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Abstract

In computer graphics, silhouette extraction and rendering has a crit-
ical role in a growing number of applications. This paper exam-
ines five object space silhouette extraction algorithms for polygonal
models. The algorithms are applied to a variety of models and com-
pared in terms of code complexity and run time performance. The
purpose of this paper is to inform programmers who must choose
from among these five algorithms.

Note: The computer code generated for this project is available
online at: http://cs.utah.edu/˜hartner

1 Introduction

Silhouette drawings are a simple form of line art used in cartoons,
technical illustrations, architectural design and medical atlases. Sil-
houette curves of a polygonal model are useful in realistic render-
ing, in interactive techniques, and in non-photorealistic rendering
(NPR).

In realistic rendering silhouettes are used to simplify shadow cal-
culation. Sander et al. demonstrate that complex models can be ren-
dered at interactive rates by clipping the polygons of a coarse geo-
metric approximation of a model along the silhouette of the original
model [Sander et al. 2000]. Hertzmann and Zorin have shown that
silhouettes can be used as an efficient means to calculate shadow
volumes [Hertzmann and Zorin 2000]. Haines demonstrates an al-
gorithm using silhouettes for rapidly rendering soft shadows on a
plane [Haines 2001]. Silhouettes are used for interactive haptic
rendering [Johnson and Cohen 2001]. Some authors, [Jensen et al.
2002; Chung et al. 1998] have described the use of silhouettes in
CAD/CAM applications. Systems have also been built which use
silhouettes to aid in modeling and motion capture tasks [Fua et al.
1999; Lee et al. 2000; Bottino and Laurentini 2001].

In NPR, complex models and scenes are often rendered as line
drawings using silhouette curves. Lake et al. present interac-
tive methods to emulate cartoons and pencil sketching [Lake et al.
2000]. Gooch et al. built a system to interactively display techni-
cal drawings [Gooch et al. 1999]. Rheingans and Ebert and Lum
and Ma have built a NPR volume visualization system which uses
silhouettes to emphasize key data in volume renderings [Rheingans
and Ebert 2001; Lum and Ma 2002].

The silhouette set of a polygonal model can be computed in ob-
ject space or in screen space. Object space algorithms require com-
putations in three dimensions and produce a list of silhouette edges
for a given viewpoint. Screen space algorithms are usually based
on 2D image processing techniques and are useful if rendering sil-
houettes is the only goal of the algorithim. This paper examines
five software-based object space algorithms in terms of runtime
speed, code complexity, pre-process timing and complexity, scal-
ability, and memory usage.

Figure 1: Silhouette algorithims are evaluated using various tessela-
tions of an irregular sphere model. This model was chosen because;
it has a high silhouette complexity, it contains interior silhouettes
for every veiw angle, and it containins regions with similar normals
which are not spacialy close, these properties make this model a
difficult case for all of the evaluated algorithims.

1. Brute Force – Iterate through each edge in a polygonal model
and test whether it is a silhouette edge.

2. Edge Buffer – Using the “Edge Buffer” data structure of
Buchanan and Sousa [Buchanan and Sousa 2000] to iterate
over facets instead of edges.

3. Probabilistic – An edge tracing method that chooses a fi-
nite number of “seed” edges of each viewpoint based on a
measure of the likelihood that the “seed” edges are silhou-
ettes [Markosian et al. 1997].

4. Gauss Map Arc Hierarchy – The angles of arcs between front
and back facing polygons are stored in a tree structure [Gooch
et al. 1999; Benichou and Elber 1999].

5. Normal Cone Hierarchy – Polygon normals are grouped into
cones and these cones are stored in a tree structure [Sander
et al. 2000; Johnson and Cohen 2001; Hertzmann and Zorin
2000; Pop et al. 2001] .

2 Definition of a Silhouette

Given E(u,v) as the eye vector, a point on a surfaceσ(u,v) with
surface normalN(u,v) is a silhouette point ifE(u,v) ·N(u,v) = 0,
that is, the angle betweenE(u,v) andN(u,v) is 90 degrees. This
relationship is demonstrated in Figure 3. This definition includes
internal silhouettes as well as the object’s outline, or halo. It is im-
portant to note that the silhouette set of an object is view dependent,
that is the edges of a model that are silhouettes change based on the
point from which the object is viewed.

