NORTHWESTERN
UNIVERSITY

Electrical Engineering and Computer Science Department

Technical Report
NWU-EECS-06-10
January 11, 2007

Time-sharing Parallel Applications
With Performance Isolation and Control

Bin Lin Ananth I. Sundararaj Peter A. Dinda

Abstract

Most parallel machines, such as clusters, are space-shared in order to isolate batch
parallel applications from each other and optimize their performance. However, this leads
to low utilization or potentially long waiting times. We propose a self-adaptive approach
to time-sharing such machines that provides isolation and allows the execution rate of an
application to be tightly controlled by the administrator. Our approach combines a
periodic real-time scheduler on each node with a global feedback-based control system
that governs the local schedulers. We have developed an online system that implements
our approach. The system takes as input a target execution rate for each application, and
automatically and continuously adjusts the applications’ real-time schedules to achieve
those rates with proportional CPU utilization. Target rates can be dynamically adjusted.
Applications are performance-isolated from each other and from other work that is not
using our system. We present an extensive evaluation that shows that the system remains
stable with low response times, and that our focus on CPU isolation and control does not
come at the significant expense of network 1/O, disk 1/O, or memory isolation.
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Abstract

Most parallel machines, such as clusters, are space-shiarea-
der to isolate batch parallel applications from each otheaopti-
mize their performance. However, this leads to low utilabor po-
tentially long waiting times. We propose a self-adaptiverapch to
time-sharingsuch machines that provides isolation and allows the
ecution rate of an application to be tightly controlled by tadminis-
trator. Our approach combines a periodic real-time schedun each
node with a global feedback-based control system that gevre lo-
cal schedulers. We have developed an online system thatrimeplks
our approach. The system takes as input a target executitnfoa
each application, and automatically and continuously at§uthe ap-
plications’ real-time schedules to achieve those ratel pibportional
CPU utilization. Target rates can be dynamically adjustégplica-
tions are performance-isolated from each other and froneothiork
that is not using our system. We present an extensive ei@iuhiat
shows that the system remains stable with low response, tméshat
our focus on CPU isolation and control does not come at theifigant
expense of network 1/0O, disk I/0, or memory isolation.

1 Introduction

Tightly-coupled computing resources such as clusters
typically used to run batch parallel workloads. An applizat

by providing complete performance isolation between ragni
applications. Space-sharing introduces several prohleavs
ever. Most obviously, it limits the utilization of the maclei
because the CPUs of the nodes are idle when communication or
I/O is occurring. Space-sharing also makes it likely thatliap
cations that require many nodes will be stuck in the queue for
exa long time and, when running, block many applications that
require small numbers of nodes. Finally, space-sharing per
mits a provider to control the response time or executioa rat
of a parallel job at only a very course granularity. Though it
can be argued theoretically that applications can be al\vaits
such that computation and I/O overlap all the time, thusgmév
ing stalls, practically speaking, this is rarely the case pb-
pose a new self-adaptive approach to time-sharing paegilel
plications on tightly-coupled computing resources likestérs,
performance-targetted feedback-controlled real-timbestul-
ing. The goals of our technique are to provide

e performance isolation within a time-sharing framework tha
permits multiple applications to share a node, and

e performance control that allows the administrator to finely
control the execution rate of each application while kegiis
resource utilization automatically proportional to exému rate.

Conversely, the administrator can set a target resourbeadti
tion for each application and have commensurate applitatio
agRkecution rates follow.

In performance-targetted feedback-controlled real-time

in such a workload is typically communication intensiveg€x scheduling, each node has a periodic real-time scheduter. T

cuting synchronizing collective communication. The BuinS

local application thread is scheduled with(geriod, slice)

chronous Parallel (BSP) model [24] is commonly used to undegonstraint, meaning that it executdée seconds everyeriod.
stand many of these applications. In the BSP model, apfitat Notice that stice/period is the utilization of the application

execution alternates between phases of local computation g, the node.

Our implementation uses our previously de-

phases of global collective communication. Because the-corg.yiped [11] and publicly available VSched tool. VSched is

munication is global, the threads of execution on differertes

a user-level periodic real-time scheduler for Linux that we

must be carefully scheduled if the machine is time-shared. | giginally developed to explore scheduling interactived an
thread on one node is slow or blocked due to some other threggich workloads together. Section 3 provides an overview.

unrelated to the application, all of the application’s tds stall.

