
241

How Profilers Can Help Navigate Type Migration

BEN GREENMAN∗, PLT @ University of Utah, USA

MATTHIAS FELLEISEN, PLT @ Northeastern University, USA

CHRISTOS DIMOULAS, PLT @ Northwestern University, USA

Sound migratory typing envisions a safe and smooth refactoring of untyped code bases to typed ones. However,
the cost of enforcing safety with run-time checks is often prohibitively high, thus performance regressions are
a likely occurrence. Additional types can often recover performance, but choosing the right components to
type is di�cult because of the exponential size of the migratory typing lattice. In principal though, migration
could be guided by o�-the-shelf pro�ling tools. To examine this hypothesis, this paper follows the rational
programmer method and reports on the results of an experiment on tens of thousands of performance-
debugging scenarios via seventeen strategies for turning pro�ler output into an actionable next step. The
most e�ective strategy is the use of deep types to eliminate the most costly boundaries between typed and
untyped components; this strategy succeeds in more than 50% of scenarios if two performance degradations
are tolerable along the way.

CCS Concepts: • Software and its engineering→ Semantics; Constraints; Functional languages.

Additional Key Words and Phrases: gradual typing, migratory typing, rational programmer, pro�ling

ACM Reference Format:

Ben Greenman, Matthias Felleisen, and Christos Dimoulas. 2023. How Pro�lers Can Help Navigate Type
Migration. Proc. ACM Program. Lang. 7, OOPSLA2, Article 241 (October 2023), 30 pages. https://doi.org/10.
1145/3622817

1 TYPE MIGRATION AS A NAVIGATION PROBLEM

Sound migratory typing promises a safe and smooth refactoring path from an untyped code base
to a typed one [Tobin-Hochstadt and Felleisen 2006; Tobin-Hochstadt et al. 2017]. It realizes the
safe part with the compilation of types to run-time checks that guarantee type-level integrity of
each mixed-typed program con�guration. Unfortunately, these run-time checks impose a large
performance overhead [Greenman et al. 2019b], making the path anything but smooth. This
problem is particularly stringent for deep run-time checks [Siek and Taha 2006; Tobin-Hochstadt
and Felleisen 2006], but it also applies to shallow run-time checking [Greenman and Migeed 2018].
While improvements to deep and shallow can reduce the severity of the problem, in particular JIT
technology for shallow [Roberts et al. 2019; Vitousek et al. 2019], the core issue remains—some
con�gurations need more expensive checks than others.
Greenman [2020, 2022] presents evidence that deep and shallow checks actually come with

complementary strengths and weaknesses. Deep checks impose a steep cost at boundaries between
typed and untyped code, yet as the addition of types eliminates such boundaries, they enable

∗Research done at Brown University

Authors’ addresses: Ben Greenman, PLT @ University of Utah, Salt Lake City, Utah, USA, benjaminlgreenman@gmail.com;

Matthias Felleisen, PLT @ Northeastern University, Boston, Massachusetts, USA, matthias@ccs.neu.edu; Christos Dimoulas,

PLT @ Northwestern University, Evanston, Illinois, USA, chrdimo@northwestern.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for pro�t or commercial advantage and that copies bear this notice and

the full citation on the �rst page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2023 Copyright held by the owner/author(s).

2475-1421/2023/10-ART241

https://doi.org/10.1145/3622817

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 241. Publication date: October 2023.

https://www.acm.org/publications/policies/artifact-review-and-badging-current
HTTPS://ORCID.ORG/0000-0001-7078-9287
HTTPS://ORCID.ORG/0000-0001-6678-1004
HTTPS://ORCID.ORG/0000-0002-9338-7034
https://doi.org/10.1145/3622817
https://doi.org/10.1145/3622817
https://orcid.org/0000-0001-7078-9287
https://orcid.org/0000-0001-6678-1004
https://orcid.org/0000-0002-9338-7034
https://doi.org/10.1145/3622817

241:2 Ben Greenman, Ma�hias Felleisen, and Christos Dimoulas

type-driven optimizations that can o�set some of the cost [St-Amour 2015]—and sometimes all of
it. By contrast, shallow checks impose a low cost at boundaries, but the addition of types almost
always increases the overall number of checks. Hence, Greenman argues that developers should, in
principle, be able to mix and match deep and shallow checking to get the best-possible type checking
bene�ts with a tolerable performance penalty. Initial empirical data is promising: with the right
mixture of checks, it is possible to avoid order-of-magnitude slowdowns that come from either deep
or shallow checks alone. Finding a “right” mixture, however, presents a challenge because there are
exponentially many possibilities to choose from. Whereas in a purely deep (or shallow) checking
scheme, developers have 2# con�gurations to choose from, with deep and shallow combined there
are 3# possibilities because each of the # components in the program can be untyped, deep-typed,
or shallow-typed.
The large search space raises the following question:

How to navigate the 3# migration lattice of a code base from a con�guration with

unacceptable performance to one with acceptable performance?

Since this is a performance problem, a plausible answer is to use pro�ling tools. But, this conven-
tional response merely re�nes the above question in two ways, namely:

– How to use feedback from various pro�ling tools to choose a next step; and

– Whether a sequence of choices leads to a con�guration with acceptable performance.

Such questions call for an empirical investigation. A user study is a viable way forward, but
recruiting a large number of people to debug problems in unfamiliar code is costly and introduces
confounding factors. Until recently, however, there was no other way to proceed systematically.
Instead, this paper reports on the results of a rational programmer experiment [Lazarek et al. 2021,
2023, 2020]. The rational programmer method employs algorithmic abstractions (strategies) that are
inspired by methods that actual humans can follow and that reify a falsi�able hypothesis about one
way of using pro�ling tools and interpreting their feedback. Because the strategies are algorithms, it
is straightforward to apply them to thousands of debugging scenarios and test whether they improve
performance. In sum, the rational programmer experiment enables a systematic comparison of
di�erent ways that human developers1 might interpret pro�ler feedback. The winning strategies
merit further study, while the losing ones can be set aside.
In short, this paper makes three contributions:

• At the technical level, the rational programmer experiment presents the most comprehen-
sive and systematic examination of type migration paths to date. As such it goes far be-
yond Greenman [2022]’s prior work. The experiment evaluates 17 di�erent strategies for
interpreting pro�ling output on more than one hundred thousand scenarios using the GTP
benchmarks [Greenman 2023]. It yields 5GB of performance and pro�ling data, which is
available online [Greenman et al. 2023a].

• At the object level, the results of the rational programmer experiment provide guidance to
developers about how to best use feedback from pro�lers during type migration. The winning
strategy identi�es the most expensive boundary and migrates its components to use deep
types. This result is a surprise given Greenman [2022]’s preliminary data, which implies that
combinations of shallow and deep types should lead to the lowests costs overall.
– Hence, the results also inform language designers about performance dividends from
investing in combinations of deep and shallow types.

1To distinguish between humans and the rational programmer, the paper exclusively uses “developer” for human coders.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 241. Publication date: October 2023.

How Profilers Can Help Navigate Type Migration 241:3

• At the meta level, this application of the rational programmer method to the performance
problems of type migration provides evidence for its versatility as an instrument for studying
language pragmatics.

The remainder of the paper is organized as follows. Section 2 uses an example to explain the
problem in concrete terms. Section 3 introduces the rational programmer method and shows how
its use can systematically evaluate the e�ectiveness of a performance-debugging strategy. Section 4
translates these ideas to a large-scale quantitative experiment. Section 5 presents the data from
the experiment, which explores scenarios at a module-level granularity in Typed Racket. Section 6
extracts lessons for developers and researchers. Section 7 places this work in the context of prior
research. Section 8 puts this work in perspective with respect to future research.

2 NAVIGATING THE DEEPS AND SHALLOWS BY PROFILING

Over the years, developers have created many large systems in untyped languages. In the meantime,
language implementors have created gradually typed siblings of these languages. Since developers
tend to enjoy the bene�ts of type-based IDE support and a blessing from the type checker, they
are likely to add new components in the typed sibling language. Alternatively, when a developer
must debug an untyped component, it takes a large mental e�ort to reconstruct the informal types
of �elds, functions, and methods, and to make this e�ort pay o�, it is best to turn the informal
types into formal annotations. In either case, the result is a mixed-typed software system with
components that have types and parts that do not.
In a sound gradual language, the enforcement of types in�icts a performance penalty. Among

the several enforcement approaches that do not limit expressiveness [Greenman et al. 2023b],2 the
two leading ones are deep and shallow types:

• Deep types use higher-order contracts to monitor the boundaries between typed and untyped
components [Findler and Felleisen 2002; Siek and Taha 2006; Tobin-Hochstadt and Felleisen
2006]. Higher-order contracts impose many kinds of performance penalties: they traverse
compound values; they wrap higher-order values with proxies to delay checks; and they raise
memory consumption due to the proxies’ allocation. If there are few boundaries, however,
then deep types impose few costs and type-driven optimizations may exceed the performance
of the untyped code base [Greenman et al. 2019b].

• Shallow types do not explicitly enforce types at boundaries but delegate checking to tag-
level assertions injected at compile-time at strategic places in typed components. Shallow’s
assertions ask simple questions (is this a list?) and never allocate proxies [Vitousek et al. 2014,
2017]. Each check is inexpensive, but the lack of proxies blurs the boundary between typed
and untyped components and leads to a conservatively high number of checks. Suppose a
typed function expects a callback. To account for the case that the callback is supplied by an
untyped component, every call needs a result check around it to ensure soundness—even if
most calls are safe. In general, the addition of more shallow types can lead to more checks.

In either case, the performance penalty can become too high. If so, the developer faces a performance-
debugging scenario.

To make these ideas concrete, consider the fsm program from the GTP benchmark suite [Green-
man 2023; Greenman et al. 2019b]. The program is the creation of Nguyen and Andreozzi [2016],
economists interested in simulating an economy of agents with deterministic strategies. Figure 1a
shows the outline of the four-module program: auto implements state machines; pop coordinates
among machines; main drives the simulation; and util provides helper functions. Focusing on

2Nom [Muehlboeck and Tate 2017] and Static Python [Lu et al. 2023] have low-cost but restrictive checks.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 241. Publication date: October 2023.

241:4 Ben Greenman, Ma�hias Felleisen, and Christos Dimoulas

utilpopmainauto

auto main pop util 2.9x slowdown

auto main pop util 2.8x slowdown

deep

shallow

(a) Adding deep or shallow types to one fsm module degrades performance

Total cpu time observed: 1192ms (out of 1236ms)

Number of samples taken: 23 (once every 52ms)

===

Caller

Idx Total Self Name+src

ms(pct) ms(pct) Callee

===

??? [12]

evolve [17]

[17] 818(68.6%) 0(0.0%) evolve main

evolve [17]

shuffle-vector [19]

death-birth [18]

??? [20]

match-up* [22]

shuffle-vector [19]

[24] 152(12.7%) 152(12.7%) contract-wrapper

(b) Statistical profiler output for the top-right variant

cpu time: 984 real time: 984 gc time: 155

Running time is 18.17% contracts

253/1390 ms

(interface:death-birth pop main)

142 ms

(->* ((cons/c (vectorof automaton?)

