T̃ . Since each µ
(j)
r is a probability distribution, we can obtain vectors {ũ(j)r }j∈[`],r∈[R]

(let us call the corresponding n×R matrices Ũ (j)) such that

∀j ∈ [`− 1], r ∈ [R]
∥∥∥ũ(j)r ∥∥∥

1
∈ [1− δ, 1 + δ] where δ = ε1

√
R <

η

2`
.

This is possible since the algorithm in Section 4 searches for the vectors ũ
(j)
r , by just enumerating

over ε-nets on an R-dimensional space. An alternate way to see this is to obtain any decomposition
and scale all but the last column in the matrices Ũ (j) so that they have `1 norm of 1 (upto error δ).
Note that this step of finding an ε-close rank-R decomposition can also just comprise of brute force
enumeration, if we are only concerned with polynomial identifiability. Hence, we have obtained a
rank-R decomposition which is O(`ε1) far in ‖ · ‖F .

Now, we apply Theorem 2.7 to `th moment tensor T to claim that these Ũ (j) are close to M (j)

upto permutations. When we apply Theorem 2.7, we absorb the co-efficients wr into M (`). In other
words

U (j) = M (j) for all j ∈ [`− 1], and U (`) = M (`)diag(w).

We know that K-rankτ (M (j)) = kj , and K-rankτ/γ(U (`)) = k`. We now apply Theorem 2.7 with
our choice of ε1, and assuming that the permutation is identity without loss of generality, we get

∀r ∈ [R]
∥∥∥ũ(j)r − Λ(j)(r)µ(j)r

∥∥∥ < η′ ≤ ηγ

16n`
∀j ∈ [`− 1]

and
∥∥∥ũ(`)r − Λ(`)(r)wrµ

(`)
r

∥∥∥ < η′ ≤ ηγ

16`n

for some scalar matrices Λj (on R-dims) such that∥∥∥∏Λ(j) − IR
∥∥∥ ≤ η

16`n

Note that the entries in the diagonal matrices Λj (the scalings) may be negative. We first transform
the vectors so that each of the entries in Λj are non-negative (this is possible since the product of
Λj is close to the identity matrix, which only has non-negative entries).

∀j ∈ [`], r ∈ [R], ṽ(j)r = sgn
(

Λ(j)(r)
)
· ũ(j)r (19)

This ensures that

∀j ∈ [`− 1], r ∈ [R]
∥∥∥ṽ(j)r − ∣∣∣Λ(j)(r)

∣∣∣µ(j)r ∥∥∥ < η′ ≤ ηγ

16n`
and (20)

∀r ∈ [R]
∥∥∥ṽ(`)r − ∣∣∣Λ(`)(r)

∣∣∣wrµ(`)r ∥∥∥ < η′ ≤ ηγ

16`n
(21)

Moreover, the µ
(j)
r correspond to probability vectors which have ‖µ(j)‖1 = 1, we have ensured

that
∥∥∥ṽ(j)r ∥∥∥

1
∈ [1− δ, 1 + δ]. Applying Lemma A.6 we get that the required estimates ṽ

(j)
r (i.e. µ̃

(j)
r )

satisfy:

∀j ∈ [`− 1], r ∈ [R],
∥∥∥ṽ(j)r − µ(j)r ∥∥∥ ≤ ηγ

4`
√
n

and
∣∣∣Λ(j)(r)

∣∣∣ ∈ [1− ηγ

8`
√
n
, 1− ηγ

8`
√
n

]
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Now, set µ̃
(`)
r = ṽ

(`)
r∥∥∥ṽ(`)r ∥∥∥

1

, and w̃r =
∥∥∥ṽ(`)r ∥∥∥

1
, for all r ∈ [R]. Now, from equations (5.1) and (5.1)

we get that

∀r ∈ [R]
∣∣∣Λ(`)(r)− 1

∣∣∣ ≤ ηγ

8
√
n

Hence from (21),
∥∥∥ṽ(`)r − wrµ(`)r ∥∥∥ ≤ ηγ

4
√
n∥∥∥w̃rµ̃(`)r − wrµ(`)r ∥∥∥ ≤ ηγ

4
√
n

wr

∥∥∥∥ w̃rwr µ̃(`)r − µ(`)r
∥∥∥∥ ≤ ηγ

4
√
n

Using the fact that wr ≥ γ and using Lemma A.6, we see that w̃r and µ̃
(`)
r are also η-close estimates

to wr and µ
(`)
r respectively, for all r.

We will now see two popular latent variable models which fit into the multi-view mixture model:
the exchangeable (single) Topic Model and Hidden Markov models. We note that the results of
this section (for ` = 3 views) also apply to other latent variable models like Latent Dirichlet
Allocation (LDA) and Independent Component Analysis (ICA) that were studied in [AGH+12].
Anandkumar et al. [AFH+12, AGH+12] show how we can obtain third order tensors by looking at
“third” moments and applying suitable transformations. Applying our robust uniqueness theorem
(Theorem 2.6) to these 3-tensors identify the parameters. We omit the details in this version of
the paper.