Once an administrator has set a target execution rate for an

To avoid stalls and provide predictable performance foépplication, a global controller determines the appragrian-

users, almost all tightly-coupled computing resourceayaate

straint for each of the application’s threads of executiod a

space-shared. In space-sharing [23], each applicatioNe® g hen contacts each corresponding local scheduler to sBhé.

a partition of the available nodes, and on its partitions ithe

controller'sinputis the desired application executiciergiven

only application running, thus avoiding the problem altogethets 5 percentage of its maximum rate on the system (i.e., s if i

*This work was partially done while this author was at Corp®Eechnol-
ogy Group, Intel Corporation, Hillsboro, OR, USA.

were on a space-shared system). The application or its agent
periodically feeds back to the controller its current exagu



rate. The controller automatically adjusts the local scifed’ nication. The basic idea is to use communication irregtides;i
constraints based on the error between the desired and actsizch as blocked sends or receives, to infer the likely sfateeo
execution rate, with the added constraint that utilizatioast remote, uncoupled scheduler, and then adjust the locatische
be proportional to the target execution rate. In the commauler’s policies to compensate. This is quite a powerful jdes
case, the only communication in the system is the feedback ibtloes have weaknesses. In addition to the complexity aiter
the current execution rate of the application to the glolal-c in inference and adapting the local communication schedule
troller, and synchronization of the local schedulers tgtothe the approach also doesn't really provide a straightforweasl
controlleris very infrequent. Section 4 describes theglobn-  to control effective application execution rate, respdirse, or
troller in detail. resource usage.

Itis important to point out that our system schedules the CPU The feedback control real-time scheduling project at the Un
of a node, not its physical memory, communication hardwareegrsity of Virginia [15, 20, 14, 16] had a direct influence arro
or local disk I/0. Nonetheless, in practice, we can achiewteq thinking. In that work, concepts from feedback control thyeo
good performance isolation and control even for applicegtio were used to develop resource scheduling algorithms to give
making significant use of these other resources, as we showgnality of service guarantees in unpredictable envirortsen
our detailed evaluation (Section 5). Mechanisms for platsicapplications such as online trading, agile manufacturargd
memory isolation in current OSes and VMMs are well undemweb servers. In contrast, we are using concepts from fe&dbac
stood and can be applied in concert with our techniques. A®ntrol theory to manage a tightly controlled environmésat,
long as the combined working set size of the applications exgjeting parallel applications with collective communioati
ecuting on the node does not exceed the physical memory of Feedback-based control was also used to provide CPU reser-
the machine, the existing mechanisms suffice. Communitati@ations to application threads running on single machirsetla
has significant computational costs, thus, by throttlirg@PU, on measurements of their progress [21], and for dynamic
we also throttle it. The interaction of our system and loéskd database provisioning for web servers [9]. There are a wide
I/O is more complex. Even so, we can control applicationk witrange of implementations of periodic real-time scheduliens
considerable disk I/O. example [2, 17], including numerous kernel extensions for

Linux, for example [7, 19].

2 Redated work
3 Local scheduler

Our work ties to gang scheduling, implicit co-scheduling,
real-time schedulers, and feedback control real-time cudhe In the periodic real-time model, a task is run felice
ing. As far as we aware, we are the first to develop real-timgeconds everyeriod seconds. Using earliest deadline first
techniques for scheduling parallel applications that gleper-  (EDF) schedulability analysis [12], the scheduler can cheitee
formance isolation and control. We also differ from thesmaar whether some set @period, slice) constraints can be met. The
in that we show how external control of resource use (by & cluscheduler simply uses dynamic priority preemptive schiadul
ter administrator, for example) can be achieved while na&irt  with the deadlines of the admitted tasks as priorities.
ing commensurate application execution rates. That is,ame ¢ VSched is a user-level implementation of this approach for
reconcile administrator and user concerns. Linux that offers soft real-time guarantees. It runs as aikin
The goal of gang scheduling [18, 8] is to “fix” the block- process that schedules other Linux processes. Because the
ing problems produced by blindly using time-sharing locad@ Linux kernel does not have priority inheritance mechanjsms
schedulers. The core idea is to make fine-grain scheduling deor known bounded interrupt service times, it is impossibte
cisions collectively over the whole cluster. For examplee o a tool like VSched to provide hard real-time guarantees to or
might have all of an application’s threads be scheduledsmitid  dinary processes. Nonetheless, as we show in an earlier pa-
cal times on the different nodes, thus giving many of the bne per [11], for a wide range of periods and slices, and undemn eve
of space-sharing, while still permitting multiple applicas to  fairly high utilization, VSched almost always meets thedlea
execute together to drive up utilization, and thus allowjolzgs  lines of its tasks, and when it misses, the miss time is tyfyica
into the system faster. In essence, this provides the pedioce very small. VSched support®eriod, slice) constraints rang-
isolation we seek, while performance control depends oadch ing from the low hundreds of microseconds (if certain kernel
uler model. However, gang scheduling has significant costs features are available) to days. Using this range, the nefeds
terms of the communication necessary to keep the node schedrious classes of applications can be described and accomm
ulers synchronized, a problem that is exacerbated by firsén gr dated. VSched allows us to change a task’s constraintsrwithi
parallelism and higher latency communication [10]. In éiddi, about a millisecond.
the code to simultaneously schedule all tasks of each gang ca VSched is a client/server system. The VSched server is
be quite complex, requiring elaborate bookkeeping andajloba daemon running on Linux that spawns the scheduling core,
system knowledge [22]. which executes the scheduling scheme described above. The
Implicit co-scheduling [1] attempts to achieve many of thé/Sched client communicates with the server over an enctypte
benefits of gang scheduling without scheduler-specific cammTCP connection. In this work, the client is driven by the glbb