(vectorof automaton?))

any/c)

(#:random any/c)

(cons/c (vectorof automaton?)

(vectorof automaton?)))

(interface:match-up* pop main)

81.5 ms

(->)

(interface:population-payoffs pop main)

29 ms

(->)

(c) Boundary profiler output for the same variant

Fig. 1. Profiling during type migration

just the modules of this program su�ces because the migration granularity in Typed Racket is by
module (each module can be typed or untyped).
The variant of fsm on the left of �gure 1a is untyped. If a developer adds deep types to the

main module, performance is signi�cantly degraded. The mixed-typed variant runs almost three
times (3G) slower than the untyped one. Switching to shallow types is a one-line change to the
module language, but does not remedy the situation. At this point, the question is how to recover
the performance of the untyped variant. Each results in di�erent kind of costs

– One option is to roll back the addition of types.
– For developers who prefer typed code and dislike undoing the e�ort of adding types,
a second option is to add (deep or shallow) types to a random module connected to
main—following a “hunch” like developers sometimes do—but doing so can easily make
things worse. For example, if the choice were the auto module with shallow types, then
performance would degrade further (a 9x slowdown, to be precise).

– If the developer adds deep types to every module, then fsm has no type boundaries and gets
the full bene�t of optimizations. Performance improves over the untyped variant. However,
such a choice represents a heavy migration e�ort, which a developer who simply wishes
to �x main and deploy again may be reluctant to invest.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 241. Publication date: October 2023.

How Profilers Can Help Navigate Type Migration 241:5

None of these options are compelling. Informed feedback is clearly needed for a solution that
recovers performance with a reasonable e�ort and without discarding types.
The natural choice is to reach for a pro�ling tool to determine the source of the slowdown.

Racket fortunately comes with two such tools:

– a traditional statistical pro�ler, which identi�es the time spent in applications; and
– a boundary pro�ler, which attributes the cost of types-as-contracts to speci�c module
boundaries [Andersen et al. 2019; St-Amour et al. 2015].

Both tools are potentially useful and potentially limited due to the mechanics of deep and shallow
types. Speci�cally, the contract-based enforcement of deep types should be a good match for the
boundary pro�ler but not for the statistical pro�ler. In contrast, shallow checks should favor the
statistical but not the boundary pro�ler. For example, the function below averages a list of numbers.
While the total run-time costs of deep or shallow types are comparable for this function, those
costs arise in di�erent ways:

(: avg (-> [Listof Real] Real)) ;; deep: enforce type as a contract

(define (avg l) (/ (sum l) (length l))) ;; shallow: rewrite code with checks

• With deep types, the function gets wrapped in a proxy at the boundary between avg and its
untyped clients. The proxy checks that clients send only lists that contain only real numbers.
The boundary pro�ler is well-suited to discover if these checks are expensive because it
attributes costs directly to proxies. Conversely, the statistical pro�ler is less likely to be useful
because it breaks down cost by application. It may, however, discover the costs indirectly if
the proxy slows down calls to functions that, in turn, call avg.

• With shallow types, the compiler rewrites the body of avg to check that its clients send
only lists. This check does not examine list elements, but the helper function sum will check
elements as it accesses them. Because there are no contracts and explicit boundaries in the
shallow version, only simple inlined checks, the boundary pro�ler cannot measure the cost
of the types. The statistical pro�ler is in a much better position to �nd costs because they
arise from extra code in the function.

Back to fsm, the bottom half of �gure 1 shows the output of the statistical pro�ler and the
boundary pro�ler for the top-right variant in �gure 1a where main has deep types.

Statistical pro�ler. Figure 1b lists two rows from the statistical pro�ler; the full output has 28
rows. The �rst row, labeled [17], covers a large percentage (68.6%) of the total running time, and
it refers to a function named evolve, which is de�ned in the main module. The line suggests that
calls from evolve to other functions account for a high percentage of the total cost. The second row,
labeled [24], says that a contract wrapper accounts for a signi�cant chunk (12.7%) of the running
time. The caller of this contract, from row [19] (not shown) is the function shuffle-vector from
the pop module. Putting these clues together, the pro�ling output indirectly points to the boundary
between main and pop as a signi�cant contributor to the overall cost.
This conclusion, however, is one of many that could be drawn from the full statistical pro�ler

output. Functions from the util module also appears in the output, and may be more of a perfor-
mance problem that those from the pop module. Equally unclear is whether the column labeled
Total is a better guide than the column labeled Self or vice versa. High total times point to a
context that dominates the expensive parts. High self times point to expensive parts, but these
costs might be from the actual computation rather than the overhead of type-checking.

Boundary pro�ler. Figure 1c shows nearly-complete output from the boundary pro�ler; only two
contracts are omitted. This pro�ling output attributes 18.17% of the total running time to contracts,
speci�cally, to the contracts on the three functions whose names begin with an interface: pre�x.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 241. Publication date: October 2023.

241:6 Ben Greenman, Ma�hias Felleisen, and Christos Dimoulas

This output indicates that proxies are wrap untyped functions that �ow into typed components.
The modules involved are main and pop. Since pop is the untyped one, the hint is to type it.

Adding types to pop does improve performance. Concretely, this variant su�ers from a 1.2x
slowdown. If this overhead is acceptable, the developer is done; otherwise, the search must continue
with another round of pro�ling, searching, and typing.

Summary. At �rst glance, the e�ort of eliminating a performance problem seems straightforward.
Several factors complicate the search. First, a developer has two typing options not just one.
Second, the output from pro�ling tools is complex. Even for this small program, the statistical
pro�ler outputs 100 lines. Finally, adding types to the pro�ler-identi�ed module may degrade the
performance even more, in which case the developer may wish to give up. In sum:

Navigating a migration lattice with 3# program con�guration is a non-trivial e�ort, and

developers deserve to know how well pro�ling tools help with this e�ort.

3 A RATIONAL APPROACH TO NAVIGATION

When a performance-debugging scenario arises, the key question is how to modify the program to
improve performance. Pro�ling tools provide data, but there are many ways to interpret this data.
The rational programmer method proceeds by enumerating possible interpretations and testing
each one independently.

To begin, the type-migration lattice suggests two general ways to modify a code base: add types
to an untyped component, or toggle the types of a typed one from deep to shallow or vice versa.
The next question is which component to modify. Since pro�ling tools identify parts of the code
base that contribute to performance degradation, the logical choice is to rank them using a relevant,
deterministic order and modify the highest-priority one.
Stepping back, these two insights on modi�cations and ordering suggest an experiment to

determine which combinations of pro�ling tool, ordering, and modi�cation strategy help developers
make progress with performance debugging. To determine the best combination(s), developers
must work through a large and diverse set of performance-debugging scenarios. The result should
identify successful and unsuccessful strategies for ranking pro�ler output and modifying code. Of
course, it is unrealistic to ask human developers to follow faithfully di�erent strategies through
thousands of scenarios. An alternative experimental method is needed.
The rational programmer provides a framework for conducting such large-scale systematic

examinations. It is inspired by the well-established idea of rationality in economics [Henrich et al.
2001; Mill 1874]. In more detail, a rational agent is a mathematical model of an economic actor.
Essentially, it abstracts an actual economic actor to an entity that, in any given transaction-scenario,
acts strategically to maximize some kind of bene�t. These agents are (typically) bounded rather
than perfectly rational to re�ect the limitations of human beings and of available information;
they aim to satis�ce [Simon 1947] their goal since they cannot make maximally optimal choices.
Analogously, a rational programmer is a model of a developer who aims to resolve problems with
bounded resources. Speci�cally, it is an algorithm that implements a developer’s bounded strategy
for satis�cing a goal, and thereby enables a large-scale experiment. Developers can use the outcomes
of an experiment to decide whether “rational” behavior seems to pay o�. In other words, a rational
programmer evaluation yields insights into the pragmatic value of work strategies.
So far, the rational programmer has been used to evaluate strategies for debugging logical

mistakes.3 This paper presents the �rst application to a performance problem.

3Prior work distinguishes between strategies for interpreting data and modes of the rational programmer, which combine a

strategy and other parameters into an algorithm. Our experiment has only one parameter, the strategy, and therefore the

distinction between strategy and mode is unimportant here.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 241. Publication date: October 2023.

How Profilers Can Help Navigate Type Migration 241:7

Experiment Sketch. In the context of pro�ler-guided type migration, a rational programmer
consists of two interacting pieces. The �rst is strategy-agnostic; it consumes a program, measures
its running time, and if the performance is tolerable, stops. Otherwise, the program is a performance-
debugging scenario and the second, strategy-speci�c piece comes into play. This second piece
pro�les the given program—using the boundary pro�ler or the statistical pro�ler—and analyzes
the pro�ling information. Based on this analysis, it modi�es the program as described above. This
modi�ed version is handed back to the �rst piece of the rational programmer.
There are many strategies that might prove useful. A successful strategy will tend to eliminate

performance overhead, though perhaps after a few incremental steps. An unsuccessful strategy will
either degrade performance, or fail to reach an acceptable con�guration. Testing several strategies
sheds light on their relative usefulness. If one strategy succeeds where another fails, it has higher
relative value. Of course, the experiment may also reveal shortcomings of the pro�ling approach
altogether—which would demand additional research from tool creators.

4 EXPERIMENT DESIGN

Turning the sketch from section 3 into a large-scale automated experiment requires formal de-
scriptions for both the pro�ling strategies of the rational programmer and the notion of debugging
scenario. As the preceding section discusses, given a scenario, a strategy identi�es the next migra-
tion step, which should yield either an acceptable program or another performance-debugging
scenario. The preceding section also implies that the migration step is one of three possibilities:
(1) to add types and to specify their enforcement regime (deep, shallow); (2) to toggle from one
regime to another; or (3) to fail to act. Hence it is possible to specify strategies independently of
the scenarios per se. Equipped with formal descriptions, it is possible to turn the generic research
question of the introduction into questions with a quantitative nature.
Section 4.1 presents the pro�ling strategies. Section 4.2 characterizes performance-debugging

scenarios, which act as starting navigation points, and how a type-based migration is a path
through a lattice of program con�gurations. It also lays out the criteria for successes and failures for
strategies. Finally, section 4.3 formalizes the precise experimental questions and the experimental
procedure that answers them.

4.1 The Rational Programmer Strategies

Every program % is a collection of interacting components 2 . Some components have deep types,
some have shallow ones, and some are untyped. Independently of their types, a component 21, may
import another component 22, which establishes a boundary between them, across which they
exchange values at run time. Depending on the kind of types at the two sides of the boundary, a
value exchange can trigger run-time checks, which may degrade performance.

A pro�ling strategy should thus aim to eliminate the most costly checks in a program. In formal
terms, a pro�ling strategy is a function that consumes a program % and, after determining its
pro�le, returns a set of pairs (2, C). Here C is either 344? or Bℎ0;;>F . Each such pair prescribes a
modi�cation of % . For instance, if a strategy returns the singleton set with the pair (2, 344?), then
the strategy points to a new version of % where component 2 obtains deep types (if necessary) ; if 2
is typed, the strategy just requests toggling from shallow to deep. If a strategy’s result is the empty
set, it cannot �gure out how to proceed.