Additional important feature lines exist for three dimensional
models. These lines include; texture boundaries, creases, and object
boundaries. These additional feature lines are view independent,



Figure 2: Silhouettes on a polygonal surface.

and can therefore be completely specified prior to runtime. In this
work we evaluate only runtime silhouette extraction algorithms.

3 Silhouettes for Polygonal Models

The silhouette set for a polygonal model is defined to be all edges in
the model which are shared by both a front-facing and a back-facing
polygon, as illustrated in Figure 2.

For uniformity throughout this work it is assumed that polygon
normals point outward from surfaces. This assumption yields the
following:

if N ·E < 0 then the polygon is front-facing

if N ·E > 0 then the polygon is back-facing

if N ·E = 0 then the polygon is perpendicular to the view di-
rection

4 Algorithms

In order to make a fair comparison of the various algorithims at
runtime a test suite of polygonal models was built using multiple
tesselations of an modified sphere model as shown in Figure 1. This
model was chosen because; it has a high silhouette complexity, it
contains interior silhouettes for every veiw angle, and the model
contains regions with similar normals which are not spacialy close
to each other. These properties make the irregular sphere model a
complex case for each of the evaluated silhouette algorithims.

The five object space silhouette algorithms were implemented
using C++ and the Standard Template Library (STL). Each silhou-
ette method consists of a pre-process routine which is executed only
once per model, and a runtime routine which is executed every time
a frame is rendered. The test program choose an algorithim at ran-
dom and a model tessalation at random, then rotated about a num-
ber of aribitrary axis alignments with an angular velocity such that
the model and silhouette lines can be rendered without a noticeable
skip in the rotation of the model. The measure of runtime speed
reported here includes silhouette extraction time only. The time re-
quired to render the model and silhouette lines is not included in
this measure. The observed runtime speed is reported in frames per
second and is calculated by dividing 1080 frames by the number of
seconds needed to calculate those frames. The runtime tests were
performed on an AMD Athlon 1.4Ghz machine with 512MB of
RAM and a GeForce3 (64MB) grachics card running Linux 2.4.18.
For each method we present:

Figure 3: Silhouettes on a smooth surface.

1. Method – A summary of the silhouette extraction algorithm.

2. Pre-process – A summary of steps performed prior to runtime.

3. Runtime – The frames per second for test suite of polygonal
irregular sphere models.

4. Code Complexity – We report two measures of code com-
plexity. One is the amount of time needed for an advanced
undergraduate student to write and debug the code. The sec-
ond is the number of lines of code in both the pre-process and
the runtime routine.

5. Results and Observations

4.1 Brute Force

Method

The brute force method of silhouette extraction requires testing
each edge in the polygonal mesh sequentially to verify whether or
not it is a silhouette.
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Figure 4: Brute force silhouette extraction runtime performance



Pre-Process

Create a data structure which holds the information about an edge
and contains pointers to the normal vectors of both polygons asso-
ciated with that edge. Then create an edge list using a static array
of these edge data structures.

Runtime

At runtime, for every frame, traverse the edge list. Each polygon ad-
jacent to the current edge is tested to determine whether it is front-
facing or back-facing with respect to the current eye point. If one
polygon is front-facing and the other back-facing a silhouette line
is rendered.

Results and Observations

There is a steep dropoff initially due to cache performance, then the
brute-force silhouette method’s runtime complexity scales linearly
with the number of edges. Because of the simplicity of the brute
force method, it is easy to implement using a single iterative loop,
thus eliminating any function call overhead.

4.2 Edge Buffer

Method

The second silhouette algorithm tested is the “edge buffer”
[Buchanan and Sousa 2000]. Instead of iterating over each edge
and testing both adjacent polygon normals for front/back facing,
the Edge Buffer method iterates over the polygons. Since the num-
ber of polygons is always fewer than the number of edges, the edge
buffer method should run faster than the brute force algorithm.

Pre-Process

Create an edge list similar to the data structure used in the brute
force method, adding of a front facing flag and a back facing flag
for each edge. The front facing and back facing flags for each edge
are initialized to 0. In addition, create a data structure which maps
polygons back to edges shared by the respective polygon.