Application Execution Rate (% of R,,,,)

4.2 Control algorithm
e The control algorithm (or simply the algorithm) is responsi
ble for choosing dperiod, slice) constraint to achieve the fol-
lowing goals

Target
Application _, P Control
Execution Rate Algorithm
(% 0f Ry) ‘

Optional Constraint:
% utilization = % of R,,,,

1. The error is within threshold'current = Ttarget £ €, and

2. That the schedule is efficiel = rtarget €.
Figure 1. Structure of global control.
The algorithm is based on the intuition and observation that

controller and we schedule individual Linux processes. application performance will vary depending on which of the
The performance of VSched has been evaluated on sevefighny possible(period, slice) schedules corresponding to a
different platforms. It can achieve very low deadline mst®s given utilization we choose, and the best choice will be ap-
up to quite high utilizations and quite fine resolutions. W&t plication dependent and vary with time. For example, a finer
can use over 90% of the CPU even on relatively slow hardrain schedule (e.g. (20ms, 10ms)) may result in betteri-appl

ware and older kernels (Inf8l Pentiunt® 111, 2.4 kernel) and cation performance than coarser grain schedules (e.gm&00
can use over 98% of the CPU on more modern configuration®oms)). At any point in time, there may be multiple “best”

(InteI® Pentiun® 4, 2.6 kernel). The mechanisms of VSchedschedules.
and its evaluation are described in much more detail in dieear The control a|gorithm attempts to automatica”y and dynam-

paper [11] and the software itself is publicly available. ically achieve goals 1 and 2 in the above, maintaining a @arti
ular execution rate.,q.: specified by the user while keeping
4 Global controller utilization proportional to the target rate.

We define the error as

The control system consists of a centralized feedback con-
troller and multiple host nodes, each running a local copy of € = Teurrent — T'target-
VSched, as shown in Figure 1. A VSched daemon is responsi-
ble for scheduling the local thread(s) of the applicatipn(xler

the yoke of the controller. The controller sétsriod, slice) o .
. . . . : i eriod is set to a relatively large value such as 200 ms. The
constraints using the mechanisms described in Section 8. C : . . . .
algorithm is a simple linear search for the larggstiod that

rently, the same constraint is used for each \/Sghed. Ona.dhresatisﬁes our requirements.
of the application, or some other agent, periodically comimu

: : . L When the application reports a new current rate measure-
cates with the controller using non-blocking communiaatio . .
mentr..r.nt @nd/or the user specifies a change in the target

rater:qrqet, € is recomputed and then the following is executed:

e If |e| > e decreasgeriod by A,eri0q and decreaseice by

) o ) . Agiice SUCh thatslice /period = U = Tiarget. If
The maximum application execution rate on the system in period < minerioq then we reseperiod to the same value as

application-defined units i®,,.... The set point of the con- used at the beginning and again skte such thal/ = i, ger.
troller is supplied by the user or the system administrator 4 |f |¢| < ¢ do nothing.
through a command-line interface that sends a message to o

E:r?]ntrolleir. The Slet %0'?t 'Ba"gget.tar;g IS ar\]pﬁjr(f:entage f’”ﬁz target utilization and searches tiigeriod, slice) space from
€ system IS also defined by 1S threéshold for erohich 1S larger to smaller granularity, subject to the utilizati@mstraint.