Basic strategies. Figure 2 describes six basic strategies that rational programmers may use. The
strategies di�er along two levels: how to use pro�ler data to identify a set of checks and how to
modify the program toward lower costs.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 241. Publication date: October 2023.

241:8 Ben Greenman, Ma�hias Felleisen, and Christos Dimoulas

Pro�ler Response Description

boundary

optimistic Uses the boundary pro�ler to identify the most expensive
boundary in the given program. It recommends that both
sides of the target boundary obtain deep types.

conservative Like boundary optimistic but with shallow types for both
sides of the target boundary.

statistical (self)

optimistic Uses the statistical pro�ler to identify the component 21 that
contains the application with the highest self time in the
given program, and that has a boundary with at least one
component 22 that has stricter types than 21. It recommends
deep types for 21 and 22.

conservative Like statistical(self) optimistic, with shallow types for 21, 22

statistical (total)
conservative Like statistical(self) conservative with total in place of self

optimistic Like statistical(self) optimistic with total in place of self

Fig. 2. How the basic strategies find and respond to slow boundaries

At the �rst level, the basic strategies choose a pro�ler and (when necessary) an ordering for its
output. The pro�ler is either boundary or statistical (section 2). With the boundary pro�ler, the
output is a list of boundaries ordered by cost, so there is no need for the rational programmer to
choose an ordering. With the statistical pro�ler, the output is a list of applications each with two
types of costs: the total time spent during the call including its dependencies, and the self time
spent in the call not including dependencies. Because both costs are potentially useful, the rational
programmers choose between them. Having ordered the applications, these rational programmers
must then identify a boundary. They start with the top-ranked application and seek a boundary
between the enclosing component and a component with stricter types because the types at those
boundaries incur run-time checks. Here, deep is stricter than shallow and shallow is stricter than
untyped. If the strategy cannot identify such a boundary, it moves to the next-ranked application
(again in terms of either self or total time). If there are no applications remaining, the strategy fails.

At the second level, basic strategies di�er in how they migrate the two sides of their target
boundary. Strategies that are optimistic turn the types at either side of the boundary to deep.
This action eliminates the cost of the boundary and enables type-driven optimizations in both
components. But, it may also create boundaries to other components in a kind of ripple e�ect with
potentially disastrous costs. By contrast, conservative strategies choose shallow types for both sides
of the target boundary. The rationale behind this choice is that, if both sides of a boundary have
shallow types, the interactions across the boundary cost less than if only one is deep and, at the
same time, unlike with optimistic strategies, there is no risk of a ripple e�ect.

Composite strategies. While the basic strategies ignore the cost of writing type annotations for
an untyped component, developers do not. Adding types to an entire module in Typed Racket may
require a signi�cant e�ort. Similarly, the likelihood of ripple-e�ect costs depends on the number of
typed components in the program. With few types, the cost of introducing one component with
deep types may well be high; with many types, the chance of a ripple e�ect is probably low. Hence,
the experiment includes composite strategies that take into account the types currently in the
codebase before choosing how to respond to pro�le data.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 241. Publication date: October 2023.

How Profilers Can Help Navigate Type Migration 241:9

Pro�ler Response Description

boundary

cost-aware optimistic Splits the boundaries in the given program to
those between typed components and the rest.
Delegates to boundary optimistic to produce a
modi�cation for the given program, but ranks
boundaries in the �rst group higher than those
in the second group.

cost-aware conservative Like boundary cost-aware optimistic but it
delegates to boundary conservative.

con�guration-aware If less than 50% of components in the program
have types, it delegates to boundary conservative.
Otherwise, it delegates to boundary optimistic.

statistical (self)

cost-aware optimistic Separates the typed components that have
boundaries with other typed components from
the rest of the components in the given program.
Delegates to statistical(self) optimistic to produce
a modi�cation for the given program, but ranks
boundaries between components in the �rst
group higher than the rest to determine the most
expensive boundary.

cost-aware conservative Like statistical(self) cost-aware optimistic but it
delegates to statistical(self) conservative.

con�guration-aware Like boundary con�guration-aware but it
delegates to statistical(self).

statistical (total)

cost-aware optimistic Like statistical(self) cost-aware optimistic but it
delegates to statistical(total) optimistic.

cost-aware conservative Like statistical(self) cost-aware optimistic but it
delegates to statistical(total) conservative.

con�guration-aware Like boundary con�guration-aware but it
delegates to statistical(total).

Fig. 3. Composite strategies use profiler data and current types to form a response

Figure 3 lists these composite strategies. The cost-aware strategies rank the cost of boundaries
in terms of the labor needed to equip the two components with types in addition to the costs
reported by the pro�ler. They give priority to those boundaries that involve components that are
already typed. For those, migration just means toggling their type enforcement regime, which
is essentially no labor. The con�guration-aware strategies use a heuristic to avoid ripple e�ects.
Instead of committing to a type-enforcement regime up front (optimistically or conservatively),
they choose shallow when most components are untyped and deep when most are typed.

Baseline Strategies. An experiment must include a baseline, i.e., the building block for a null
hypothesis. Since pro�lers are the focus of this experiment, baselines must be pro�ler-agnostic. If
strategies that ignore pro�ler data do worse than the basic and composite strategies, then feedback
from the pro�ler evidently plays a meaningful role. Otherwise, comparisons among pro�ler-aware
strategies are meaningless.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 241. Publication date: October 2023.

241:10 Ben Greenman, Ma�hias Felleisen, and Christos Dimoulas

The results presented in the next section include two pro�ler-agnostic strategies. The �rst one,
null, aims to invalidate the null hypothesis with random choices. Speci�cally, it picks a random
boundary with types of di�erent strictness and �ips a coin to choose either an optimistic or a
conservative modi�cation to both sides. The second pro�ler-agnostic strategy, toggling, is due
to Greenman [2022] and serves as a point of comparison to that prior work. It modi�es all typed
components to use the same checks, deep or shallow, depending on which regime gives the best
performance. It never adds types to an untyped component, which means this strategy has only
one chance to improve performance.

4.2 Migration La�ices and their Navigation

Gradual type migration is an open and challenging problem [An et al. 2011; Campora et al. 2017,
2018; Castagna et al. 2020; Chandra et al. 2016; Cristiani and Thiemann 2021; Furr et al. 2009a,b;
Garcia and Cimini 2015; Jesse et al. 2021; Kristensen and Møller 2017; Malik et al. 2019; Migeed
and Palsberg 2019; Miyazaki et al. 2019; Phipps-Costin et al. 2021; Rastogi et al. 2012; Saftoiu 2010;
Siek and Vachharajani 2008; Wei et al. 2020; Yee and Guha 2023]. For any untyped component, a
migrating developer has to choose practical type annotations from among an often-in�nite number
of theoretical ones. But, to make a rational programmer experiment computationally feasible, it is
necessary to avoid this dimension.

Fortunately, the construction of the corpus of scenarios from a carefully selected set of suitable
seed programs can solve the problem. The established GTP benchmarks [Greenman 2023; Greenman
et al. 2019b] are representative of the programming styles in the Racket world, and they come
with well-chosen type annotations for all their components. Hence, the migration lattices can
be pre-constructed for all benchmark programs. It is thus possible to apply a strategy to any
performance-debugging scenario (a program with intolerable performance) in this lattice and use
the strategy’s recommendations to chart a path through the program’s migration lattice.
Intuitively, a strategy (attempts to convert a program %0 into an improved program %= in a

step-wise manner. Each intermediate point %8 from %0 to %= is the result of applying the (to the
current program. In essence, (constructs a migration path, a sequence of programs %0, . . . , %= from
a migration lattice. If (cannot make a recommendation at any point along this path, migration
halts. The following de�nitions formalize these points.

The Migration Lattice. All programs %8 are nodes in the migration lattice LÈ%CÉ where %C , is like
%8 but all its components have types (either deep or shallow).4 In other words, a component in
%8 may have no types or toggled types compared to %C . The bottom element of LÈ%CÉ is %D , the
untyped program. The 3# nodes ofLÈ%CÉ are ordered: %8 < % 9 if the untyped components in % 9 are
a subset of those in %8 . Hence the lattice is organized in levels of incomparable con�gurations. Every
con�guration in the same level has the same set of untyped components but a distinct combination
of deep and shallow types for the typed ones. The notation %8 6 % 9 denotes that either %8 < % 9 or
%8 and % 9 are at the same level.

A migration path corresponds to a collection of con�gurations %8 , 0 ≤ 8 < =, such that %8 6 %8+1.
This statement is the formal equivalent to the description from the preceding section that strategies
either add types to a single previously untyped component or toggle the type enforcement regime
of existing typed components. (No strategy, including the agnostic ones, modi�es a boundary where
both sides are untyped.) In other words, a migration path is a weakly ascending chain in LÈ%CÉ.

4Although there are several possible choices for %C , each denotes a unique lattice. By contrast, a lattice based an untyped

program (LÈ%DÉ) is ambiguous without a pre-determined set of types.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 241. Publication date: October 2023.

How Profilers Can Help Navigate Type Migration 241:11

Performance-debugging scenarios and success criteria. Completing the formal description of the
experiment demands answers to two more questions. The �rst concerns the selection of the
starting points for the strategy-driven migrations, i.e., the performance-debugging scenarios. Which
con�gurations %8 quality as slow? Since type checks are the source of performance overhead, the
appropriate way to measure costs is by comparing %8 to the untyped con�guration %D :

Given a migration lattice, a performance-debugging scenario is a con�guration % such

that B;>F3>F=(%, %D) >) .
– B;>F3>F=(%, %D) is the ratio of the performance of % over that of %D
–) signi�es the maximum acceptable performance degradation

The second question is about di�erentiating successful from failing migrations. Strictly speaking,
performance should always improve, otherwise the developer may not wish to invest any more
e�ort into migration. In the worst case, performance might stay the same for a few migration steps
before it becomes acceptable:

A migration path %0 . . . %= in a lattice LÈ%CÉ is strictly successful i�
(1) %0 is a performance-debugging scenario,

(2) B;>F3>F=(%=, %D) ≤) , and

(3) for all 0 ≤ 8 < =, B;>F3>F=(%8+1, %8) ≤ 1.

To achieve strict success, a strategy must monotonically improve performance.
An alternative to strict success is to tolerate occasional setbacks. Accepting that a migration path

may come with : setbacks where performance gets worse, a :-loose success relaxes the requirement
for monotonicity : times:

A migration path %0 . . . %= in a lattice LÈ%CÉ is :-loosely successful i�
(1) %0 is a performance-debugging scenario,

(2) B;>F3>F=(%=, %D) ≤)

(3) for all 0 ≤ 8 < = with at most : exceptions, B;>F3>F=(%8+1, %8) ≤ 1
equivalently: : ≥ |{B;>F3>F=(%8+1, %8) > 1 | 0 ≤ 8 < =}|

The construction of a :-loose successful migration path allows a strategy to temporarily degrade
performance. The constant : is an upper bound on the number of missteps.
A patient developer may tolerate an unlimited number of setbacks:

A migration path %0 . . . %= is # -loosely successful if

(1) %0 is a performance-debugging scenario,

(2) B;>F3>F=(%=, %D) ≤)

4.3 The Experimental�estions

Equipped with rigorous de�nitions, it is possible to formulate the research questions precisely:

&- How successful is a strategy - with the elimination of performance overhead?
&-/. Is strategy - more successful than strategy . in this context?