Runtime

For each polygon in the polygon list, test to see whether the polygon
is front-facing. If the polygon is front facing, XOR a 1 with the
front facing flag for each edge shared by that polygon. Likewise,
if the polygon is back facing, XOR a 1 with the back facing flag
for each edge shared by that polygon. Upon completion, each edge
that shares exactly one front-facing polygon and one back-facing
polygon will have both flags set. Finally, iterate through the edge
list and draw only the edges that have both their flags set, also reset
both flags for all the edges to 0.

Results and Observations

In practice this implementation of the edge buffer algorithm runs
slightly slower than brute force. Although the edge buffer method is
less complex than brute force in terms of floating point operations,
the edge buffer has a higher overhead cost because of the XOR

operations, in addition to the dot products computed to test whether
polygons are front or back facing.

As outlined in the edge buffer paper [Buchanan and Sousa 2000],
it is necessary to do a large number of edge table lookups at run-
time. An optimization of this method is to created a polygon list
during the pre-process stage to eliminate table lookups at runtime.
Without this optimization, the edge buffer runs much slower than
brute force. The edge buffer’s runtime routine is implemented us-
ing a single loop, eliminating function call overhead.

4.3 Probabilistic

Method

[Markosian et al. 1997] present a probabilistic silhouette finding al-
gorithm. In this method a small number of edges are chosen based
on the probability that they are silhouette edges, then tested to see
if they are silhouette edges. Edges with higher dihedral angles have
a higher probability of being silhouettes as shown in Figure 6. Sil-
houette edges from the previous frame also have a high probablility
of being silhouettes, or being close to the new silhouette edges.
When a silhouette edge is found, its adjacent edges are tested to see
if any of these edges is also a silhouette edge.

Pre-Process

Compute the dihedral angle of each edge in a model, sort the edges
by their dihedral angle, and place the sorted edges into a list. This
list is called the dihedral angle list. As shown in Figure 6, the pro-
bibility that a edge is a silhouette is(θ/π) whereθ is the dihedral
angle between the edges two adjacent polygons [?]. At runtime
choose random edges to test as silhouettes weighting the random
search to look at edges with a high probibility of being silhouettes.
The data structure used for individual edges is modified from the
brute force data structure with the addition of pointers to all adja-
cent edges.

Runtime

A collection of edges is chosen and tested to see if they are silhou-
ette edges. First test all the silhouette edges from the previously
rendered frame. Next, a number of randomly chosen edges from
the dihedral angle list are tested to determine if they are silhouette
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Figure 5: Edge Buffer silhouette extraction runtime performance



Figure 6: The small dihedral angle corresponds to a small view
area where edge V is not a silhouette. The large dihedral angle
corresponds to a large view area where edge V is not a silhouette.
Thus an edge with a smaller dihedral angle has a higher probability
of being a silhouette edge.

edges. Each edge that is found to be a silhouette edge for the current
viewpoint is then traced.

If the edge is a silhouette, trace through the edge adjacency
pointers in the dihedral angle list to check if any adjacent edges are
silhouette edges. Adjacent edges are recursively tested until there
are no adjacent silhouette edges. In order to avoid testing silhouette
edges that have already been found, a reference to each silhouette
edge is hashed into a table. Every time a new silhouette edge is
found it is checked for inclusion in this hash table. In order to avoid
having to reset the hash table after each frame, frame numbers are
stored in the hash table and compared to the current frame number.
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Figure 7: Probabilistic silhouette extraction runtime performance

Results and Observations

A speedup over the brute force algorithm is observed, although a
small number of silhouette edges may be missed for a particular
frame. It was observed that frame-to-frame coherence of silhouette
edges works very well, but can become more difficult as the model
becomes large because silhouette curves tend to move across many
polygons per frame and may be missed by the tracing algorithm.
For good performance scaling, the number of random edges chosen
at the beginning of each frame should be proportional to the square
root of the total number of edges.

4.4 Gauss Map Arcs

Method

A modified Gauss map can be used to calculate the silhouette edges
of a polygonal model [Gooch et al. 1999; Benichou and Elber
1999]. The model is placed at the origin of a bounding sphere
(Gauss map) and each edge of the model maps to an arc on the
sphere. Silhouette edges are extracted from the Gauss map by in-
tersecting the Gauss map with a plane. The intersecting plane is
defined as passing through a point at the origin of the bounding
sphere and perpendicular to the viewing vector. The arcs on the
Gauss map which are intersected by the plane correspond to silhou-
ette edges in the original model. Since the Gauss map only takes
into consideration the viewing direction, and not the viewing dis-
tance, it will not work for perspective. A 2D Gauss map example is
shown in Figure 8.