given as percentage points. The inplitg;c. andAperiod SPec- The linear search is, in part, done because multiple apiatepr

ify the smalles_t amoqnts by Whlch the slice _and period can bs%hedules may exist. We do not preclude the use of algorithms
changed. The input®in sjic. andminperiq define the smallest

) i . that walk the space faster, but we have found our current algo
slice and period that VSched can achieve on the hardware. P g

The current utilization of the application is defined in term fithm to be effective.
of its scheduled period and slicE, = slice/period. The user .
requires that the utilization be proportional to the tangge, © Evaluation
that is, thatqrget — € < U < regrger + €.

The feedback input..,..; coOmes from the parallel appli-  In presenting our evaluation, we begin by explaining the ex-
cation we are scheduling and represents its current exacutiperimental framework. Then we show the range of control that
rate as a percentage ff,,,.. To minimize the modification of the scheduling system has made available. This is followed b
the application and the communication overhead, our ajgproaan examination of using the algorithm described above te pre
only requires high-level knowledge about the applicaB@mwn- vent the inevitable drift associated with simply using aaloc
trol flow and only a few extra lines of code. real-time scheduler. Next, we examine the performanceef th

At startup, the algorithm is given an initial ratg,, 4e:. It
chooses dperiod, slice) constraint such thdl = r;4yg.; and

4.1 Inputs

Fpghould be noticed that the algorithm always maintains the



Controlling execution rate

algorithm in a dynamic environment, showing their reaction 5

changing requirements. We then illustrate how the system re 45 + 1 T$
mains impervious to external load despite the feedback.t,Nex " e
we show how the system scales as it controls increasing num- e w - 2
bers of parallel applications. Finally, we examine the @fef o A,
local disk 1/0 and memory contention. o I .

i ,,,/,.,.,.,., . i ; .
5.1 Experimental framework (5] N

0O 01 02 03 04 05 06 07 08 09 1

Utilization

As mentioned previously, Bulk Synchronous Parallel
(BSP [5]) model is used to characterize many of the batch par-
allel workloads that run in tightly coupled computing resms
such as clusters. In most of our evaluations we used a synthet
BSP benchmark, called Patterns, written for PVM [4]. Patier
is described in more detail in a previous paper [6], but thiesg
points are that it can execute any BSP communication pattern
and run with different compute/communicate (comp/comm) ra
tios and granularities. In general, we configure Pattermaro
with an all-to-all communication pattern on four nodes of ou
IBM e1350 cluster (Inté@ Xeon® 2.0 GHz, 1.5 GB RAM,
Gigabit Ethernet interconnect). Each node runs VSchedaand
separate node is used to run the controller. Note that alupf o
results involve CPU and network I/O. oo

We also evaluated the system using an NAS (NASA Ad- oS
vanced Supercomputing) benchmark. In particular, we use th
PVM implementation of the IS (Integer Sort) benchmark devel
oped by White et al. [25]. It performs a large integer sortf-so
ing keys in parallel as seen in large scale computational flui
dynamic (CFD) applications. IS combines integer compaotati
speed and communication with, unlike Patterns, differedes
doing different amounts of computation and communication.

Figure 2. Compute rate as a function of utiliza-
tion for different  (period, slice) choices.

0.013
Application execution rate with feedback control

0.011
Upper threshold: positive error of 3%
0o0o] " P 0
Lower threshold: negative error 3%
0.007

‘m“wmﬂ‘ A= v
0.005 e SSsag

= "By

Application execution rate without

0.003 any feedback control

Execution rate (jterations/second)

10 15 20 25 30 35 40 45 50
Iteration number

Figure 3. Elimination of drift using global feed-
back control; 1:1 comp/comm ratio.

utilization, we cannot simply use only the local schedufers
several reasons:
e The appropriatéperiod, slice) is application dependent
because of differing compute/communicate ratios, graitigs,
and communication patterns. Making the right choice shbeld

5.2 Range of control

To illustrate the range of control possible using perioda+
time scheduling on the individual nodes, we ran Patterns wit
a compute/communicate ratio of 1:2, making it quite commu-

automatic.
The user or system administrator may want to dynamically
change the application execution ratg,4e:. The system

nication intensive. Note that this configuration is conaéve:
it is far easier to control a more loosely coupled parallglap
cation with VSched. We ran Patterns repeatedly, with déffier
(period, slice) combinations.