Answering &- boils down to determining the success and failures of - for all performance-
debugging scenarios in all available lattices. If, for a large number of scenarios, - charts migration
paths that are strictly successful, the answer is positive. Essentially, the large number of scenarios
is evidence that when a rational programmer reacts to pro�ler feedback following - , it is likely to
improve performance. Notably, the above description uses the strict notion of success, which sets a
high bar. Hence, the rational programmer not only manages to tune performance at a tolerable level
but each suggestion of its strategy brings the rational programmer closer to its target. Swapping
the notion of strict success for :-loose success relaxes this high standard, and o�ers answers to &-

when allowing for some bounded �exibility in how well the intermediate suggestions of - help

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 241. Publication date: October 2023.

241:12 Ben Greenman, Ma�hias Felleisen, and Christos Dimoulas

the rational programmer. For completeness, the next section also reports the data collected for the
notion of # -loose success.

While an answer to&- constitutes an evaluation of a strategy- for interpreting pro�ler feedback
in absolute terms, an answer to &-/. is about the relative value of - versus some other strategy . .
This second question asks whether the proportion of scenarios in which - succeeds and . fails is
higher that the proportion of scenarios where. succeeds and- fails. Of course, the answer may not
be clear cut as - and . may perform equally well in most scenarios, or may have complementary
success records. But, relaxing the notion of success by di�erent factors : may help distinguish -

and . based on the quality of the feedback they produce.
Importantly, when . is the null strategy and the answer to &- /null is positive, then the experi-

ment invalidates its null-hypothesis. Put di�erently, the success of - is not due to sheer luck but
the rational use of pro�ler feedback.

Summing up, the rational programmer process for answering&- and&-/. rests on the following
experimental plan:

(1) Create a large and diverse corpus of performance-debugging scenarios.
(2) Calculate the migration paths for each strategy for each scenario.
(3) Compare the successes and failures of the strategies.

Isn’t Gradual Typing Dead? Although prior work shows that many con�gurations of the GTP
benchmarks run slowly, it does not answer the &- and &-/. questions—even in the # -loose case.

Greenman et al. [2019b] attempt to investigate an # -loose version of&- in a 2# lattice, but severely
limit the length of paths. Greenman [2022] consider longer paths, but only those that start from
the untyped con�guration and end at a fully-typed con�guration. Neither study tests whether
con�gurations that have high slowdown can be systematically transformed to ones with acceptable
performance (say: 80G → 70G → 20G → 1G). That said, without the rational programmer method
it is by no means clear how to examine such questions in a principled manner.

5 RESULTS

Running the rational-programmer experiment requires a large pool of computing resources. To
begin with, it demands reliable measurements for all complete migration lattices. Then, it needs to
use the measurements to compute the outcome of navigating the lattices following each strategy
starting from every performance-debugging scenario. This section starts with a description of the
measurement process (section 5.1). The remaining two subsections (sections 5.2 and 5.3) explain
how the outcome of the experiment answers the two research questions from the preceding section.

5.1 Experiment

The experiment uses the v7.0 release of the GTP Benchmarks with small restructurings to help the
boundary pro�ler attribute costs correctly. The restructuring does not a�ect the run-time behavior
of the programs. See appendix A for details. Also, the experiment omits four of the twenty-one
benchmarks: zordoz, because it currently cannot run all deep/shallow/untyped con�gurations due
to a known issue;5 gregor,quadT, and quadU because each has over 1.5 million con�gurations,
which makes it infeasible to measure their complete migration lattices; and sieve because it has
just two modules.

Measurements. The ground-truth measurements consist of running times, boundary pro�ler
output, and statistical pro�ler output. Collecting this data required three basic steps for each
con�guration of the 16 benchmarks:

5https://github.com/bennn/gtp-benchmarks/issues/46

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 241. Publication date: October 2023.

https://github.com/bennn/gtp-benchmarks/issues/46

How Profilers Can Help Navigate Type Migration 241:13

Table 1. Datasets, their origin, and server details

Dataset Server Racket Typed Racket

dungeon c220g2 v8.6.0.2 [cs] 29ea3c10

morsecode m510 same 700506ca (cherry pick)
other runtime c220g1 same default
other pro�le m510 same default

Server Site CPU Speed RAM Disk

c220g1 Wisconsin 2.4GHz 128GB 480GB SSD
c220g2 Wisconsin 2.6GHz 160GB 480GB SSD
m510 Utah 2.0GHz 64GB 256GB SSD

Table 2. How many of the 3# configurations have any overhead to begin with?

Benchmark 3# % Scenario

morsecode 81 82.72 %
forth 81 93.83 %
fsm 81 76.54 %
fsmoo 81 83.95 %
mbta 81 88.89 %
zombie 81 91.36 %
dungeon 243 99.59 %
jpeg 243 94.65 %

Benchmark 3# % Scenario

lnm 729 40.47 %
su�ixtree 729 98.49 %
kcfa 2,187 92.87 %
snake 6,561 99.97 %
take5 6,561 99.95 %
acquire 19,683 99.23 %
tetris 19,683 95.47 %
synth 59,049 99.99 %

(1) Run the con�guration once, ignoring the result, to warm up the JIT. Run eight more times to
collect cpu times reported by the Racket time function.

(2) Install the boundary pro�ler and run it once, collecting output.
(3) Install the statistical pro�ler and run it once, collecting output.

With rare exceptions, our running times are stable. Here stable means a 95% con�dence interval
based on a two-sided C test [Georges et al. 2007] is within 10 % of the sample mean. A total of 420
con�gurations (0.4 %) did not converge, but are within 35 % of the sample mean. Most of these came
from tetris: 388 con�gs, or 2 % of the tetris lattice.
The large scale of the experiment complicates the management of this vast measurement col-

lection. The 1,277,694 measurements come from 116,154 con�gurations. Table 1 (top) shows the
division of work across servers from CloudLab [Duplyakin et al. 2019]. Each server ran a sequence
of measurement tasks and nothing else; no other users ran jobs during the experiment’s reservation
time. Table 1 (bottom) lists the speci�cations of the machines used. In total, the results take up
5GB of disk space. Measurements began in July 2022 and �nished in April 2023.
For all but two benchmarks, the measurements used a recent version of Racket (v8.6.0.2, on

Chez [Flatt et al. 2019]) and the Typed Racket that ships with it. The exceptions are dungeon and
morsecode, which pulled in updates to Typed Racket that signi�cantly a�ected their performance.6

Fixing these issues was not necessary for the rational programmer experiment per se, but makes
the outcome more relevant to current versions of Racket.

6https://github.com/racket/typed-racket/pull/1282, https://github.com/racket/typed-racket/pull/1316

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 241. Publication date: October 2023.

https://github.com/racket/typed-racket/pull/1282
https://github.com/racket/typed-racket/pull/1316

241:14 Ben Greenman, Ma�hias Felleisen, and Christos Dimoulas

Fig. 4. How many of the 114,428 scenarios does each strategy succeed in, for six notions of success.

Basic Observations. The measurements con�rm that the GTP benchmarks are suitable for the
rational programmer experiment (table 2). With) = 1 as the goal of migration, all but two
benchmarks have plenty of performance-debugging scenarios. Going by con�gurations rather than
benchmarks, over 80 % of all con�gurations are interesting starting points for the experiment.

5.2 Answering &-

Figure 4 presents the results of navigating with all strategies from the preceding section starting
from all scenarios. It answers research question &- (section 4.3).
Each stacked bar in the “skyline” of �gure 4 corresponds to a di�erent strategy. Concretely, it

reports the success rate of the strategy for increasingly loose notions of success for) = 1. The
lowest, widest part of each bar represents the percentage of scenarios where the strategy is strictly
successful. The next three levels represent 1-loose, 2-loose, and 3-loose success percentages. The
striped spire is for # -loose successes. And �nally, the antenna corresponds to a strict success but
for) = 3. The strategies come with a wide range of success rates:

• Optimistic navigation performs well when guided by the boundary pro�ler, �nding strict
success in almost 40 % of all scenarios. With a 2-loose relaxation, success rises to above 50 %.
The results are far worse, however, with statistical (total) or statistical (self) pro�ling, both of
which rarely succeed.

• Cost-aware optimistic is almost as successful as optimistic when driven by boundary and
equally successful with statistical (total) and statistical (self).

• Conservative navigation is unsuccessful no matter what pro�ler it uses.
• Cost-aware conservative is unsuccessful as well. Even with # -loose relaxation, it succeeds in
very few scenarios (2 %).

• Con�guration-aware optimistic navigation with boundary succeeds in approximately 36%
of all con�gurations under strict and just over 50 % with 3-loose. With statistical (total) and
statistical (self) pro�ling, the success rate drops to 10 % even for # -loose.

• Null navigation succeeds for roughly 5% of all scenarios. Though low, this success rate is
better than the conservative strategies. Allowing for 1,2,3-loose success improves the rate by
small increments. With # -loose, the success rate jumps to nearly 40 %. (These results are the
average success rates across three trials. The standard deviations for each number were very
low, under 0.10 %.)

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 241. Publication date: October 2023.

How Profilers Can Help Navigate Type Migration 241:15

Table 3. How many scenarios can possibly reach 1x without removing types?

Benchmark # Scenario % Hopeful

morsecode 67 100.00 %
forth 76 36.84 %
fsm 62 100.00 %
fsmoo 68 100.00 %
mbta 72 0.00 %
zombie 74 35.14 %
dungeon 242 0.00 %
jpeg 230 100.00 %

Benchmark # Scenario % Hopeful

lnm 295 100.00 %
su�ixtree 718 100.00 %
kcfa 2,031 100.00 %
snake 6,559 100.00 %
take5 6,558 0.00 %
acquire 19,532 5.45 %
tetris 18,791 100.00 %
synth 59,046 100.00 %

• Toggling achieves strict success a bit more often than random, for roughly 6 % of all scenarios.
The other notions of success do not apply to toggling because it stops after one step.

Antenna: 3x Strict Success. There are two possible reasons for the poor success rate of the
conservative strategies. One is that they are entirely unproductive; they lead to worse performance.
The other possibility is that they do improve performance but are unable to achieve a)x overhead
because there are no such con�gurations with mostly shallow types. This second possibility is
likely due to the current implementation of shallow types [Greenman 2022], which rarely achieves
a speedup relative to untyped code.

To distinguish between these two possibilities, �gure 4 includes the antennas that reports strict
successes when) = 3 is acceptable. The number 3x is the classic, arbitrary Takikawa constant for
“acceptable” gradual typing overhead [Bauman et al. 2017; Vitousek et al. 2017]. Changing to 2x or
4x does not signi�cantly change the outcome.