5.2 Exchangeable (single) Topic Model

The simplest latent variable model that fits the multi-view setting is the Exchangeable Single Topic
model as given in [AHK12]. This is a simple bag-of-words model for documents, in which the words
in a document are assumed to be exchangeable. This model can be viewed as first picking the topic
r ∈ [R] of the document, with probability wr. Given a topic r ∈ [R], each word in the document
is sampled independently at random according to the probability distribution µr ∈ Rn (n is the
dictionary size). In other words, the topic r ∈ R is a latent variable such that the ` words in a
document are conditionally i.i.d given r.

The views in this case correspond to the words in a document. This is a special case of the multi-
view model since the distribution of each of the views j ∈ [`] is identical. As in [AHK12, AGH+12],
we will represent the ` words in a document by indicator vectors x(1), x(2), . . . , x(`) ∈ {0, 1}n (cmax =
1 here). Hence, the (i1, i2, . . . , i`) entry of the tensor E

[
x(1) ⊗ x(2) ⊗ . . . x(`)

]
corresponds to the

probability that the first words is i1, the second word is i2, . . . and the `th word is i`. The following
is a simple corollary of Theorem 2.9.

Corollary 5.4 (Polynomial Identifiability of Topic Model). The following statement holds for any
constant δ > 0. Suppose we are given documents generated by the topic model described above,
where the topic probabilities of the R topics are {wr}r∈[R], and the probability distribution of words
in a topic r are given by µr ∈ Rn (represented as a n-by-R matrix M). If ∀r ∈ [R] wr > γ, and if
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Z1 Zq+1 Z2q Z2q+1

X1 X2 Xq+1 X2q X2q+1

Z2

Figure 1: An HMM with 2q + 1 time steps.

Zq+1

(Xq, Xq−1, . . . , X1) (Xq+2, . . . , X2q+1)Xq+1

Figure 2: Embedding the HMM into the Multi-
view model

K-rankτ (M) ≥ k ≥ 2R/`+ 1,

then there is a algorithm that given any η > 0 uses N = ϑ2.9
(`)
(
1
η , R, n, τ, 1/γ, 1

)
samples, and

finds with high probability M ′ and {w′r}r∈[R] such that∥∥M −M ′∥∥
F
≤ η and ∀r ∈ [R],

∣∣wr − w′r∣∣ < η (22)

Further, this algorithm runs in time n
O`(R

2 log( 1
ηγ

)
(
nτ
γ

)O(`)
time.

5.3 Hidden Markov Models

The next latent variable model that we consider are (discrete) Hidden Markov Model which is
extensively used in speech recognition, image classification, bioinformatics etc. We follow the
same setting as in [AMR09]: there is a hidden state sequence Z1, Z2, . . . , Zm taking values in
[R], that forms a stationary Markov chain Z1 → Z2 → · · · → Zm with transition matrix P and
initial distribution w = {wr}r∈[R] (assumed to be the stationary distribution). The observation
Xt is from the set of discrete events6 {1, 2, . . . , n} and it is represented by an indicator vector in
x(t) ∈ Rn. Given the state Zt at time t, Xt (and hence x(t)) is conditionally independent of all
other observations and states. The matrix M (of size n×R) represents the probability distribution
for the observations: the rth column Mr represents the probability distribution conditioned on the
state Zt = r i.e.

∀r ∈ [R],∀j ∈ [n], Pr [Xj = i|Zj = r] = Mir.

The HMM model described above is shown in Fig. 1.

Corollary 5.5 (Polynomial Identifiability of Hidden Markov models). The following statement
holds for any constant δ > 0. Suppose we are given a Hidden Markov model as described above,
with parameters satisfying :

(a) The stationary distribution {wr}r∈[R] has ∀r ∈ [R] wr > γ1,

(b) The observation matrix M has K-rankτ (M) ≥ k ≥ δR,

(c) The transition matrix P has minimum singular value σR(P ) ≥ γ2,

then there is a algorithm that given any η > 0 uses N = ϑ2.9
( 1
δ
+1)
(
1
η , R, n, τ,

1
γ1γ2

)
samples

of m = 2d1δ e + 3 consecutive observations (of the Markov Chain), and finds with high probability,

6in general, we can also allow xt to be certain continuous distributions like multivariate gaussians
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P ′,M ′ and {w̃r}r∈[R] such that∥∥M −M ′∥∥
F
≤ η,

∥∥P − P ′∥∥
F
≤ η and ∀r ∈ [R], |wr − w̃r| < η (23)

Further, this algorithm runs in time n
Oδ(R

2 log( 1
ηγ1

))
(
n · τ

γ1γ2

)Oδ(1)
time.

Proof sketch. The proof follows along the lines of Allman et al [AMR09], so we only sketch the
proof here. We now show to cast this HMM into a multi-view model (Def. 5.2) using a nice trick
of [AMR09]. We can then apply Theorem 2.9 and prove identifiability (Corollary 5.5). We will
choose m = 2q + 1 where q = d1δ e + 1, and then use the hidden state Zq+1 as the latent variable
h of the Multi-view model. We will use three different views (` = 3) as shown in Fig. 2: the first
view A comprises the tuple of observations (Xq, Xq−1, . . . , X1) (ordered this way for convenience),
the second view B is the observation Xq+1, while the third view C comprises the tuple V3 =
(Xq+2, Xq+3, . . . , X2q+1). This fits into the Multi-view model since the three views are conditionally
independent given the latent variable h = Zq+1.

