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Abstract. Altering the viewing parametersof a 3D objectresultsin computer
graphicsimagesof varyingquality. Oneaspectof imagequality is thecomposi-
tion of theimage.While theestheticpropertiesof animagearesubjective,some
heuristicsusedby artiststo createimagescanbeapproximatedquantitatively. We
presentan algorithmbasedon heuristiccompositionalrulesfor finding the for-
mat, viewpoint, andlayout for an imageof a 3D object. Our systemcomputes
viewing parametersautomaticallyor allows auserto explicitly manipulatethem.

1 Introduction

Compositionis taught to artistsby showing them a few simple rules, then showing
thema numberof pitfalls to avoid. We applyrulesfrom theartisticcommunityaswell
asobservationsfrom the psychologyliterature. Perhapsit would be moresystematic
to extractcompositionalprinciplesentirely from thepsychologyliterature,but what is
currentlyknown in thatfield [15,18,21] is notyetspecificenoughto allow automation.
While automationis not neededby artistswho know both how to apply andwhento
breaktheserules,our systemis intendedfor themorecommonnon-artisticuser.

Little work dealingwith artistic compositionhasbeenpublishedin the computer
graphicsliterature. FeinerandSeligmann[9, 17] borrowed principlesfrom technical
illustration. Kawai et al. [11] automatedthe creationof pleasinglighting. Both He et
al. [20] andKarp andFeiner[10] examinedhow animationsequencesaredeveloped.
Kowalskiet al. [12] haveexploreduserguidedcomposition.

2 Compositional Principles

In art, heuristicsfor creatingimagesof 3D objectsfall into threegeneralcategories:
choosingtheformat (imagesize,shape,andorientation);choosingtheviewpoint; and
choosingthe layout of theobjecton theimageplane.

2.1 Format

Theformatof animagedescribesits shapeandproportions.An imagethatis widerthan
it is tall hasa landscapeformat,imagesthataretaller thanwidehaveaportrait format.
Artists usethe following rule of thumb [5], landscapeformatsshouldbe usedwith
horizontalobjects,andportrait formatswith verticalobjectsasin Figure5 This allows
theobjectto becomepartof theformatratherthandividing it asshown in Figure1(a).

While the proportionsof the format arechosenat the whim of the artist,mostart
instructorsagreethattheformatof animageshouldbeestablishedfirst [5]. Earlywork
in psychologyshowedthat thegoldenratio seemsto bepreferred[3, 16]. Thegolden
ratio is
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. Artistsoftenuseafiveby eightformat,which is regarded

asbeingderivedfrom thegoldenratio.



(a) Theimageon theleft hasa vertical for-
matin accordwith thesubject.Likewise,in
the horizontallower image. The subjectin
the upperright imageis out of relationship
with theformatanddividestheimage.

(b) Left: an“accidental”view whereone
of thecowshindlegsendsupdirectlybe-
hind a front leg. Right: the samecow
from a slightly perturbedviewing direc-
tion.

Fig. 1. Examplesof someformatingandviewpoint heuristics.

2.2 Viewpoint

Psychologistshave studiedviewers’ preferencesfor one viewpoint over anotherfor
particularobjects. A viewpoint that is preferredby mostviewers is calleda canoni-
cal viewpoint. Palmeret al. [13] found that canonicalviewpointsareoff-axis, while
Verfaillie [19] discoveredthata three-quarterview of a familiarobjectis preferred.

A thoroughinvestigationof canonicalviews wasrecentlycarriedout by Blantzet
al. [6]. They found threepredictorsof whethera view is canonical: the significance
of visible featuresfor a givenobserver, the stability of the view with respectto small
transformations,andtheextentto which featuresareoccluded.

Significantfeaturesfor an observer may includethe facial portion of a head,the
handleof a tool, or the seatof a chair. In viewing objects,Blantz et al. found that
peoplepreferredviews which expressedthemannerin which anobjectwasseenin its
environment,i.e. chairsareviewed from above while airplanesmay be viewed from
aboveor below. They alsofounda distinct lack of “handedness”whenhumanschoose
preferredviews. For example,whenviewing a teapota right handedviewer did not
mind if thehandlewasplacedon theleft sideof theimage.