For conservative and cost-aware conservative, allowing a 3x overhead improves results across the
pro�lers. The strategies succeed in an additional 10 % of scenarios. The optimistic strategies with
statistical improve in a similar way for 3x success. Optimistic with boundary does not improve,
and neither does the null strategy. Toggling improves tremendously for 3x success, in line with
prior work on shallow, which reports a median worst-case overhead of 4.2x on the GTP Bench-
marks [Greenman 2022]. Evidently, about 45 % of con�gurations can reach a 3x overhead simply by
switching to shallow types.

Omitting Hopeless Scenarios. From the perspective of type migration, some scenarios are hopeless.
No matter what recommendation a strategy makes for the boundary-by-boundary addition of types
to these scenarios, the performance cannot improve to the) = 1 goal.

Table 3 lists the number of scenarios in each benchmark and the percentage of hopeful ones. A
low percentage in the third column (labeled “% Hopeful”) of this table means that the experiment is
stacked against any rational programmer. For several benchmarks, this is indeed the case. Worst
of all are mbta, dungeon, and take5, which have zero hopeful scenarios. Three others are only
marginally better: forth, zombie, and acquire.

Figure 5 therefore revisits the measurements reported in �gure 4, focusing on hopeful scenarios
only. If there is no migration path from a scenario to a con�guration with a tolerable overhead, the
scenario is excluded as hopeless. As before, the results for random boundary are the average across
three runs. The standard deviation is slightly higher than before (< 0.12 %).

For the optimistic strategies, the results are much better. With boundary pro�ling, they succeed
in an additional 10 % of scenarios under either strict or # -loose success. With statistical pro�ling,
the optimistic strategies improve slightly.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 241. Publication date: October 2023.

241:16 Ben Greenman, Ma�hias Felleisen, and Christos Dimoulas

Fig. 5. How many of the 88,992 hopeful scenarios does each strategy succeed in, for six notions of success.

Unfortunately, the conservative strategies perform no better when restricted to hopeful scenar-
ios. In fact, the antennae in �gure 5 are shorter than the antennae in �gure 4. This means that
conservative strategies succeeded in the strict 3x sense in a small number of hopeless scenarios
that do not appear in �gure 5.

5.3 Answering &-/.

The preceding subsection hints at how the strategies compare to each other. Optimistic-boundary

navigation is the most likely to succeed on an arbitrary con�guration. Cost-aware and con�guration-
aware using the optimistic strategy are close behind. The conservative strategies are least likely
to �nd a successful con�guration no matter what pro�ler they use. Boundary pro�ling is always
more successful than statistical pro�ling.
However, an unanswered question is whether there are particular cases in which the other

strategies succeed and optimistic-boundary fails. Figure 6 thus compares the optimistic-boundary

strategy to all others, and it thus answers research question &-/. . The ~-axis reports percentages
of scenarios. The G-axis lists all strategies including optimistic-boundary (on the left). For each
strategy, there are at most two vertical bars. A red bar appears when the other strategy succeeds
on con�gurations where optimistic-boundary fails. A green bar appears for the reverse situation,
where optimistic-boundary succeeds but the other fails. Ties do not count, hence the red and green
bars do not combine to 100 %.

The tiny red bars and tall green bars give a negative answer to the question of whether optimistic
boundary performs worse in certain cases. Other strategies rarely succeed where optimistic-
boundary fails.

6 LESSONS FOR DEVELOPERS AND LANGUAGE DESIGNERS

The results of the rational-programmer experiment suggest a few concrete lessons for the developers
and also for language designers. Before diving into the details, it is necessary to look at the data for
some individual benchmarks (section 6.1). The data is illustrative of general lessons (section 6.2). A
closer look at the scenarios yields additional lessons for language designers (section 6.3). Finally,

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 241. Publication date: October 2023.

How Profilers Can Help Navigate Type Migration 241:17

Fig. 6. Boundary optimistic vs. the rest, strict success: losses (red bars) and wins (green bars) on all scenarios.

readers should be aware some speci�c and some general threats to the validity of the data and the
conclusions (section 6.4).

6.1 Data from Individual Benchmarks

Figure 4 summarize the successes and failures across all benchmarks. Some of the results for
individual benchmarks match this pro�le well. As �gure 7 shows, the tetris and synth are examples
of such benchmarks. The two benchmarks share a basic characteristic. They consist of numerous
components with a complex dependency graph. Additionally, both benchmarks su�er from a
double-digit average performance degradation with deep types [Greenman et al. 2019b].

tetris synth

Fig. 7. Examples of migration la�ices best navigated with optimistic strategies

For some of the benchmarks, the results look extremely di�erent. The two most egregious
examples are shown in �gure 8: morsecode and lmn. In contrast to the above examples, these
two benchmarks are relatively small and exhibit a rather low worst-case overhead of less than
3x [Greenman 2022].

morsecode lnm

Fig. 8. Examples of migration la�ices best navigated with random choices

Finally, some benchmarks exhibit pathological obstacles. Take a look at �gure 9, which display
the empty plots for mbta and take5. Neither migration lattice of these benchmarks comes with

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 241. Publication date: October 2023.

241:18 Ben Greenman, Ma�hias Felleisen, and Christos Dimoulas

any hopeful performance-debugging scenarios (table 3). Because a developer does not know the
complete migration lattice and therefore cannot predict whether a scenario is hopeful, general
lessons must not depend on the full lattice either.

mbta take5

Fig. 9. Empty results for navigations in la�ices with zero hopeful scenarios

6.2 General Lessons

Given the general results from the preceding section and the data from the individual bench-
marks (see preceding subsection and appendix B), the experiment suggests three lessons for
developers and one for language designers.

When a developer faces a performance-debugging scenario, the question is whether to reach for
a pro�ling tool and what kind. The general results and the results for many individual benchmarks
give a clear, two-part answer. First, the boundary pro�ler is superior to the statistical pro�ler for
navigating the migration lattice. Second, this pro�ler works best on large mixed-typed programs.
For small programs with a handful of components and single-digit overheads, the results show that
toggling all existing types or randomly choosing a boundary are more e�ective strategies.

When a developer has reached for the boundary pro�ler, the next question is how to interpret its
feedback. The data implies a single answer. If the boundary pro�ler is able to identify a particular
boundary as a cause of the intolerable performance, the developer is best served by converting
both sides of the boundary to use deep types. This modi�cation may prioritize toggling existing
shallow types to deep before adding deep types to untyped components. Prioritizing in this order
follows from the data for the cost-aware optimistic strategy which is on par with the (cost-unaware)
optimistic strategy.
When a developer applies an optimistic strategy, con�gurations along the migration path may

su�er from performance problems that are worse than the original ones. In this case, the question is
whether the developer should continue with the performance-debugging e�ort. The data suggests
that one setback is a bad sign (10 % of con�gurations succeed despite one setback) and anything
more than two setbacks means that success is highly unlikely. Changing to a di�erent strategy is
unlikely to help.
A reader may also wonder whether developers should relax the high standards of eliminating

the entire performance overhead. That is, the question is whether a mixed-typed program should
run as fast as its (possibly non-existent) untyped variant. But, the antenna data disagrees with
relaxing the standard. With the exceptions of low-overhead programs, if a developer is willing
to tolerate a small number of performance degradations along the way, a pro�ling strategy is as
likely to produce a migration path that �nds an overhead-free con�guration as it is to produce a
con�guration with some reasonably bounded (3x) overhead.
Language designers can extract a single lesson from the data. The addition of shallow types to

the implementation of Typed Racket [Greenman 2022] does not seem to help with the navigation
of the migration lattice. All conservative pro�ling strategies—those that prioritize shallow over
deep—yield inferior results compared to optimistic strategies—which prefer deep enforcement.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 241. Publication date: October 2023.

How Profilers Can Help Navigate Type Migration 241:19

Table 4. Which levels of the migration la�ice have any acceptable configurations?

Benchmark #acceptable

morsecode 1 2 4 4 3
forth 1 2 1 1 0
fsm 1 3 4 7 4
fsmoo 1 2 4 2 4
mbta 1 4 4 0 0
zombie 1 2 3 1 0
dungeon 1 0 0 0 0 0
jpeg 1 2 1 1 4 4

Benchmark #acceptable by lattice level

lnm 1 9 38 93 138 116 39
su�ixtree 1 1 0 0 1 4 4
kcfa 1 8 22 33 24 24 29 15
snake 1 0 0 0 0 0 0 0 1
take5 1 2 0 0 0 0 0 0 0
acquire 1 8 28 51 45 16 2 0 0 0
tetris 1 12 56 121 169 128 118 133 112 42
synth 1 1 0 0 0 0 0 0 0 0 1

Possibly this is due to the state of pro�ling technology; no existing pro�ler may be su�ciently
sensitive to detect the aggregate cost of shallow’s assertions and point to cost reduction. For now
then, language designers are better o� investing in deep types and a boundary pro�ler.

6.3 Specific Lessons

Given that none of the rational programmer strategies succeed on all hopeful scenarios, a �rst
step toward future work is to understand why they fail and whether a modi�ed strategy might
succeed. The scenario data provide insights on failures, and the migration lattices show where the
opportunities are.

With the boundary pro�ler, the most common reason that strategies get stuck in that there are
no internal boundaries in the output. Either there are no expensive deep type boundaries (the costs
may come from shallow types), or the boundaries involve at least one component that lives outside
the benchmark in library code. This no-internal issue a�ects 395,000 scenarios. Roughly one fourth
of the scenarios are hopeless at any rate (127K). The rest are hopeful scenarios, and for the vast
majority of these (264K) the rational programmer can make one step of progress using statistical
pro�ler data. Adding statistical data as a fallback when no boundary data is available may increase
the success rate. This mixed strategy can serve as a starting point for future research.
With statistical pro�ler data, a huge number of scenarios (745K) get stuck because there are

no actionable boundaries in the data. Unfortunately, there are several possible explanations: the
boundaries might point to library code, the main costs might point toward essential computations
rather than gradual typing checks, or the strategy might fail to upgrade a candidate boundary.
Turning to the migration lattices, table 4 shows where the acceptable () = 1) con�gurations

are. For a benchmark with # components, it presents a vector with # + 1 cells that correspond
to the levels in the migration lattice. The leftmost cell represents the untyped con�guration, the
second-to-left cell represents all # ∗ 2 con�gurations with exactly one typed component, and so on
until the rightmost cell, which represents all 2# fully-typed con�gurations, Each cell reports the
number of acceptable con�gurations at its level. If this number is zero the cell is red (), otherwise
the cell is green (). All but a few cells are green, which means that acceptable con�gurations are
spread throughout the lattices. Four benchmarks are exceptional: dungeon and take5 are entirely
hopeless, while snake and synth have acceptable con�gurations only at the endpoints. In the
remaining benchmarks, there are many acceptable points to reach for in future work.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 241. Publication date: October 2023.