Figure 2 shows these test cases. Each point is an execution of

Patterns with a differentperiod, slice), plotting the execution
rate of Patterns as a function of Patterns utilization oriride

should react automatically.

Our implementation is based orsaftlocal real-time scheduler.
This means that deadline misses will inevitably occur aiml th
can cause timing offsets between different applicatioeatis to
accumulate. We must monitor and correct for these slowrror
Notice that this is likely to be the case for a hard local tgake
scheduler as well if the admitted tasks vary across the nodes

vidual nodes. Notice the line on the graph, which is the ideal Figure 3 illustrates what we desire to occur. The targetiappl

control curve that the control algorithm is attempting thiage,
control over the execution rate of the application with mmep
tional utilization ¢current = Ttarger = U). Clearly, thereare
choices of(period, slice) that allow us to meet all of the re-
quirements.

5.3 Schedule selection and drift

Although there clearly existperiod, slice) schedules that

cation execution rate is given in iterations per second ber

ing 0.006 iterations/second. The current executiomratg.c,.

is calculated after each iteration and reported to the otietr
This is Patterns running with a 1:1 compute/communicate rat
on two nodes. The lower curve is that of simply using VSched
locally to schedule the application. Although we can se¢ tha
the rate is correct for the first few iterations, it then driffiown-
ward, upward, and once again downward over the course of the
experiment. The roughly straight curve is using VSched, the

can achieve an execution rate with (or without) proportionaylobal controller, and the control algorithm. We can sed tha



the tendency to drift has been eliminated using global faekib 01

control.

0.1 Application execution rate

5.4 Evaluating the control algorithm 0.08]

Upper threshold: positive error of 1%
0081 ..,rw..‘,m«..z"\...rjh\
We studied the performance of the control algorithm using
three different compute/communicate ratios (high (5:1jora
medium (1:1) ratio, and low (1:5) ratio), different target e
ecution rates,4.:, and different thresholds. In all cases T T T
Aperiod = 2 mMs, whereA,.,,q is the change in period ef- Iteration number
fected by VSched when the application execution rate goes ou
side of the threshold range, thé&ce is then adjusted such that . . _
U = Frarger. Figure 5._ System in oscillation when error
Figuré 4 shows the results for high, medium, and low test threshold is made too small; 1:1 comp/comm ra-
cases with a 3% threshold. We can see that the target rate is 10.
easily and quickly achieved, and remains stable for allthest
cases. Note that the execution rate of these test casesguaini
full speed without any scheduling are slightly different.
Next, we focus on two performance metrics:
e Minimum threshold: What is the smallesbelow which control
becomes unstable?
e Response time: for stable configurations, what is the typica
time between when the target execution ratg .. changes and
when thercyrrent = Ttarget +e? 004

Being true for all feedback control systems, the error thoés oos o A B s s

will affect the performance of the system. When the threghol

is too small, the controller becomes unstable and fails umxa ) ) )

the change applied by the control system to correct the &ror T 19ure 6. Response time of control algorithm; 1:1
even greater than the error. For our control algorithm, wthen comp/comm ratio.

error threshold is< 1%, the controller will become unstable.

Figure 5 illustrates this behavior. Note that while the sysis  ing is a natural consequence of the deterministic and pialie

now oscillating, it appears to degrade gracefully. periodic real-time scheduler being used on each node.
Figure 6 illustrates our experiment for measuring the re-

sponse time. The target rate is changed by the user in thdemidg ¢ Dynamic target execution rates

of the experiment. Our control system quickly adjusts the ex

gcution rate and stabilizes 't It S_hOWS that the respomse i As we mentioned earlier, using the feedback control mecha-
is about 32 se_conds, ortwo iterations, for the case of 1:1- ©Oism, we can dynamically change the target execution raies a
pute/communicate ratio. The average response time over foy ...\ system will continuously adjust the real-timfed-

te;t cases (1 high, 2 medium, and 1 low compute/communllcq}l:-*e to adapt to the changes. To see how our system reactsto use
ratios) is 30.68 seconds. In all cases, the control algorith.

o . . . inputs over time, we conducted an experiment in which the use
maintainsl = r.4,4¢+ @S an invariant by construction.