Abusing notation a little, let A,B,C be matrices of dimensions nq×R,n×R,nq×R respectively.
They denote the conditional probability distributions as in Definition 5.2. For convenience, let
P̃ = diag(w)P Tdiag(w)−1, which is the “reverse transition” matrix of the Markov chain given by
P . We can now write the matrices A,B,C in terms of M and the transition matrices. The matrix
product X � Y refers to the Khatri-Rao product (Lemma A.4). Showing that these are indeed the
transition matrices is fairly straightforward, and we refer to Allman et al. [AMR09] for the details.

A = ((. . . (MP̃ )�M)P̃ )�M) . . . P̃ )�M)P̃ (24)

B = M (25)

C = ((. . . (MP )�M)P )�M) . . . P )�M)P (26)

(There are precisely q occurrences of M,P (or P̃ ) in the first and third equalities). Now
we can use the properties of the Khatri-Rao product. For convenience, define C(1) = MP , and
C(j) = (C(j−1)�M)P for j ≥ 2, so that we have C = C(q). By hypothesis, we have K-rankτ (M) ≥ k,
and thus K-rankτ2τ (MP ) ≥ k (because P is a stochastic matrix with all eigenvalues ≥ τ2). Now by
the property of the Khatri-Rao product (Lemma A.4), we have K-rank(ττ2)τ (C(2)) ≥ min{R, 2k}.
We can continue this argument, to eventually conclude that K-rankτ ′(C

(q)) = min{R, qk} = R for

τ ′ = τ qγq
2

2 (qk)q/2.

Precisely the same argument lets us conclude that K-rankτ ′(A) ≥ R, for the τ ′ = τ qγq
2

2 (qk)q/2.
Now since K-rankτ (B) ≥ 2, we have that the conditions of Theorem 2.6 hold. Now using the
arguments of Theorem 2.9 (here, we use Theorem 2.6 instead of Theorem 2.7), we get matrices
A′, B′, C ′ and weights w′ such that∥∥A′ −A∥∥

F
< δ and similarly for B,C∥∥w′ − w∥∥ < δ

for some δ = poly(1/η, . . . ). Note that M = B. We now need to argue that we can obtain a good
estimate P ′ for P , from A′, B′, C ′. This is done in [AMR09] by a trick which is similar in spirit to
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Lemma A.5. It uses the property that the matrix C above is full rank (in fact well conditioned, as
we saw above), and the fact that the columns of M are all probability distributions.

Let D = C(q−1), as defined above. Hence, C = (D �M)P . Now note that all the columns of
M represent probability distributions, so they add up to 1. Thus given D �M , we can combine
(simply add) appropriate rows together to get D. Thus by performing this procedure (adding rows)
on C, we obtain DP . Now, if we had performed the entire procedure by replacing q with (q − 1)
(we should ensure that (q − 1)k ≥ R for the Kruskal rank condition to hold), we would obtain the
matrix D. Now knowing D and DP , we can recover the matrix P , since D is well-conditioned.

Remark: Allman et al. [AMR09] show identifiability under weaker conditions than Corollary 5.5
when they have infinite samples. This is because they prove their results for generic values of the
parameters M,P (this formally means their results hold for all M,P except a set of measure zero,
but they do not give an explicit characterization). Our bounds are weaker, but hold whenever the
K-rankτ (M) ≥ δn condition holds. Further, the main advantage is that our result is robust to
noise: the case when we only have finite samples.

5.4 Mixtures of Spherical Gaussians

Suppose we have a mixture of R spherical gaussians in Rn, with mixing weights w1, w2, . . . wR,
means µ1, µ2, . . . , µr, and the common variance σ2. Let us denote this mixture distribution by D,
and the n×R matrix of means by M .

We define the µ-tensor of `th order to be

Mom` :=
∑
i

wiµ
⊗`
i .

The empirical mean µ := Mom1, and can be estimated by drawing samples x ∼ D, and
computing E [x]. Similarly, we will show how to compute Mom` for larger ` by computing higher
order moment tensors, assuming we know the value of σ. We can then use the robust Kruskal’s
theorem (Theorem 2.7) and the sampling lemma (Lemma C.2) to conclude the following theorem.

Theorem 5.6. Suppose we have a mixture of gaussians given by D, with hidden parameters
{wr}r∈[R] and M (in particular, we assume we know σ)7. Suppose also that ∀r ∈ [R] wr > γ,
and K-rankτ (M) = k for some k ≥ δR.

Then there is a algorithm that given any η > 0 and σ, uses N = ϑ5.6
(1/δ)

(
1
η , R, n, τ, 1/γ

)
samples drawn from D, and finds with high probability M ′ and {w′r}r∈[R] such that∥∥M −M ′∥∥

F
≤ η and ∀r ∈ [R],

∣∣wr − w′r∣∣ < η (27)

Further, this algorithm runs in time nOδ(R
2)
(
nτ
γ

)Oδ(1)
time.