Imagestability meansthat theviewpoint canbemovedwith little or no changein
the resultingimage.Many psychologyresearchershave shown thatobjectsin a scene
which sharean edgewill confusea viewer [4, 5,15]. For examplethe viewpoint that
producesthe“threeleggedcow” in Figure1(b) is neverpickedasacanonicalview.

Whensubjectsin theBlantzet al. studyweregiventheability to choosetheview-
point for anobject,it wasdiscoveredthat thesubjectsperformedaninternaloptimiza-
tion to find a viewpoint thatshowedthesmallestnumberof occlusions.This occurred
for bothfamiliarobjectsandartificial geometricconstructs.For instance,whenchoos-
ing a viewpoint for a teapotthe subjectsalwayschoosea viewpoint that shows both
the handleandthe spout. This resultagreeswith Edelmanet al. [8] who showed that
canonicalviews for “nonsense”objectsmayalsoexist.

Artists have their own heuristicsfor choosingview directionsthat are consistent
with thepsychologyresults:pick anoff-axisview from anaturaleyeheight.Direct � ���
anglesareavoided.Anotherrule is to havetheprojectionsof front/side/topof theobject
to haverelativeareasof 4/2/1onthecanvas[2, 18] (oftenexpressedas55%/30%/15%).
Thefront andsidedimensionscanbeexchangeddependingon theobject.
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Fig. 2. Halving the canvascreatesstatic compositionswhich are peacefulandquiet,but may
seemdull. Dividing thecanvasinto thirdsyieldsa more dynamicimage. Notethat therulesare
appliedbothhorizontallyandvertically (afterClifton [7]).

2.3 Layout

The bestknown rule of layout is the rule of thirds (Figure2). By partitioning their
canvasinto thirds bothvertically andhorizontally, andplacingthe strongverticaland
horizontalcomponentsof theimageneartheselines,artistsavoid equalspatialdivisions
of their image.Equalspatialdivisionsgiveanimagebalanceandsymmetry. However,
equaldivisionsmay alsocausean imageto be dull, due to the lack of any dynamic
quality in the image. Artists have also found the rule of fifths useful. Division into
quartersis to be avoided becausethe centerlineintroducestoo much symmetry[7].
Theserulescanbe mixedby dividing the canvasinto thirds alongoneaxis andfifths
alongtheother, asin Figure5.

Thereareadditional,often contradictory, minor layout heuristicstaughtto artists
which arequantifiable. Art theoristscontendthat the most importantinformation in
theimageshouldbeplacednearthecenter[3, 18]. However, studiesshow thatobjects
in a sceneshouldbe repelledfrom the cornersandcenterof the format [2]. Having
chosena viewpoint, it is goodpracticeto placetheobjectin thebottomportionof the
imageif theviewpoint is abovetheobjector to placetheobjectin thetopportionof the
imageif theviewpoint is below theobject.Strongdiagonallinesyield a moredynamic
image.However, linesorientedtowardcornerstendto draw theviewerseye off of the
image[7].

3 Computer Graphics Implementation

Theprevioussectionshowsa methodfor constructingimagesby first choosingformat
basedonobjectaspect-ratio.Thenchoosingtheviewpoint to bebothoff-axisand“nat-
ural” for theobject.Finally, theobjectis “framed” within theboundariesof theformat
to producea pleasinglayout.Thesestepsleaddirectly to ouralgorithm.

Our algorithmattemptsto find a goodcompositionfor a computergraphicsimage
of a 3D object.Thealgorithmcanberun in a fully automaticmodeaslong as“front”
and“top” aredefinedfor theobject,but userinterventioncanbeappliedat any stage.

We first have the userselecta format of eitherportrait or landscapefor a five by
eightcanvas.Our default is landscape.Theformatcouldbefoundautomaticallyusing
theprincipledirectionof theorthographicprojectionof theobject.Wethencomputean
initial off axisviewpoint for theobject.Finally, weusearobustoptimizationprocedure
to perturbtheviewing parametersguidedby heuristicrulesfor layout.