241:20 Ben Greenman, Ma�hias Felleisen, and Christos Dimoulas

6.4 Threats to Validity

The validity of the conclusions may su�er from two kinds of threats to their general validity. The
�rst one concerns the experimental setup. The second category is about extrinsic aspects of the
rational programmer method.
As for method-internal threats, the �rst and most important one is that the GTP Benchmarks

may not be truly representative of Racket programs in the wild. Several benchmarks are somewhat
small with simple dependency graphs and low performance overheads. Since developers typically
confront performance-debugging scenarios with large, high-overhead programs, they will have to
apply the general lessons with some caution. The problem is that such programs may come with
large hopeless regions in the migration lattice. Concretely, once a program belongs to the part of
the lattice with high performance degradation, no pro�ling strategy will help the developer escape
it. As �gure 10 illustrates for the acquire benchmark, the random strategy works better for such
large programs than any pro�ling strategy. It remains an open question how often hopeless regions
occur in the wild.

acquire

Fig. 10. An example of a large program with a large hopeless region

The second most important internal threat concerns the design of the strategies. While the set of
strategies covers the basic approaches to navigation, it is far from complete. For example, certain
combinations of the chosen strategies—say, the optimistically cost-aware one with the random
one—might deliver better results than pursuing a pure strategy. Another weakness of the strategies
is that their migration steps are small. One alternative is to migrate a few modules at a time, similar
to the toggling strategy. A second alternative is to split modules into several typed and untyped
submodules [Flatt 2013]. On a more technical level, the rational programmers organize statistical
pro�le output by application (see Idx in �gure 1b) rather than by module. Grouping by module
may lead to better recommendations.

A third threat is that the rational programmers reject some con�gurations that a human developer
might accept. If the average overhead of a con�guration is within one standard deviation of 1x
overhead, the rational programmer accepts it. A handful of con�gurations lie just outside this cuto�
yet within the realm ofmachine noise [Mytkowicz et al. 2009]; for example, 3.5 % of all con�gurations
are rejected but have an absolute slowdown of at most 100 milliseconds. Accepting these borderline
con�gurations could reduce the number of hopeless scenarios in, say, acquire. However, the 3x
“antennas” (see appendix B) include these borderline con�gurations and nevertheless support our
overall conclusions.
Fourth, the large scale of the experiment imposes feasibility constraints on the collected data.

Speci�cally, the experiment collects (and averages) only eight performance measurements per
scenario and only one for each pro�ler.
The design of the experiment attempts to mitigate the method-internal threats. For example,

we collected data on single-user machines and con�rmed that 99 % of the running times are
stable (section 5.1). Still, the reader must keep these threats in mind when drawing conclusions.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 241. Publication date: October 2023.

How Profilers Can Help Navigate Type Migration 241:21

As for themethod-external threats, themost important one is that the experiment relies on a single
language and its eco-system. While this choice is necessary for an apples-to-apples comparison of
strategies, it is unclear how the results apply to other language and tool settings. Another aspect of
this threat is that the experiment involves only two pro�lers. While the statistical one is like those
found in most language eco-systems, the boundary pro�ler is unique to Racket. It is possible that
other language eco-systems come with pro�ling tools that might just perform better than those
two for some performance-debugging scenarios.
Stepping back, a reader may also question the entire rational-programmer idea as an overly

simplistic approximation of performance-debugging work in the real world. But, programming
language researchers know quite well that simpli�ed models have an illuminating power. Similarly,
empirical PL research has also relied on highly simpli�ed mental models of program execution
for a long time. As Mytkowicz et al. [2009] report, ignorance of these simpli�cations can produce
wrong data—and did so for decades. Despite this problem, the simplistic model acted as a compass
that helped compiler writers improve their product substantially over the same time period.
Like such models, the rational programmer is a simpli�ed one. While the rational programmer

experiment assumes that a developer takes all information into account and sticks to a well-de�ned,
possibly costly process, a developer may make guesses, follow hunches, and take shortcuts. Hence,
the conclusions from the rational programmer investigation may not match the experience of
developers. Further research that goes beyond the scope of this paper is necessary to establish a
connection between the behavior of rational programmers and human developers.

That said, the behavioral simpli�cations of the rational programmer are analogous to the strategic
simpli�cations that theoretical and practical models make, and like those, they are necessary tomake
the rational programmer experiment feasible. Despite all simpli�cations, section 5 demonstrates
that the rational programmer method produces results that o�er a valuable lens for the community
to understand some pragmatic aspects of performance debugging of mixed-typed programs, and it
does so at scale and in a quanti�able manner.

7 PRIOR RESEARCH

This work touches a range of existing strands of research. At the object-level, the main motivation
for this paper is prior research on the performance issues of sound gradual typing. Two signi�cant
sources of inspiration are research on gradual type migration and pro�ling techniques. At the
meta-level, this work builds on and extends prior results on the rational programmer method.

Performance of Gradual Types. Greenman et al. [2019b] demonstrate the grim performance
problems of deep gradual types. Adding deep types to just a few components can make a program
prohibitively slow, and the slowdown may remain until nearly every component has types. This
observation sets the stage for the work in this paper. Furthermore, the experimental approach of
that work provides the 3# migration lattices that are key for the rational programmer experiment
herein, and one of the strategies (toggling).

Earlier work observed the negative implications of deep types and proposedmitigation techniques.
Roughly, the techniques fall in two groups. The �rst group proposes the design of alternative run-
time checking strategies that aim to control the time and space cost of checks while providing some
type guarantees (e.g. [Greenberg 2015; Greenman et al. 2022; Lu et al. 2023; Rastogi et al. 2015;
Richards et al. 2017; Roberts et al. 2019; Siek et al. 2015b, 2009; Swamy et al. 2014; Tsuda et al. 2020]).
One notable strategy is transient, which was developed for Reticulated Python [Vitousek 2019;
Vitousek et al. 2014, 2019, 2017], adapted to Grace and JIT-compiled to greatly reduce costs [Gariano
et al. 2019; Roberts et al. 2019] and later characterized as providing shallow types that o�er type

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 241. Publication date: October 2023.

241:22 Ben Greenman, Ma�hias Felleisen, and Christos Dimoulas

soundness but not complete monitoring [Greenman et al. 2019a]. Greenman et al. [2023b] provide
a detailed analysis and comparison of the overall checking strategy landscape.
The second group of mitigations reduce the time and space required by deep types without

changing their semantics [Bauman et al. 2015, 2017; Feltey et al. 2018; Herman et al. 2010; Kuhlen-
schmidt et al. 2019; Moy et al. 2021; Siek et al. 2015a, 2021]. This is a promising line of work. In
the context of Pycket, for example, the navigation problem is easier than Typed Racket because
many more con�gurations run e�ciently. But, pathologies still remain. Navigation techniques are
an important complement to performance improvements.

Several language designs take a hybrid approach to gradual types so that developers can avoid the
costs of deep checks. Thorn and StrongScript use a mixture of optional and concrete types [Richards
et al. 2015; Wrigstad et al. 2010]. Optional types never introduce run-time checks (same as Type-
Script [Bierman et al. 2014] or Flow [Chaudhuri et al. 2017]). Concrete types perform cheap nominal
type checks but limit the values that components can exchange; for example, typed code that
expects an array of numbers cannot accept untyped arrays. Dart 2 explores a similar combination
of optional and concrete.7 Nom [Muehlboeck and Tate 2017, 2021] and SafeTS [Rastogi et al. 2015]
independently proposed concrete types as a path to e�cient gradual types. Static Python combines
concrete and shallow types to ease the limitations of concrete [Lu et al. 2023]. Pyret uses deep
checks for �xed-size data and shallow checks for recursive data and functions.8 Typed Racket
recently added shallow and optional types as alternatives to its deep semantics [Greenman 2022].

Gradual Type Migration. Research on gradual type migration can be split in three broad directions:
static techniques [Campora et al. 2017; Castagna et al. 2020; Chandra et al. 2016; Furr et al. 2009b;
Garcia and Cimini 2015; Kristensen and Møller 2017; Migeed and Palsberg 2019; Phipps-Costin et al.
2021; Rastogi et al. 2012; Siek and Vachharajani 2008]; dynamic techniques [An et al. 2011; Cristiani
and Thiemann 2021; Furr et al. 2009a; Miyazaki et al. 2019; Saftoiu 2010], and techniques based
on machine learning (ML) [Jesse et al. 2021; Malik et al. 2019; Wei et al. 2020; Yee and Guha 2023].
The dynamic and ML-based techniques exhibit the most scalable results so far as they can produce
accurate annotations for a range of components in the wild, such as JavaScript libraries. However,
as Yee and Guha [2023] note, the problem is far from solved. Moreover, no existing technique takes
into account feedback from pro�lers to guide migration. One opportunity for future work is to
combine the pro�ling strategies in this paper with migration techniques in the context of automatic
or human-in-the-loop tools.
Herder [Campora et al. 2018] estimates relative performance of con�gurations by combining a

static migration technique (variational typing) with a cost semantics. By contrast to our resource-
intensive pro�ling method, Herder is able to �nd the fastest con�guration in several benchmarks
without running any benchmark code. However, Herder does not yet handle a full-featured type
system (e.g., with union and universal types), and futher experiments are needed to test whether
its approximations can �nd satis�cing con�gurations as well as the best-case one.

Performance Tuning with Pro�lers. Pro�lers are the de facto tool that developers use to understand
the causes of performance bugs. Tools such as GNU gprof [Graham et al. 1982] established statistical
(sampling) pro�lers that collect caller-function execution time data, and paved the way for the
development of statistical pro�lers in many languages, including Racket.

In addition to Racket’s statistical pro�ler, the experiment in this paper also uses Racket’s feature-
speci�c pro�ler [St-Amour et al. 2015]. A feature-speci�c pro�ler groups execution time based on
(instances) of language features of developers’ choosing rather than by function calls. For instance,

7https://dart.dev/language/type-system#runtime-checks
8http://www.pyret.org

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 241. Publication date: October 2023.

https://dart.dev/language/type-system#runtime-checks
http://www.pyret.org

How Profilers Can Help Navigate Type Migration 241:23

the boundary pro�ler that the experiment of this paper employs aggregates the cost of contracts in
a program by the boundary that introduces them.

There are two prior works that have used pro�ler feedback to understand the source of the high
cost of gradual types. First, Andersen et al. [2019] show that the Racket feature-speci�c pro�ler
can detect hot boundaries in programs that use deep types, i.e., it can identify boundaries that are
the origin of costly deep checks. Second, Gariano et al. [2019] use end-to-end timing information
to identify costly shallow types. We conjecture that using a statistical pro�le could lead to similar
conclusions with fewer runs of the program.

Unlike this paper, prior work on pro�lers and gradual typing does not examine how to translate
pro�ler feedback to developer actions. The suggested repair is to remove expensive types. In
general, most pro�ling tools do not make recommendations to developers. The Zoom pro�ler [Patel
2016] was one notable exception, though its recommendations were phrased in terms of assembly
language rather than high-level code.

A number of pro�ling and performance analysis tools provide alternative views. Two recent tools
include a vertical pro�ler [Hauswirth et al. 2004] and a concept-based pro�ler [Singer and Kirkham
2006]. Both target Java programs. A vertical pro�ler splits performance data along di�erent levels
of abstraction, such as VM cost, syscall cost, and application cost. A concept-based pro�ler groups
performance costs based on user-de�ned portions of a codebase called concepts [Biggersta� et al.
1994]. It would be interesting to study alternative pro�ling and performance analysis techniques in
future rational programmer experiments.