Proof. This will follow the same outline as Theorem 2.9. So, we sketch the proof here. The theorem
works for error polynomial ϑ5.6 being essentially as the same error polynomial in ϑ2.9. However, we

7As will be clear, it suffices to know it up to an inverse polynomial error, so from an algorithmic viewpoint, we
can “try all possible” values.
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first need to gain access to an order `-tensor, where each rank-1 term corresponds to a mean µr.
Hence, we show how to obtain this order-` tensor of means, by subtracting out terms involving σ,
by our estimates of moments upto `.

Pick ` = d2δ e + 2. We will use order ` tensors given by the `th moment. We will first show
how to obtain Mom`, from which we learn the parameters. The computation of Mom` will be done
inductively. Note that Mom1 is simply E [x]. Now observe that

E
[
x⊗2

]
= E [x⊗ x] = E

[∑
i

wi(µi + εi)⊗ (µi + εi)

]

= E

[∑
i

wiµi ⊗ µi
]

+ E

[∑
i

wiεi ⊗ εi
]

= Mom2 + σ2I.

We compute E
[
x⊗2

]
by sampling, and since we know σ, we can find Mom2 up to any polyno-

mially small error. In general, we have

E
[
x⊗`
]

=
∑
i

wiE
[
(µi + εi)

⊗`
]

(28)

=
∑
i

wi
∑

xj∈{µi,εi}

E [x1 ⊗ x2 ⊗ . . .⊗ x`] . (29)

The last summation has 2` terms. One of them is µ⊗`i , which produces Mom` on the RHS. The
other terms have the form x1⊗x2⊗ . . .⊗x`, where some of the xi are µi and the rest εi, and there
is at least one εi.

If a term has r terms being µi and `−r being εi, the tensor obtained is essentially a permutation

of µ̂(r, `) := µ⊗ri ⊗ ε
⊗(`−r)
i . By permutation, we mean that the (j1, . . . , j`)th entry of the tensor

would correspond to the (jπ(1), . . . , jπ(`))th entry of µ̂(r, `), for some permutation π. Thus we focus
on showing how to evaluate the tensor µ̂(r, `) for different r, `.

Note that if ` − r is odd, we have that E [µ̂(r, `)] = 0. This is because the odd moments of a
Gaussian with mean zero, are all zero (since it is symmetric). If we have `− r being even, we can

describe the tensor E
[
ε`−ri

]
explicitly as follows. Consider an index (j1, . . . , j`−r), and bucket the j

into groups of equal coordinates. For example for index (1, 2, 3, 2), the buckets are {(1), (22), (3)}.
Now suppose the bucket sizes are b1, . . . , bt (they add up to `− r). Then the (j1, . . . , j`−r)th entry

of ε
⊗(`−r)
i is precisely the product mb1mb2 . . .mbt , where ms is the sth moment of the univariate

Gaussian N (0, σ2).

The above describes the entries of E
[
ε`−ri

]
. Now E [µ̂(r, `)] is precisely Momr ⊗E

[
ε`−ri

]
(since

the µi is fixed). Thus, since we have inductively computed Momr for r < `, this gives a procedure
to compute each entry of E [µ̂(r, `)]. Thus each of the 2` terms in the RHS of (28) except Mom`

can be calculated using this process. The LHS can be estimated to any inverse polynomial small
error by sampling (Lemma C.2). Thus we can estimate Mom` up to a similar error.

Hence, we can use the algorithm from Section 4 and apply Corollary 3.9 to obtain vectors
{ũr}r∈[R] such that

∀r ∈ [R]
∥∥∥ur − w1/`µr

∥∥∥ < η.
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Similarly, applying the same process with Mom` (the Kruskal conditions also hold for `− 1) we get

η-close approximations to w
1/(`−1)
i µr. Now, we appeal to Lemma 5.7 to obtain {wr, µr}r∈[R].

Remark: Note that the previous proof worked even when the gaussians are not spherical: they
just need to have the same known covariance matrix Σ.

The following lemma (used in the proof of Theorem 5.6) allows us to recover the weights after

obtaining estimates to w
1/`
r µr and w

1/(`−1)
r µr through decompositions for the `−1 and the ` moment

tensors.

Lemma 5.7 (Recovering Weights). For every δ′ > 0, w > 0, Lmin > 0, ` ∈ N, ∃δ = Ω
(
δ1w1/(`−1)

`2Lmin

)
such that, if µ ∈ Rn be a vector with length ‖µ‖ ≥ Lmin, and suppose∥∥∥v − w1/`µ

∥∥∥ < δ and
∥∥∥u− w1/(`−1)µ

∥∥∥ < δ.

Then, ∣∣∣∣∣
( |〈u, v〉|
‖u‖

)`(`−1)
− w

∣∣∣∣∣ < δ′ (30)

Proof. From (5.7) and triangle inequality, we see that∥∥∥w−1/`v − w−1/(`−1)u∥∥∥ ≤ δ(w−1/(`) + w−1/(`−1)) = δ1.

Let α1 = w−1/(`−1) and α2 = w−1/`. Suppose v = βu+εũ⊥ where ũ⊥ is a unit vector perpendicular
to u. Hence β = 〈v, u〉 / ‖u‖.