3.1 Viewing Parameterization

Of the many possiblewaysto specifyviewing parameters,we choosea systemwith
dimensionsthatareasintuitiveaspossibleto helpusgaininsightinto theoptimization
space.Wefix two parametersto reducethedimensionof thespacewesearchduringthe
optimizationprocess.Theview-up vectoris fixed to beparallelto the “top” direction
of themodel.We alsofix thehorizontalandverticalfield-of-view parameters.

Our free variablesarethe two sphericalcoordinatesof the vectorfrom the object
centerto the camera,the two sphericalanglesof camerapanand tilt relative to that
vector, andthe distanceof the camerato the objectcenter. This givesfive free vari-
ables,thefirst two correspondingto rotatingpositionaroundtheobject,thesecondtwo
controllingcameraorientationrelativeto theobject,andthelastallowing thecamerato
movetowardor away from theobject.

3.2 Initial Viewpoint

As a default we choosea viewpoint above andin front of the object. We set left and
right arbitrarilydueto thefindingof Blantzetal. [6] thatviewersdonotseemto havea
preferencefor left versusright views. Thespecificthreequarterview of theobjectis set
accordingto the4/2/1rule describedin Section2.2. Giventheoctanttheviewpoint re-
sidesin thereis auniquedirectioncorrespondingto theproportionsof theorthographic
projectionof theobjectsboundingbox. Oncetheinitial view directionis fixed,theini-
tial distancefrom objectcenterto viewpoint is setto betwice thewidth of thebounding
box so we arecertainour viewpoint is on screen.Otherwiseour layout optimization
couldconvergeto a degeneratelocalminimumcreatedby a blankscreen.

3.3 Layout Optimization

Oncewe have aninitial viewing direction,we would like to usea rule suchastherule
of thirds,to perturbtheviewing parametersinto a “good” composition.We would like
to detectimportantimagefeaturessuchassilhouettes,creaselines,strongillumination
gradients,and importantsemanticfeatureslike faces. However, we have madeour
exploratorywork assimpleaspossibleandfocusonly on silhouettes.We would like
ouroptimizationprocedureto movesilhouettelinesnearthird or fifth lines.

Weassumethatourmodelis polygonal,with at leastamediumlevel of tessellation,
andcomputesilhouettesin a brute force fashion. If the modeloccludesa silhouette
edgewe call thatedgea hiddensilhouette.For simplicity we do not eliminatehidden
silhouettes,andusethe silhouettemidpointsfor computation.We projecteachmid-
points onto a target imagewith pixel valuesbetweenzero and one (Figure 6). The
targetimagecontainsatemplatewith darkpixelsnear“magnet”features,andlight pix-
elselsewhere.Minor layoutheuristicscanbecombinedwith therulesof thirdsor fifths
by compositingtheir respective templates.Note that any grey scaleimagecould be
usedto drive our optimization. Figure5 shows a compositionaltemplateinspiredby
the famous“diamond” compositionof Van Gogh’s Irises (1890). Theobjective func-
tion is thesumof thepixel valueshit by silhouettemidpoints.A setof silhouettesthat
landsmostlyondarkpixelsis “good”, andasetthathitsmostlylight pixelsis “bad”. If
a midpoint landsoff-screen,it takeson thevalueoneplusa lineardistanceterm. This
allowsedgesto beoff screen,but encouragesthemto movetowardthescreen.

Theobjectivefunctionis reasonablywell behaved,althoughwith unknowngradient.
This makes the downhill simplex (Nelder-Mead) [14] methodwell-suitedbecauseit
doesnot requireanalyticderivativesfor theobjective function.



A concernis that the global minimum for our objective function is to move the
camerafarawaywith apanandtilt thatprojectsall edgesontothedarkestpixel. Fortu-
nately, thereseemto beenoughappealinglocalminimafor thisnot to occurin practice.
Our goal is a reasonableimage,insteadof theglobalminimumfor theobjective func-
tion, thereforea local minimum meetsour needs. Anotherconcernis that by using
midpointsof segments,bothshortandlong edgeshaveequalweight.We couldweight
edgesby length,but equalweightinggivesextra importanceto highly polygonalized
regionswhichoftencorrespondto preferredsemanticfeaturessuchasfaces.