Pre-Process

Begin by mapping the model edges onto the Gauss map. Each edge
in the model has two ajacent facets,F1 andF2 which have normals
N1 andN2. Model edges are mapped to the Gauss surface by plac-
ing N1 and N2 at the origin of the Gauss Map and sweepingN1
across the Gauss surface toN2. For a Gauss sphere,N1 and N2
sweep out an arc on the surface of the sphere.

For simplicty the Gauss map can be represented as a bounding
cube. With the Gauss map represented as a cube, the Gauss map
arcs become straight lines on one or more of the cube faces. Each
face of the cube is divided into a 20 by 20 grid of buckets, and each
edge maps to several of these buckets, see Figure 9. After all edges
have been mapped each bucket contains a list of zero or more edges.

Runtime

To extract the set of silhouette edges for a given viewing direction
a plane is intersected with the Gauss map. The intersecting plane is
defined by a point P at the origin of the Gauss map and a vector V
which is the viewing direction. Since the Gauss map is represented
as a grid of buckets, the intersecting plane corresponds to a list of
buckets intersected in the Gauss map. Each bucket contains a pos-
sibly empty list of edges which are silhouette edges for the current
viewing direction.

Results and Observations

This algorithm is simple to implement when the Gauss sphere is
approximated by a cube. However, the data structures used in this
algorithim can become large depending on the bucket resolution,
and this technique works only for orthogonal projection.



Figure 8: 2D Gauss Map Example. During a pre-process, the edge
V1 maps to an arc on the Gauss Map. At runtime, a line perpendic-
ular to the eye point and which passes through the origin is used to
intersect the Gauss Map. If the line intersects the arc defined for
V1, thenV1 is a silhouette point. In this exampleV1 is a silhouette
as seen from the eye pointE2.

4.5 Hierarchal Culling

Method

There are several silhouette extraction methods based on hierarchal
culling. Hertzmann et al. use dual surface intersections [Hertz-
mann and Zorin 2000]. Pop et al. use a wedge hierarchy [Pop et al.
2001]. Sander et al. introduce the idea of using two open-ended
normal cones to compute whether or not an edge is a silhouette
edge [Sander et al. 2000].

Each of these algorithms requires descending a hierarchal data
structure at runtime. We choose to implement the normal cone
method of Sander et. al because their method requires only a single
dot product to be computed at each level of decent. The methods of
Hertzmann et al. [Hertzmann and Zorin 2000] and Pop et al. [Pop
et al. 2001] interpolate between edges to find the exact zero crossing
of the silhouettes and require more complex calculations.

Sander et al. [Sander et al. 2000] create a hierarchy of normal
cones during a pre-process, which can be used at runtime to cull
large numbers of edges which are not silhouettes. Any cones which
intersect the current eye vector are discarded as not being silhou-
ette edges. Cones that do not intersect the eye vector have to be
analyzed. (See Figure 3.) The cones are organized in a hierarchi-
cal search tree. If the polygons in a node can be determined to be
all front-facing or all back-facing, the node can be discarded as not
containing silhouettes.

Pre-Process

Create a cone hierarchy containing all edges. The algorithm of
Sander et al. uses weighting functions based on linear program-
ming to determine which cones can be combined when forming
the search tree. These weighting functions are computationally ex-
pensive and cause the pre-process algorithm to take anywhere from

Figure 9: 2D Example of our Gauss Map implementation. Create
a containing cube. For each triangle in mesh (a) intersect polygon
normal with cube (b) draw a point on cube representing polygon (c)
connect adjacent polygons, or points, with a line.

30 minutes to 24 hours to load a polygonal model. Instead of us-
ing weighting functions, we implemented a sort and divide routine
based on the observation that cones whose edges have similar dihe-
dral angles, have similar normals, and are spatially close together
combine to form good cones. An example of a cone hierarchy is
shown in Figure 13.