‖α1v − α2u‖2 = ‖(βα1 − α2)u+ α1εũ⊥‖ < δ21

(βα1 − α2)
2 ‖u‖2 + α2

1ε
2 ≤ δ21∣∣∣∣β − α2

α1

∣∣∣∣ < δ1
Lmin

Now, substituting the values for α1, α2, we see that∣∣∣β − w 1
(`−1)

− 1
`

∣∣∣ < δ1
Lmin

.

∣∣∣β − w1/(`(`−1))
∣∣∣ < δ

w1/(`−1)Lmin∣∣∣β`(`−1) − w∣∣∣ ≤ δ′ when δ � δ′w1/(`−1)

`2Lmin

The following Corollary establishes polynomial identifiability for mixtures of uniform spherical
gaussians under milder conditions than [HK12] (in particular, the means need not be in general
position). The difference now is that we do not assume we know σ.
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Corollary 5.8. Suppose we have a mixture D of R-gaussians in n-dimensions with n ≥ R, with
hidden parameters {wr}r∈[R], M and σ. Suppose ∀r ∈ [R] wr > γ, and that K-rankτ (M) = k for
some k ≥ δR.

Then there is a algorithm that given any η > 0, uses N = ϑ
1/δ
2.9

(
1
η , R, n, τ, 1/γ

)
samples drawn

from D, and finds with high probability σ′, M ′ and {w′r}r∈[R] such that∥∥M −M ′∥∥
F
≤ η and ∀r ∈ [R],

∣∣wr − w′r∣∣ < η and
∣∣σ − σ′∣∣ < η (31)

Further, this algorithm runs in time nOδ(R
2)
(
nτ
γ

)Oδ(1)
time.

Proof sketch. We first obtain σ to inverse polynomial accuracy, using an elegant trick of [HK13],
and then apply Theorem 5.6 to identify the parameters M and weights {wr}r∈[R].

To estimate σ, we consider the matrix A = E [(x−Mom1)⊗ (x−Mom1)], and note that the
estimated nth singular value σn(A) ∈ [σ− η, σ− η] after averaging enough samples (see Theorem 1
in [HK13] for details). This is because the R vectors µi−Mom1 live in a (R−1) ≤ n−1 dimensional
space. Hence, we can obtain σ to any inverse polynomial accuracy ([HK13] for details). This allows
to recover the parameters using Theorem 5.6. We omit the details in this version.

6 Discussion and Open Problems

The most natural open problem arising from our work is that of computing approximate small
rank decompositions efficiently. While the problem is NP hard in general, we suspect that well
conditioned assumptions regarding robust Kruskal ranks being sufficiently large, as in the uniqueness
theorem (Theorem 2.6) for decompositions of 3-tensors for instance, could help. In particular,

Question 6.1. Suppose T is a 3-tensor, that is promised to have a rank R decomposition [A B C],
with kA = K-rankτ (A) (similarly kB and kC) satisfying kA + kB + kC ≥ 2R + 2. Can we find the
decomposition A,B,C (up to a specified error ε) in time polynomial in n,R and 1/ε?

In the special case that the decomposition [A B C] is known to be orthogonal (i.e., the columns
of A,B,C are mutually orthogonal), which in particular implies n ≥ R, then iterative methods
like power iteration [AGH+12], and “alternating least squares” (ALS) [CLdA09] 8 converge in
polynomial time.

A result in the spirit of finding weaker sufficient conditions for uniqueness was by Chiantini
and Ottaviani [CO12], who use ideas from algebraic geometry (in particular a notion called weak
defectivity), to prove that generic n×n×n tensors of rank k ≤ n2/16 have a unique decomposition
(here the word ‘generic’ is meant to mean all except a measure zero set of rank k tensors, which
they characterize in terms of weak defectivity). Note that this is much stronger than the bound
obtained by Kruskal’s theorem, which is roughly 3n/2. It is also roughly the best one can hope
for, since every 3-tensor has rank at most n2 (and a random tensor has rank ≥ n2/2). It would
be very interesting to prove robust versions of their results, as it would imply identifiability for a
much larger range of parameters in the models we consider.

8This is the method of choice in practice for computing tensor decompositions.
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A third question is that of certifying that a given decomposition is unique. Kruskal’s rank
condition, while elegant, is not known to be verifiable in polynomial time. Given an n×R matrix,
certifying that every k columns are linearly independent is known to be NP-hard [Kha95, TP12].
Even the average case version i.e. when the matrix is random with independent gaussian entries, has
received much attention as it is related to certifying the Restricted Isometry Property (RIP), which
plays a key role in compressed sensing [CT05, KZ11]. It is thus an fascinating open question to
find uniqueness (and robust uniqueness) theorems which involve parameters that can be computed
efficiently.

From the perspective of learning latent variable models, it would be very interesting to obtain
efficient learning algorithms with polynomial running times for the settings considered in Section 5.
Recall that we give algorithms which need only polynomial samples (in the dimension n, and
number of mixtures R), when the parameters satisfy the robust Kruskal conditions. Note that
an affirmative answer to Question 6.1 (and its higher order analogue) would already imply such
efficient learning algorithms. Finally, we believe that our approach can be extended to learning
the parameters of general mixtures of gaussians [MV10, BS10], mixtures of product distributions
[FOS05], and more generally to a broader class of parameter learning problems.
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A A Medley of Auxiliary Lemmas

We now list some of the (primarily linear algebra) lemmas we used in our proofs. They range in
difficulty from trivial to ‘straightforward’, but we include them for completeness.