The Rational Programmer. Lazarek et al. [2021, 2020] propose the rational programmer as an
empirical method for evaluating the role of blame in debugging coding mistakes with software
contracts and gradual types. However, the ideas behind the rational programmer go beyond debug-
ging such mistakes. In essence, the rational programmer is a general methodological framework
for the systematic investigation of the pragmatics of programming languages and tools. That is, it
can quantify the value of the various aspects of a language or a tool in the context of a speci�c task.
In that sense, prior work focuses on a single context: debugging coding mistakes.

This paper shows how the rational programmer applies to experiment design in another context:
performance tuning and debugging of performance problem. Hence, it shares the language feature
it studies, gradual typing, with prior work. But it looks at a di�erent aspect of its pragmatics. As
a result, besides contributing to the understanding of the value of gradual types, it also provides
evidence for the generality of the rational programmer method itself.

8 ONWARD!

Sound migratory typing comes with several advantages [Lazarek et al. 2021, 2023] but also poses
a serious performance-debugging challenge to developers who wish to use it. Pro�ling tools
are designed to overcome performance problems, but the use of such tools requires an e�ective
strategy for interpreting their output. This paper reports on the results of using the novel rational
programmer method to systematically test the pragmatics of �ve competing strategies that use two
o�-the-shelf pro�lers.
At the object level, the results deliver several insights:

(1) The boundary pro�ler works well if used with any “optimistic” interpretation strategy. That
is, developers should eliminate the hottest boundary, as identi�ed by the boundary pro�ler,
by making both modules use deep types.

(2) If a program comes with a low overhead for all mixed-typed variants, the statistical pro-
�ler works reasonably well; otherwise the statistical pro�ler is unhelpful for performance-
debugging problems in this context.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 241. Publication date: October 2023.

241:24 Ben Greenman, Ma�hias Felleisen, and Christos Dimoulas

(3) While pro�ling tools help with debugging performance, the data also clari�es that for certain
kinds of programs, the migration lattice contains a huge region of “hopeless” scenarios in
which no strategy can succeed. These regions call for fundamental improvements to deep
and shallow checks.

(4) Finally, the results weaken Greenman [2022]’s report that adding shallow type enforcement
is helpful. While toggling to shallow can reduce costs to a 3x overhead in many con�gura-
tions (�gure 4), the poor results for the con�guration-aware strategies indicate that it is not
a useful stepping stone toward performant (1x) con�gurations. If parity with untyped code is
the goal, deep types are the way to go.

At the meta level, the experiment once again con�rms the value of the rational programmer
method. Massive simulations of satis�cing rational programmers deliver indicative results that
clearly contradict anecdotal reports of human developers. As mentioned, a rational programmer is
not an idealized human developer. It remains an open question whether and how the results apply
to actual performance-debugging scenarios when human beings are involved.

Finally, the rational programmer experiment also suggests several ideas for future research. First,
the experiment should be reproduced for alternative mixed-typed languages. Nothing else will
con�rm the value of the optimistic strategy and the boundary pro�ler. It may also be the case
that JIT technology, as demonstrated in Grace [Roberts et al. 2019] and Reticulated [Vitousek et al.
2019], drastically improves the value of the conservative strategy and statistical pro�ler. Second,
the experiment clearly demonstrates that existing pro�ling tools are not enough to overcome the
performance challenges of sound migratory typing. Unless researchers can construct a performant
compiler for a production language with sound types, the community must design better pro�ling
tools to guide type migration.

DATA AVAILABILITY STATEMENT

The data for this paper is available on Zenodo, along with scripts for reproducing the experiment
and analyzing the results [Greenman et al. 2023a].

ACKNOWLEDGMENTS

Felleisen and Greenman were partly supported by NSF grant SHF 1763922. Greenman also received
support from NSF grant 2030859 to the CRA for the CIFellows project. Dimoulas was partly
supported by NSF Career Award 2237984. The development of the Racket infrastructure that the
paper relies on was supported in part by NSF grant CNS 1823244. Thanks to Cloudlab for hosting
the rational programmer experiment. Thanks to Ashton Wiersdorf, Caspar Popova, and Yanyan
Ren for feedback on the artifact.

A MODIFICATIONS TO THE GTP BENCHMARKS

To support a rational programmer experiment using boundary pro�ling, nine of the GTP Bench-
marks required a minor reorganization. The change lets the pro�ler peek through adaptor modules,
which are a technical device used in the benchmarks. Adaptor modules are a layer of indirection
that lets benchmarks with generative types (i.e., Racket structs) support a lattice of mixed-typed
con�gurations [Greenman et al. 2019b; Takikawa et al. 2016]. The following benchmarks required
changes: acquire, kcfa, snake, su�ixtree, synth, take5, tetris, and zombie.
The trouble with adaptors and pro�ling is that the name of the adaptor appears in contracts

instead of the name of its clients. If one adaptor has three clients, then pro�ling will attribute costs
to one adaptor boundary instead of the three client boundaries. This kind of attribution is bad for
the rational programmer because it cannot modify the adaptor to make progress.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 241. Publication date: October 2023.

https://cifellows2020.org

How Profilers Can Help Navigate Type Migration 241:25

The necessary modi�cation is to add client-speci�c submodules to each adaptor. Taking an
adaptor with three clients as an example, the changes are:

(1) de�ne generative types at the top level of the adaptor;
(2) export the generative types unsafely, without any contract;
(3) create three submodules, one for each client, each of which imports the generative types,

provides them safely, and adapts any other types and functions; and
(4) modify the clients to import from the newly-created submodules rather than the top level.

The submodules do not change run-time behavior, they merely attach client-speci�c names.

B SKYLINES PER BENCHMARK

Whereas �gure 4 reports the overall success rate for every scenario in the experiment, �gure 11
separates the results by benchmark. Thus there are 16 plots. Because the benchmarks vary in size
from 4 to 10 modules, each plot covers a distinct number of scenarios. Refer to table 3 to see how
many scenarios each benchmark has. The colors are from a colorblind-friendly palette [Wong 2011].

Observations.

• The plots for mbta, dungeon, and take5 are empty because none of their scenarios can reach
a 1x con�guration (table 3).

• The plot for synth is similar to the overall picture (�gure 4) because synth has many more
scenarios than the other benchmarks. Despite this imbalance, most benchmarks agree with
the overall picture. The results for forth, su�ixtree, fsm, fsmoo, snake, zombie, tetris, and
jpeg all con�rm the superiority of the optimistic boundary strategy.

• Both morsecode and lnm do better with statistical pro�les than with boundary pro�les.
These benchmarks have relatively low overhead in their con�gurations. Boundary pro�ling
therefore reports no information, whereas the statistical pro�ler canmake progress. Curiously,
statistical (total) beats statistical (self) in morsecode and the reverse is true in lnm.

• All three pro�lers do well in kcfa. Boundary pro�ling is best, but only by a small margin.

C HEAD TO HEAD PER BENCHMARK

Figure 12 compares the optimistic, boundary strategy against all the others in each benchmark.
Overall these plots support the conclusions from section 5.3.

Observations.

• The plots for mbta, dungeon, and take5 are empty. No strategy ever succeeds.
• The plot for acquire is nearly empty, again because successes are rare. The conservative and
con�guration-aware strategies with boundary pro�les are slightly better than the rest.

• Because boundary pro�ling tends to get stuck in morsecode and lnm due to low overhead
at boundaries, there are noticeable red bars for all strategies that use statistical pro�les.
Statistical out-performs optimistic boundary pro�ling. But null also does well and even beats
statistical in morsecode. This unexpectedly high success of null suggests that pro�ling is not
needed for these benchmarks; better performance is close at hand with any change to the
boundaries.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 241. Publication date: October 2023.

241:26 Ben Greenman, Ma�hias Felleisen, and Christos Dimoulas

morsecode

forth

fsm

fsmoo

mbta

zombie

dungeon

jpeg

lnm

su�ixtree

kcfa

snake

take5

acquire

tetris

synth

Fig. 11. How scenarios in each benchmark does each strategy succeed in?

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 241. Publication date: October 2023.

How Profilers Can Help Navigate Type Migration 241:27

morsecode

forth

fsm

fsmoo

mbta

zombie

dungeon

jpeg

lnm

su�ixtree

kcfa

snake

take5

acquire

tetris

synth

Fig. 12. Optimistic vs. the rest, comparing strict successes in each benchmark.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 241. Publication date: October 2023.

241:28 Ben Greenman, Ma�hias Felleisen, and Christos Dimoulas

REFERENCES

Jong-hoon (David) An, Avik Chaudhuri, Je�rey S. Foster, and Michael Hicks. 2011. Dynamic Inference of Static Types for

Ruby. In POPL. 459–472. https://doi.org/10.1145/1926385.1926437

Leif Andersen, Vincent St-Amour, Jan Vitek, and Matthias Felleisen. 2019. Feature-Speci�c Pro�ling. TOPLAS 41, 1, Article

4 (2019), 34 pages.

Spenser Bauman, Carl Friedrich Bolz, Robert Hirschfeld, Vasily Kirilichev, Tobias Pape, Jeremy G. Siek, and Sam Tobin-

Hochstadt. 2015. Pycket: A Tracing JIT for a Functional Language. In ICFP. 22–34. https://doi.org/10.1145/2784731.2784740

Spenser Bauman, Carl Friedrich Bolz-Tereick, Jeremy Siek, and Sam Tobin-Hochstadt. 2017. Sound Gradual Typing: only

Mostly Dead. PACMPL 1, OOPSLA (2017), 54:1–54:24.

Gavin Bierman, Martin Abadi, and Mads Torgersen. 2014. Understanding TypeScript. In ECOOP. 257–281.

Ted J. Biggersta�, Bharat G. Mitbander, and Dallas E. Webster. 1994. Program Understanding and the Concept Assignment

Problem. Commun. ACM 37, 5 (1994), 72–82. https://doi.org/10.1145/175290.175300

John Peter Campora, Sheng Chen, Martin Erwig, and Eric Walkingshaw. 2017. Migrating Gradual Types. PACMPL 2, POPL,

Article 15 (2017), 29 pages. https://doi.org/10.1145/3158103

John Peter Campora, Sheng Chen, and Eric Walkingshaw. 2018. Casts and Costs: Harmonizing Safety and Performance in

Gradual Typing. PACMPL 2, ICFP (2018), 98:1–98:30. https://doi.org/10.1145/3236793

Guiseppe Castagna, Victor Lanvin, Tommaso Petrucciani, and Jeremy G. Siek. 2020. Gradual Typing: A New Perspective.

PACMPL 4, POPL (2020), 16:1–16:32.

Satish Chandra, Colin S. Gordon, Jean-Baptiste Jeannin, Cole Schlesinger, Manu Sridharan, Frank Tip, and Youngil Choi.

2016. Type Inference for Static Compilation of JavaScript. In OOPSLA. 410–429. https://doi.org/10.1145/2983990.2984017

Avik Chaudhuri, Panagiotis Vekris, Sam Goldman, Marshall Roch, and Gabriel Levy. 2017. Fast and Precise Type Checking

for JavaScript. PACMPL 1, OOPSLA (2017), 56:1–56:30.