First, divide the edges into groups based on their dihedral an-
gles. Next, divide the unit sphere into eight regions and build nor-
mal cones for each of these regions. Each dihedral angle group is
now sorted by normal to form the next level of the hierarchy. Next
sort each of the normal cones with respect to spatial proximity to
build the next level. Recursively continue the cone normal and spa-
tial proximity sort process until each cone contains a single edge.
A more detailed reporting of this process, along with analysis of
pre-process timing and runtime evaluation is currently under sub-
mission [Hartner et al. 2002].
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Figure 10: Gauss map silhouette extraction runtime performance



Figure 11: A dolphin model in which a cone is associated with
some of the polygon edges. (a) view from which marked polygons
are not silhouettes (b) view from which marked polygons must be
tested

Runtime

During runtime, traverse the cone hierarchy testing cones to find if
they include the current eye vector. This test can be done with two
dot products:

The eye vector is inside the cone if
(E−O) · (N) >= 0 and((E−O) · (N))2 >= ||E−O||2
Where E is the vector form the eyepoint as in 2, O

is the cone origin and N is the scaled cone normalN =
coneNormal/cos(coneAngle). If a cone contains the eye point, we
can discard it and all its sub-cones. Otherwise we traverse down the
cone hierarchy until we are left with only edges. Each edge that is
not culled at this point must be checked individually to determine
whether or not it is a silhouette edge.

Results and Observations

A significant improvement in runtime speed for silhouette extrac-
tion is observed using this method. Because cone hierarchy is con-
structed using a top-down approach, alternating grouping normals
by angle and by distance, edges become closer together both in
terms of edge normal and spatial locality at each level of the hierar-
chy.
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Figure 12: Hierarchal Culling silhouette extraction runtime perfor-
mance

Figure 13: Example of a cone hierarchy built from cones that have
similar dihedral angles, have similar cone normals, and are spatially
close to each other.

5 Discussion and Future Work

We found that for small models, under 10,000 polygons for our
hardware, brute force silhouette extraction is easy to implement and
runs nearly as fast much more complex methods. For more com-
plex models it may be worth the time implementing more complex
methods. If orthographic is all that is needed, then Gauss Maps
are easiest to implement and also very fast. For large models with
perspective, methods based upon heirarchical culling may be nec-
essary, but are generally difficult to program. Memory management
seems to be more important than the algorithmn. All of the methods
scale at the same rate as soon as cache misses begain to occur.

We found that silhouette extraction methods are more sensitive
to size than to complexity in the polygonal models. In all of the
tests performed model size dominated the runtime speed of the al-
gorithims. We tested the algorithims on the complexity based test
suite of Kettner and Welzl [Kettner and Welzl 1997] we found no
significant difference in the runtime of the algorithims on mod-
els of differing complexity but with similar polygon counts. This
may be due to the fact that all of the models in the Kettner and
Welzl test suite have less than 15,000 polygons. The complexity
based model test suite is available online at:www.cs.unc.edu/ ket-
tner/proj/obj3d/index.html

The algorithms reviewed in this paper represent the current best
in the field. However, an ideal silhouette extraction algorithm has
yet to be found. Some desirable characteristics for an ideal silhou-
ette algorithm are given below.

The ability to handle non-closed models and multiple objects.

The ability to perform visability culling on the extracted sil-
houette set.

The ability to perform occlusion clipping on the extracted sil-
houette set.

The ability to simplifiy coincident silhouette edges, i.e. edges
which overlap or occlude each other when projected to screen
space.
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60000 89388 3300
80000 119340 4200
100000 148941 4600

Table 1: An overveiw of the polygon count, the number of edges,
and the average number of silhouette edges in the ”irregular sphere
test suite” models. The ”silhouette edge” number was calculated
by averageing the number of silhouettes from 100 randorespective-
lythe model.
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100k 7 6 7 2900 44

Table 3: An overveiw of the framerate of the algorithims for only
silhouette extraction. We show these numbers because silhouette
algorithims can be used in haptic applicaitons, for example, without
the need to render the silhouette edges.
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20k 14 9.1 18 103 14
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80k 40 20 55 190 40
100k 49 24 68 219 49

Table 4:An overveiw of the memory requiernments, in megabytes,
of the algorithims for silhouette extraction and rendering.
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