0.04
Lower threshold: negative error of 1%

0.021

Execution rate (iterations/second)

0.1
Application execution rate
Upper threshold: positive error 3%

0.08

Lower threshold: negative error 3%
0.06

Response time = 32 seconds (two iterations)

Execution rate (iterations/second)

0.1 Upper threshold: positive error of 3%

5.5 Summary of limits of the control algo-
rithm

Application execution rate J,

Figure 7 summarizes the response time, communication cost
to support the feedback control, and threshold limits ofamn-
trol system. Overall we can control with a quite small thiddh
€. The system responds quickly, on the order of a couple of

0.06

0.04{ Lower threshold: negative error 3%

Execution rate (iterations/second)

iterations of our benchmark. The communication cost is igHnu %070 70 % 4 s w0 70 80 90 100

cule, on the order of just a few bytes per iteration. Finalgse Heration number

results are largely independent of the compute/commumieat

tio. Figure 8. Dynamically varying execution rates;

The exceptionally low communication involved in 1:lcomp/comm ratio.
performance-targetted feedback-controlled real-timeedal-
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Figure 4. System in stable configuration for varying comp/co mm ratio.
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Figure 7. Response time and threshold limits for the control algorithm.

adjusted his desired target rate four times during the ebm@tu
of the Patterns application. As shown in Figure 8, the cdntro
algorithm works well. After the user changes the target the
algorithm quickly adjusts the schedule to reach the target.

0.06

Application }
execution I

External load (1.0 contention)

0.057 applied after iteration 15

rate

A7
L |

Upper threshold: positive error of 3%
0.03

5.7 Ignoring external load

0.021

001] Lower threshold: negative error 3%

Any coupled parallel program can suffer drastically from ex
ternal load on any node; the program runs at the speed of the %
slowest node. We have previously shown that the periodie rea
time model of VSched can shield the program from such exter-
nal load, preventing the slowdown [11]. Here we want to see Figure 9. Performance of control system under
whether our control system as a whole can still protect a BSP external load; 3:1 comp/comm ratio; 3% thresh-
application from external load. old.

We executed Patterns on four nodes with the target execution
rate set to half of its maximum rate. On one of the nodes, we

applied external load, a program that contends_for_the C_PU USatterns benchmark, which does roughly the same amount of
ing load trace playback technlqges [3]. Contention is deffare computation and communication on each node. In our experi-
th_e average number of contention processes that ar_e_rlmnalﬁllent’ for a specific configuration of NAS IS executing on four
Figure 9 illustrates the results. At roughly the 15th itenat nodes, we observed an average utilization~&8% for two

an external load is placed on one of the nodes in which Pai,yes and.149% average utilization for the other two nodes.
terns is running, producing a contention of 1.0. We notetthat

combination of VSched and the feedback controller are able t This variation has the potential to challenge our contrst sy
keep the performance of Patterns independent of this load. &M, since in our model we assume the same target utilization
conclude that our control system can help a BSP applicatidh on each node, and we apply the same schedule on each node.
maintain a fixed stable performance under a specified exarutiVe ran an experiment where we set the target utilization to be
rate constraint despite external load. half of the maximum utilization among all nodes, i.e. 14%g-Fi

ure 10 illustrates the performance in this case. We can s¢e th
the actual execution rate is successfully brought to withirf

the target rate.

Execution rate (iterations/second)

10 15 20 25 30

Iteration number

35 40 45 50

5.8 NAS IS Benchmark

When we ran the NAS IS (Integer Sort) benchmark without We are currently designing a system in which the global con-
leveraging our control system, we observed that differenies troller is given the freedom to set a different schedule achea
have different CPU utilizations. This is very differentfndhe node thus making our control system more flexible.



g o We do notice a certain degree of oscillation when we run
0.22 . . .

g many benchmarks simultaneously. Our explanation is as fol-
o - Application execution rate . .
2 os / lows. When VSched receives and admits a new schedule sent
£ o016 u - posit 39 by the global controller, it will interrupt the current taskd
s 014 pper threshold: positive error of 3% 1] :
2 oo re-select a new task (perhaps the previous one) to run based o
© . - . . . . -
FERYI A S its deadline queue. As the number of parallel applications i
g oo Lower threshold: negative error of 3% creases, each process of an application on an individua nod
g oo will have a smaller chance of running uninterrupted threugh

o 5 0 18 25 303540 out its slice. In addition, there will be a smaller chance adle