Lemma A.1. Suppose X is a matrix in Rn×k with σk ≥ 1/τ . Then if ‖∑i αiXi‖2 < ε, for some

αi, we have ‖α‖ =
√∑

i α
2
i ≤ τε.

Proof. From the singular value condition, we have for any y ∈ Rk,

‖Xy‖22 ≥ σ2k ‖y‖2 ,
from which the lemma follows by setting y to be the vector of αi.

Lemma A.2. Let A ∈ Rn×R have K-rankτ = k and be ρ-bounded. Then,

1. If S = span(S), where S is a set of at most k − 1 column vectors of A, then each unit vector
in S has a small representation in terms of the columns denoted by S:

v =
∑
i∈S

ziAi =⇒ 1

(ρ2 + 1)k
≤ (
∑
i

z2i )/ ‖v‖2 ≤ max{τ2, 1}

2. If S = span(S) where S is any subset of k − 1 column vectors S of A, the other columns are
far from the span S:

∀j ∈ [R] \ S,
∥∥∥Π⊥SAj

∥∥∥ ≥ 1

τ

3. If S is any `-dimensional space with ` < k, then at most ` column vectors of A are ε-close to
it for ε = 1/(τ

√
`): ∣∣∣∣{i :

∥∥∥Π⊥SAi

∥∥∥ ≤ 1

τ
√
`
}
∣∣∣∣ ≤ `

Proof. We now present the simple proofs of the three parts of the lemma.

1. The first part simply follows because from change of basis. Let M be the n × n matrix,
where the first |S| columns of M correspond to S and the rest of the n− |S| columns being
unit vectors orthogonal to S. Since A|S is well-conditioned, then λmax(M) ≤ (ρ+ 1)

√
n and

λmin(M) ≥ 1/max τ, 1. The change of basis matrix is exactly M−1: hence z = (M)−1v.
Thus, λmin(M−1) ≤ ‖z‖ ≤ λmax(M−1) = 1/λmin(M) ≤ max{1, τ}.
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2. Let S = {1, . . . , k − 1} and j = k without loss of generality. Let v =
∑

i∈S ziAi be a vector
ε-close to Ak. Let M ′ be the n × k matrix restricted to first k columns: i.e. M ′ = A|S∪{j}.
Hence, the vector z = (z1, . . . , zk−1,−1) has square length 1 +

∑
i z

2
i , and ‖M ′z‖ = ε. Thus,

ε ≥ λmin(M ′)

√
1 +

∑
i

z2i ≥ 1/τ

3. Let ε = 1/(τ
√
k). For contradiction, assume that S = {i :

∥∥Π⊥SAi
∥∥ ≤ ε} is of size `+ 1. Let

vi = ΠSAi ∈ S. Since {vi}i∈S are `+ 1 vectors in a ` dimension space,

∃{αi}i∈S with
∑
i

α2
i = 1, s.t

∑
i

αivi = 0

Hence,
∥∥∑

i∈S αiAi
∥∥ ≤ ∥∥∑i∈S αiΠ

⊥
SAi

∥∥ ≤ (
∑

i∈S |αi|)ε ≤
√
|S|ε (where the last inequality

follows from Cauchy-Schwarz inequality). But these set of αi contradict the fact that the
minimum singular value of any n-by-k submatrix of A is at least 1/τ .

Lemma A.3. Let u1, . . . , ut ∈ Rd (for some t, d) satisfy ‖ui‖2 ≥ ε > 0 for all i. Then there exists
a unit vector w ∈ Rd s.t. |〈ui, w〉| > ε

20dt for all i ∈ [t].

Proof. The proof is by a somewhat standard probabilistic argument.

Let r ∼ Rd be a random vector drawn from a uniform spherical Gaussian with a unit variance
in each direction. It is well-known that for any y ∈ Rd, the inner product 〈y, r〉 is distributed
as a univariate Gaussian with mean zero, and variance ‖y‖22. Thus for each y, from standard
anti-concentration properties of the Gaussian, we have

Pr
[
|〈ui, r〉| ≤

‖ui‖
10t

]
≤ 1

2t
.

Thus by a union bound, with probability at least 1/2, we have

Pr
[
|〈ui, r〉| >

ε

10t

]
for all i. (32)

Next, since E
[
‖r‖22

]
= d, Pr[‖r‖22 > 4d] < 1/4, and thus there exists a vector r s.t. ‖r‖22 ≤ 4d, and

Eq. (32) holds. This implies the lemma (in fact we obtain
√
d in the denominator).

Lemma A.4 (K-rank of the Khatri-Rao product). has K-rank(τ1τ2
√
kA+kB)(M) ≥ min{k1 + k2 −

1, R}.

Proof. Let τ = τ1τ2
√
kA + kB. Suppose for contradictionM has K-rankτ (M) < k = kA+kB−1 ≤ R

(otherwise we are done).
Without loss of generality let the sub-matrix M ′ of size (n1n2)× k, formed by the first k columns
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of M have λk(M) < 1/τ . Note that for a vector z ∈ RnR, ‖z‖2 = ‖Z‖F where Z is the natural
n×R matrix representing z. Hence

∃{αi}i∈[k] with
∑
i∈[k]

α2
i = 1 s.t.