Oncethe layoutoptimizationhasconverged,we run a secondaryoptimizationthat
attemptsto eliminateaccidentalviews that arisefor coincidentsilhouettes.A result
of this secondaryprocessis shown in Figure1(b), wherethe cows hind leg becomes
unoccluded.Changingtheviewing distance,pan,andtilt donotaffectaccidentalviews.
Thereforewefix thesevaluesandallow thesecondaryoptimizationto operatein thetwo
dimensionalspaceof view angles.Theobjectivefunctionthatis minimizedfor thisstep
is oneover a constantterm plus the sumof squareddistancesbetweenall midpoints.
Theconstanttermkeepsthefunctionfinite. Althoughthis computationis quadraticon
thenumberof silhouetteedges,theobjectivefunctionis only two dimensionalandthus
this stageis not a bottleneck. Becausewe areonly trying to climb away from local
minimawheresilhouetteedgesline up we run thesecondaryoptimizationfor just 100
iterations.

3.4 Results

Our systemwasimplementedin C on a 250MHzR10000SGI Origin. Figure7 shows
the resultsof our algorithmon a 69473trianglemodelof a bunny. This imagecon-
vergedin 272 iterationsand took approximatelythreeminutesin the initial stageof
optimization.Thesecondaryoptimizationto removea possibleaccidentalview took a
few seconds.Figure5 shows a 6272polygontoy plane,with overlaidlayoutsolutions
from two initial viewpoints,oneabove andonebelow. Thesolutionconvergedin 165
iterationsandtook approximatelysix seconds.

Figure5 showstheinitial viewpointcomputedfor a5804polygoncow model,along
with threedifferentlayout solutionsoverlaidon their templates.The rotatedtemplate
wasinspiredby thefamous“diamond” compositionof VanGogh’s Irises(1890). This
imagelayoutconvergedin 133iterationsandtook aboutfivesecondsto compute.

4 Conclusions and Future Work

We presentedan overview of compositionalprinciplesanda proof-of-conceptimple-
mentationthatautomatescreationof simpleimagesbasedonquantitativecompositional
heuristics.Therearemany directionsto takethiswork. Ourobjectivefunctionoperates
on silhouetteedgeswhich maynot correspondto importantimagefeatures.

Ouralgorithmswork with singleobjectsratherthanscenes.In scenes,thegrouping
of objectsshouldbedonein amannerwhich tellsastoryabouttheobjectsor describes
their relationshipwith one another. Thereare compositionalrules that can serve as
guidelinesin this process[4,5,15]. Calahan[1] explainshow lighting canbe usedto
control perceivedgroupingof sceneelements.Theseprocessesarehighly dependent
on scenesemanticsandmaythusbedifficult to automate.Advancedcompositionwill
most likely remainthe domainof the trainedartist. However, the increasingnumber
of computeruserswith no formalartistictrainingprovidesa largemarket for toolsthat
assistin theaestheticprocess.
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Fig. 3. Therulesof thirdsandfifths areexam-
plesof heuristiccompositionalrules.Linearel-
ementsoftenrunalongtheselinesandkey fea-
turesoften occurat line intersections.(Banjo
Lesson, HenryTanner, oil oncanvas.)

Fig. 4. Top left: initial viewpoint. Top right:
combinedrules of fifths and thirds. Middle
left: rule of thirds. Middle right: angledrule
of thirds. Bottom: renderedcow from angled
rule of thirds.

Fig. 5. Top: toy planewith ruleof thirdslayout
andviews from below andabove. Bottom: toy
planerenderedwith view from above.

Fig. 6. Two imagesthatguidelayoutoptimiza-
tion. The dark areasattractsilhouetteedges.
The edgeswill tendto fall “downhill” toward
thesedarkregions.

Fig. 7. Left: Bunny overlaidon a portrait for-
mat, combinedrule of thirds and fifths tem-
plate.Right: theresultingshadedimage.