Iteration number

process starting its slice at the same time.
) ) The upshot is that even though the process will continue to
Figure 10. Running NAS benchmark under con- meet its deadlines locally, it will be less synchronizedwygto-
trol system; 3% threshold. cesses running on other nodes. This results in the apjpiicati
overall performance changing, causing the global corgrod
be invoked more often. Because the control loop frequency is
less than the frequency of these small performance chatiges,

g le popteaton one's execuion ate system begins to oscillate. However, the degradation isegra
é oxl /) pomication wo's excction ate ful, and, again, the long term averages are well behaved.

g 0.08 Upper threshold for two applications: positive error 3%

H 0.06>< l 5.10 Effects of local disk I/O

5 004 e 2

é 0921 L ower threshold for two applications: negaﬁveenofsj/u Although we are only scheduling the CPU resource, it is
o 1 2 3 2 5 clear from the above that this is sufficient to isolate andmdn

Iteration number

a BSP application with complex collective communicatiohs o
significant volume. Is it sufficient to control such an apation
Figure 11. Running of two Patterns benchmarks when it also extensively performs local disk 1/0?

under the control system, 1:1 comp/comm ratio. To study the effects of local disk I/O on our scheduling sys-
tem, we modified the Patterns benchmark to perform varying
amounts of local disk 1/0. In the modified Patterns, each node
writes some number of bytes sequentially to the local IDE har
disk during each iteration. It is ensured that the data istevri

to the physical disk by usingsync() call.

To see how well we can provide time-sharing for multiple |n our first set of experiments, we configured Patterns with
parallel applications, we simultaneously executed migltiRat- 3 very high (145:1) compute/communicate ratio, and 0, 1, 5,
terns benchmarks on the same four nodes of our cluster. 10, 20, 40, and 50 MB per node per iteration of local disk I/O.

Figure 11 shows the results of running two Patterns applic@ur target execution rate was 50% with a threshold of 3%. Fig-
tions, each configured with a 1:1 compute/communicate.ratigre 13 shows the results for 10, 20, and 40 MB/node/iter. O,
One was configured with a target rate of 30%, with the other sg{ 5 are similar to 10, while 50 is similar to 40. For up to 10
to 40%. We can clearly see that the actual execution rates anB/node/iter, our system effectively maintains controltbé
quickly brought to withire of the target rates and remain thereapplication’s execution rate. As we exceed this limit, we de
for the duration of the experiment. velop a slight positive bias; the application runs fastantbe-

Next, we consider what happens as we increase the nusired despite the restricted CPU utilization. The dominpant
ber of Patterns benchmarks running simultaneously. In thef the time spent on local disk I/O is spent waiting for thekdis
following, each Patterns benchmark is set to execute withs more 1/O is done, a larger proportion of application exe-
identical 10% utilization. We ran Patterns with a 3:1 comeution time is outside of the control of our system. Since the
pute/communicate ratio. Figure 12 shows our results. Eadontrol algorithm requires that the CPU utilization be ddoa
graph shows the execution rate (iterations/second) asctidnn the target execution rate, the actual execution rate grows.
of the iteration, as well as the two 3% threshold lines. Fig- In the second set of experiments, we fixed the local disk
ure 12(a) contains two such graphs, corresponding to two $/O to 10 MB/node/iter (the maximum controllable situation
multaneously executing Patterns benchmarks, (b) has tmele the previous experiment) and varied the compute/commtenica
so on. ratio, introducing different amounts of network I/O. We dse

Overall, we maintain reasonable control as we scale the num-target rate of 50%. We used seven compute/communicate
ber of simultaneously executing benchmarks. Further, theer ratios ranging from 4900:1 to 1:3.5. Figure 14 shows the
thirty iterations shown, in all cases, the average exeoutite results for 4900:1, 2:1, and 1:3.5. For high to near 1:1
meets the target, within threshold. compute/communicate ratios, our system can effectivehyt co

5.9 Time-sharing multiple parallel applica-
tions
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Figure 12. Running multiple Patterns benchmarks; 3:1 comp/ comm ratio; 3% threshold.

trol the application’s execution rate even with up to 1Go decline depends on the compute/communicate ratio and the
MB/node/iteration of local 1/0, and degrades gracefullieaf amountoflocal disk I/0. With higher ratios, more local di&R
that. is acceptable. We have demonstrated control of an applicati

Our system can effectively control the execution rates ef aﬁf\"th a 1:1 ratio and 10 MB/nodefiter of local disk /0.

plications performing significant amounts of network and lo
cal disk 1/0. The points at which control effectiveness begi
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Figure 13. Performance of control system with a high (145:1) comp/comm ratio and varying local disk 1/O.
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Figure 14. Performance of control system with 10 MB/node/it er of disk /0O and varying comp/comm ratios.