∥∥∥∥∥∥
∑
i∈[k]

αiAi ⊗Bi

∥∥∥∥∥∥
F

< ε.

Clearly ∃i∗ ∈ [k] s.t |αi| ≥ 1/
√
k : let i∗ = k without loss of generality. Let S = span({A1, A3, . . . AkA−1}),

and pick x = Π⊥SAk/
∥∥Π⊥SAk

∥∥ (it exists because K-rankτ (M) < R).
Pre-multiplying the expression in (A) by x, we get∥∥∥∥∥∥

k∑
i=kA

βiBi

∥∥∥∥∥∥ < ε where βi = αi 〈x,Ai〉

But |βk| ≥ 1/(
√
kτ1) (by Lemma A.2), and there are only k− kA + 1 ≤ kB terms in the expression.

Again, by Lemma A.2 applied to these (at most) kB columns of B, we get that 1/ε < τ1τ2
√
k,

which establishes the lemma.

Remark. Note that the bound of the lemma is tight in general. For instance, if A is an n × 2n
matrix s.t. the first n columns correspond to one orthonormal basis, and the next n columns to
another (and the two bases are random, say). Then K-rank10(A) = n, but for any τ , we have
K-rankτ (A � A) = 2n − 1, since the first n terms and the next n terms of A � A add up to the
same vector (as a matrix, it is the identity).

Lemma A.5. Suppose ‖u⊗ v − u′ ⊗ v′‖F < δ, and Lmin ≤ ‖u‖ , ‖v‖ , ‖u′‖ , ‖v′‖ ≤ Lmax,

with δ <
min{L2

min,1}
(2max{Lmax,1}) . If u = α1u

′+β1ũ⊥ and v = α2v
′+β2ṽ⊥, where ũ⊥ and ṽ⊥ are unit vectors

orthogonal to u′, v′ respectively, then we have

|1− α1α2| < δ/L2
min and β1 <

√
δ, β2 <

√
δ.

Proof. We are given that u = α1u
′ + β1ũ⊥ and v = α2v

′ + β2ṽ⊥. Now, since the tensored vectors
are close

∥∥u⊗ v − u′ ⊗ v′∥∥2
F
< δ2∥∥(1− α1α2)u

′ ⊗ v′ + β1α2ũ⊥ ⊗ v′ + β2α1u
′ ⊗ ṽ⊥ + β1β2ũ⊥ ⊗ ṽ⊥

∥∥2
F
< δ2

L4
min(1− α1α2)

2 + β21α
2
2L

2
min + β22α

2
1L

2
min + β21β

2
2 < δ2 (33)

This implies that |1− α1α2| < δ/L2
min as required.

Now, let us assume β1 >
√
δ. This at once implies that β2 <

√
δ.

Also

L2
min ≤ ‖v‖2 = α2

2

∥∥v′∥∥2 + β22

L2
min − δ ≤ α2

2L
2
max

Hence, α2 ≥
Lmin

2Lmax

Now, using (33), we see that β1 <
√
δ.
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Lemma A.6. For λ ≥ 0, a vector v ∈ Rn with ‖v‖1 ∈ [1−ε/4, 1+ε/4], a probability vector u ∈ Rn
( ‖u‖1 =

∑
i ui = 1), if

‖v − λu‖2 ≤
ε

4
√
n

then we have

1− ε/2 ≤ λ ≤ 1 + ε/2 and ‖v − u‖2 ≤ ε

Proof. First we have ‖v − λu‖1 ≤ ε/4 by Cauchy-Schwartz. Hence, by triangle inequality, |λ| ‖u‖1 ≤
1 + ε/2.
Since ‖u‖1 = 1, we get λ ≤ 1 + ε/2. Similarly λ ≥ 1− ε/2.

Finally, ‖v − u‖2 ≤ ‖v − λu‖2 + |λ− 1| ‖u‖2 ≤ ε (since λ ≥ 0). Hence, the lemma follows.

A.1 Symmetric Decompositions

Proof of Corollary 3.9. Applying Theorem 2.7 with ε′ < η(2ρτ
√
R)−1, to obtain a permutation

matrix Π and scalar matrices Λj such that

∀j ∈ [`] ‖V − UΠΛj‖F < ε′

By triangle inequality, ∀j, j′ ∈ [`],
∥∥UΠ(Λj − Λj′)

∥∥
F
< 2ε′

Since Π is a permutation matrix and U has columns of length at least 1/τ , we get that

∀r ∈ [R], j ∈ [`], j′ ∈ [`],
∣∣Λj(r)− Λj′(r)

∣∣ < ε′τ

However, we also know that ∥∥∥∥∥∥
∏
j∈`
, Λj − I

∥∥∥∥∥∥ ≤ ε′
∀r ∈ [R], (1− ε′) ≤

∏
j∈[`]

Λj(i) ≤ 1 + ε′

Hence, substituting (A.1) in the last inequality, it is easy to see that ∀i ∈ [n], |λj(i)− 1| < 2ε′τ . But
since each column of A is ρ-bounded, this shows that ‖A′ −AΠ‖F < 2ε′τρ

√
R ≤ η, as required.