set of 600 MB and a target execution rate of 30%, while the
Application one’s execution rate second was configured with a working set size of 700 MB and a
Application two's exeotion rate target rate of 40%. Both instances had a compute/commenicat
ratio of around 130:1. The combined working set of 1.3 GB is
slightly less than the 1.5 GB of memory of our cluster nodes.
T e L We used the control algorithm to schedule the two instances,

and Figure 15 shows the results of this experiment. We s¢e tha

despite the significant use of memory by both instances, our

0 P A % system maintains control of both applications’ executaies.

Our results suggest that unless the total working set on the
machine is exceeded, physical memory use has little effect o
the performance of our scheduling system. It is important to
point out that most OS kernels, including Linux, have mecha-
nisms to restrict the physical memory use of a process. These
mechanisms can be used to guarantee that the physical memory
pressure on the machine does not exceed the supply. A virtual
5.11 Effects of physical memory use machine monitor such as Xen or VMware provides additional
control, enforcing a physical memory limit on a guest OS kérn

) ) and all of its processes.
Our technique makes no attempt to isolate memory, but the

underlying node OS certainly does so. Is it sufficient? .
To evaluate the effects of physical memory contention on 0L§ Conclusions and future work
scheduling system, we modified the Patterns benchmark o tha
we could control its working set size. We then rantwo instenc ~ We have proposed, implemented, and evaluated a new
of the modified benchmark simultaneously on the four nodes sklf-adaptive approach to time-sharing parallel appbost
our cluster. We configured the first instance with a workingn tightly coupled compute resources such as clusters. Our
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Upper threshold for two applications: positive error 3%

0.01
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Lower threshold for two applications: negative error 3%

Execution rate (iterations/second)

Figure 15. Running two Patterns benchmarks un-
der the control system; high (130:1) comp/comm
ratio. The combined working set size is slightly
less than the physical memory.



technique, performance-targetted feedback-controflabtrme [12] C. L. Liuand J. W. Layland. Scheduling algorithms for ltipro-

scheduling, is based on the combination of local schedul- gramming in a hard real-time environmedburnal of the ACM

ing using the periodic real-time model and a global feedback _20(1):46-61, January 1973.

control system that sets the local schedules. The appro ] H. Liu and M. Parashar. Enablmg s.glf-maryage.ment of gom
. . . nent based high-performance scientific applications?rbteed-

performance-isolates parallel applications and allowsias-

d icallv ch he desired licati . ings of the 14th IEEE International Symposium on High Perfor
trators to dynamically change the desired application etiec mance Distributed Computing005.

rate while keeping actual CPU utilization automaticallgpaor-  [14] C. Lu, J. A. Stankovic, T. F. Abdelzaher, G. Tao, S. H. Samd
tional to the application execution rate. Our implemeptati M. Marley. Performance specifications and metrics for adapt
takes the form of a user-level scheduler for Linux and a eéntr real-time systems. |Rroceedings of 21st IEEE Real-Time Sys-
ized controller. Our evaluation shows the system to be stabl  tems Symposiur2000.

with low response times. The thresholds needed to prevent cd1®l C- Lu, J. A. Stankovic, G. Tao, and S. H. Son. Feedback con
trol instability are quite reasonable. Despite only isoig@and trol real-time scheduling: Framework, modeling, and aitons.

controlling the CPU, we find that memory, communication 1/O, Special issue of Real'.T'me Systems Jourr.'al on Controlietieo
. Approaches to Real-Time Computirp(12):85-126, September
and local disk I/O follow.

2002.

We arr(]a tnow fc_)ccj:using on h]?w tok?ppciy our Leedbaclg Con}rggs] C. Lu, X. Wang, and X. Koutsoukos. Feedback utilizatomm-
approach to a wider range of workloads such as web applica- - A 2 _ act
tions that have more complex communication and synchreniza  rol in distributed real-time systems with end-to-end taskEE

tion behavior, and high-performance parallel scientifiplaa- Transactions on Parallel and Distributed Systeni$(6):550-
tions that have performance requirement which are tyyicait 561, 2005.

know a priori and change as the applications proceed [13]. [@7] J. Nieh and M. Lam. The design, implementation, andeval

related work, xwe are considering how to exploit direct feed  ation of SMART: A scheduler for multimedia applications. In

back from the end-user in a scheduling system. Proceedings of the 16th ACM Symposium on Operating Systems
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