B Properties of Tensors

B.1 A necessary condition for Uniqueness

Consider a 3-tensor T of rank R represented by [A B C] where these three matrices are of size
n×R.

T =
∑
r∈[R]

Ar ⊗Br ⊗ Cr.

We now show a necessary condition in terms of the n2 dimensional vectors Ar ⊗ Br from the
decomposition.
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Claim B.1 (A necessary condition for uniqueness). Suppose for a subset S ⊂ [R], there exist {αr}
with ‖α‖ = 1. ∑

r∈S
αrAr ⊗Br = 0

then there exists multiple rank-R decompositions for T

Proof. Consider any fixed non-zero vector u (it can be also chosen to be not close to any of the
other vectors in S). This is because

∑
r∈S Ar ⊗Br ⊗ u =

∑
r∈S αr(Ar ⊗Br)⊗ u = 0.

Hence, T =
∑

r∈S Ar ⊗Br ⊗ (Cr + αru) +
∑

r′∈[R]\S Ar′ ⊗Br′ ⊗ Cr′ .

The above example showed that one necessary condition is that the A�B should be full rank
R (and well-conditioned). These examples are ruled out when the Kruskal ranks of A and B are
such that kA + kB ≥ R by Lemma A.4.

C Sampling Error Estimates for Higher Moment Tensors

In this section, we show error estimates for `-order tensors obtained by looking at the `th moment
of various hidden variable models. In most of these models, the sample is generated from mixture of
R distributions {Dr}r∈[R], with mixing probabilities {wr}r∈[R]. First the distribution Dr is picked
with probability wr, and then the data is sampled according to Di, which is characteristic to the
application.

Lemma C.1 (Error estimates for Multiview mixture model). For every ` ∈ N, suppose we have
a multi-view model, with parameters {wr}r∈[R] and {M (j)}j∈[`], such that every entry of x(j) ∈ Rn
is bounded by cmax (or if it is multivariate gaussian). Then, for every ε > 0, there exists N =
O(c`maxε

−2√` log n) such that

if N samples {x(1)(j)}j∈[`], {x(2)(j)}j∈[`], . . . , {x(N)(j)}j∈[`] are generated, then with high probability∥∥∥∥∥∥E
[
x(1) ⊗ x(2) ⊗ . . . x(`)

]
− 1

N

∑
t∈[N ]

x(t)(1) ⊗ x(t)(2) ⊗ x(t)(`)

∥∥∥∥∥∥
∞

< ε (34)

Proof. We first bound the ‖ · ‖∞ norm of the difference of tensors i.e. we show that

∀{i1, i2, . . . , i`} ∈ [n]`,

∣∣∣∣∣∣E
∏
j∈[`]

x
(j)
ij

− 1

N

∑
t∈[N ]

∏
j∈[`]

x(t)
(j)
ij

∣∣∣∣∣∣ < ε/n`/2.

Consider a fixed entry (i1, i2, . . . , i`) of the tensor.

Each sample t ∈ [N ] corresponds to an independent random variable with a bound of c`max.
Hence, we have a sum of N bounded random variables. By Bernstein bounds, probability for

(34) to not occur exp

(
−(εn−`/2)

2
N2

2Nc`max

)
= exp

(
−ε2N/

(
2(cmaxn)`

))
. We have n` events to union

bound over. Hence N = O(ε−2(cmaxn)`
√
` log n) suffices. Note that similar bounds hold when the

x(j) ∈ Rn are generated from a multivariate gaussian.
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Lemma C.2 (Error estimates for Gaussians). Suppose x is generated from a mixture of R-gaussians
with means {µr}r∈[R] and covariance σ2I , with the means satisfying ‖µr‖ ≤ cmax.

For every ε > 0, ` ∈ N, there exists N = Ω(poly(1ε )), σ2, n,R) such that if x(1), x(2), . . . , x(N) ∈ Rn
were the N samples, then

∀{i1, i2, . . . , i`} ∈ [n]`,

∣∣∣∣∣∣E
∏
j∈[`]

xij

− 1

N

∑
t∈[N ]

∏
j∈[`]

x
(t)
ij

∣∣∣∣∣∣ < ε. (35)

In other words, ∥∥∥∥∥∥E
[
x⊗`
]
− 1

N

( ∑
t∈[N ]

(x(t))⊗`
)∥∥∥∥∥∥
∞

< ε

Proof. Fix an element (i1, i2, . . . , i`) of the `-order tensor. Each point t ∈ [N ] corresponds to an

i.i.d random variable Zt = x
(t)
i1
x
(t)
i2
. . . x

(t)
` . We are interested in the deviation of the sum S =

1
N

∑
t∈[N ] Z

t. Each of the i.i.d rvs has value Z = xi1xi2 . . . x`. Since the gaussians are spherical

(axis-aligned suffices) and each mean is bounded by cmax, |Z| < (cmax + tσ)` with probability
O
(
exp(−t2/2)

)
. Hence, by using standard sub-gaussian tail inequalities, we get

Pr |S − E [z]| > ε < exp

(
− ε2N

(M + σ` log n)`

)
Hence, to union bound over all n` events N = O

(
ε−2(` log nM)`

)
suffices.
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