Fernando Cristiani and Peter Thiemann. 2021. Generation of TypeScript Declaration Files from JavaScript Code. In MAPLR.

97–112. https://doi.org/10.1145/3475738.3480941

Dmitry Duplyakin, Robert Ricci, Aleksander Maricq, Gary Wong, Jonathon Duerig, Eric Eide, Leigh Stoller, Mike Hibler,

David Johnson, Kirk Webb, Aditya Akella, Kuangching Wang, Glenn Ricart, Larry Landweber, Chip Elliott, Michael Zink,

Emmanuel Cecchet, Snigdhaswin Kar, and Prabodh Mishra. 2019. The Design and Operation of CloudLab. In Proceedings

of the USENIX Annual Technical Conference (ATC). 1–14. https://www.�ux.utah.edu/paper/duplyakin-atc19

Daniel Feltey, Ben Greenman, Christophe Scholliers, Robert Bruce Findler, and Vincent St-Amour. 2018. Collapsible

Contracts: Fixing a Pathology of Gradual Typing. PACMPL 2, OOPSLA (2018), 133:1–133:27.

Robert Bruce Findler and Matthias Felleisen. 2002. Contracts for Higher-Order Functions. In ICFP. 48–59.

Matthew Flatt. 2013. Submodules in Racket: you want it when, again?. In GPCE. 13–22.

Matthew Flatt, Caner Derici, R. Kent Dybvig, Andrew W. Keep, Gustavo E. Massaccesi, Sarah Spall, Sam Tobin-Hochstadt,

and Jon Zeppieri. 2019. Rebuilding Racket on Chez Scheme (experience report). PACMPL 3, ICFP (2019), 78:1–78:15.

https://doi.org/10.1145/3341642

Michael Furr, Jong-hoon (David) An, and Je�rey S. Foster. 2009a. Pro�le-Guided Static Typing for Dynamic Scripting

Languages. In OOPSLA. 283–300. https://doi.org/10.1145/1640089.1640110

Michael Furr, Jong-hoon (David) An, Je�rey S. Foster, and Michael Hicks. 2009b. Static Type Inference for Ruby. In SAC.

1859–1866. https://doi.org/10.1145/1529282.1529700

Ronald Garcia and Matteo Cimini. 2015. Principal Type Schemes for Gradual Programs. In POPL. 303–315. https:

//doi.org/10.1145/2676726.2676992

Isaac Oscar Gariano, Richard Roberts, Stefan Marr, Michael Homer, and James Noble. 2019. Which of My Transient Type

Checks Are Not (Almost) Free?. In VMIL. 58–66.

Andy Georges, Dries Buytaert, and Lieven Eeckhout. 2007. Statistically Rigorous Java Performance Evaluation. In OOPSLA.

ACM, 57–76. https://doi.org/10.1145/1297027.1297033

Susan L. Graham, Peter B. Kessler, and Marshall K. Mckusick. 1982. Gprof: A Call Graph Execution Pro�ler. In CC. 120–126.

https://doi.org/10.1145/800230.806987

Michael Greenberg. 2015. Space-E�cient Manifest Contracts. In POPL. 181–194.

Ben Greenman. 2020. Deep and Shallow Types. Ph. D. Dissertation. Northeastern University.

Ben Greenman. 2022. Deep and Shallow Types for Gradual Languages. In PLDI. 580–593.

Ben Greenman. 2023. GTP Benchmarks for Gradual Typing Performance. In REP. ACM, 102–114. https://doi.org/10.1145/

3589806.3600034

Ben Greenman, Christos Dimoulas, and Matthias Felleisen. 2023a. Artifact: How Pro�lers Can Help Navigate Type Migration.

https://doi.org/10.5281/zenodo.8148784

Ben Greenman, Christos Dimoulas, and Matthias Felleisen. 2023b. Typed–Untyped Interactions: A Comparative Analysis.

Transactions on Programming Languages and Systems 45, 1, Article 4 (2023), 54 pages. https://doi.org/10.1145/3579833

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 241. Publication date: October 2023.

https://doi.org/10.1145/1926385.1926437
https://doi.org/10.1145/2784731.2784740
https://doi.org/10.1145/175290.175300
https://doi.org/10.1145/3158103
https://doi.org/10.1145/3236793
https://doi.org/10.1145/2983990.2984017
https://doi.org/10.1145/3475738.3480941
https://www.flux.utah.edu/paper/duplyakin-atc19
https://doi.org/10.1145/3341642
https://doi.org/10.1145/1640089.1640110
https://doi.org/10.1145/1529282.1529700
https://doi.org/10.1145/2676726.2676992
https://doi.org/10.1145/2676726.2676992
https://doi.org/10.1145/1297027.1297033
https://doi.org/10.1145/800230.806987
https://doi.org/10.1145/3589806.3600034
https://doi.org/10.1145/3589806.3600034
https://doi.org/10.5281/zenodo.8148784
https://doi.org/10.1145/3579833

How Profilers Can Help Navigate Type Migration 241:29

Ben Greenman, Matthias Felleisen, and Christos Dimoulas. 2019a. Complete Monitors for Gradual Types. PACMPL 3,

OOPSLA (2019), 122:1–122:29.

Ben Greenman, Lukas Lazarek, Christos Dimoulas, and Matthias Felleisen. 2022. A Transient Semantics for Typed Racket.

Programming 6, 2 (2022), 1–25.

Ben Greenman and Zeina Migeed. 2018. On the Cost of Type-Tag Soundness. In PEPM. 30–39.

Ben Greenman, Asumu Takikawa, Max S. New, Daniel Feltey, Robert Bruce Findler, Jan Vitek, and Matthias Felleisen. 2019b.

How to Evaluate the Performance of Gradual Type Systems. Journal of Functional Programming 29, e4 (2019), 1–45.

Matthias Hauswirth, Peter F. Sweeney, Amer Diwan, and Michael Hind. 2004. Vertical Pro�ling: Understanding the Behavior

of Object-Priented Applications. In OOPSLA. 251–269. https://doi.org/10.1145/1028976.1028998

Joseph Henrich, Robert Boyd, Samuel Bowles, Colin Camerer, Ernst Fehr, Herbert Gintis, and Richard McElreath. 2001. In

Search of Homo Economicus: Behavioral Experiments in 15 Small-Scale Societies. American Economic Review 91, 2 (2001),

73–78.

David Herman, Aaron Tomb, and Cormac Flanagan. 2010. Space-E�cient Gradual Typing. Higher-Order and Symbolic

Computation 23, 2 (2010), 167–189.

Kevin Jesse, Premkumar T. Devanbu, and Tou�que Ahmed. 2021. Learning Type Annotation: Is Big Data Enough?. In

ESEC/FSE/. 1483–1486. https://doi.org/10.1145/3468264.3473135

Erik Krogh Kristensen and Anders Møller. 2017. Inference and Evolution of TypeScript Declaration Files. In FASE. 99–115.

Andre Kuhlenschmidt, Deyaaeldeen Almahallawi, and Jeremy G. Siek. 2019. Toward E�cient Gradual Typing for Structural

Types via Coercions. In PLDI. 517–532.

Lukas Lazarek, Ben Greenman, Matthias Felleisen, and Christos Dimoulas. 2021. How to Evaluate Blame for Gradual Types.

PACMPL 5, ICFP (2021), 68:1–68:29.

Lukas Lazarek, Ben Greenman, Matthias Felleisen, and Christos Dimoulas. 2023. How to Evaluate Blame for Gradual Types,

Part 2. PACMPL 7, ICFP (2023), 194:1–194:28.

Lukas Lazarek, Alexis King, Samanvitha Sundar, Robert Bruce Findler, and Christos Dimoulas. 2020. Does Blame Shifting

Work? PACMPL 4, POPL (2020), 65:1–65:29.

Kuang-Chen Lu, Ben Greenman, Carl Meyer, Dino Viehland, Aniket Panse, and Shriram Krishnamurthi. 2023. Gradual

Soundness: Lessons from Static Python. Programming 7, 1 (2023), 2:1–2:40.

Rabee Sohail Malik, Jibesh Patra, and Michael Pradel. 2019. NL2Type: Inferring JavaScript Function Types from Natural

Language Information. In ICSE. 304–315. https://doi.org/10.1109/ICSE.2019.00045

Zeina Migeed and Jens Palsberg. 2019. What is Decidable about Gradual Types? PACMPL 4, POPL, Article 29 (2019), 29 pages.

https://doi.org/10.1145/3371097

John Stuart Mill. 1874. Essays on Some Unsettled Questions of Political Economy. Longmans, Green, Reader, and Dyer.

Yusuke Miyazaki, Taro Sekiyama, and Atsushi Igarashi. 2019. Dynamic Type Inference for Gradual Hindley–Milner Typing.

PACMPL 3, POPL, Article 18 (2019), 29 pages. https://doi.org/10.1145/3290331

Cameron Moy, Phúc C. Nguyunde�nedn, Sam Tobin-Hochstadt, and David Van Horn. 2021. Corpse Reviver: Sound and

E�cient Gradual Typing via Contract Veri�cation. PACMPL 5, POPL, Article 53 (2021), 28 pages. https://doi.org/10.1145/

3434334

Fabian Muehlboeck and Ross Tate. 2017. Sound Gradual Typing is Nominally Alive and Well. PACMPL 1, OOPSLA (2017),

56:1–56:30.

Fabian Muehlboeck and Ross Tate. 2021. Transitioning from Structural to Nominal Code with E�cient Gradual Typing.

PACMPL 5, OOPSLA (2021), 127:1–127:29. https://doi.org/10.1145/3485504

Todd Mytkowicz, Amer Diwan, Matthias Hauswirth, and Peter F. Sweeney. 2009. Producing Wrong Data without Doing

Anything Obviously Wrong!. In International Conference on Architectural Support for Programming Languages and

Operating Systems. Association for Computing Machinery, 265–276.

Linh Chi Nguyen and Luciano Andreozzi. 2016. Tough Behavior in the Repeated Bargaining Game. A Computer Simulation

Study. EAI Endorsed Trans. Serious Games 3, 8 (2016), e5. https://doi.org/10.4108/eai.3-12-2015.2262403

Sanjay Patel. 2016. RotateRight Zoom. https://github.com/rotateright/rrpro�le

Luna Phipps-Costin, Carolyn Jane Anderson, Michael Greenberg, and Arjun Guha. 2021. Solver-Based Gradual Type

Migration. Proc. ACM Program. Lang. 5, OOPSLA, Article 111 (2021), 27 pages. https://doi.org/10.1145/3485488

Aseem Rastogi, Avik Chaudhuri, and Basil Hosmer. 2012. The Ins and Outs of Gradual Type Inference. In POPL. 481–494.

https://doi.org/10.1145/2103656.2103714

Aseem Rastogi, Nikhil Swamy, Cédric Fournet, Gavin Bierman, and Panagiotis Vekris. 2015. Safe & E�cient Gradual Typing

for TypeScript. In POPL. 167–180.

Gregor Richards, Ellen Arteca, and Alexi Turcotte. 2017. The VM Already Knew That: Leveraging Compile-Time Knowledge

to Optimize Gradual Typing. PACMPL 1, OOPSLA (2017), 55:1–55:27.

Gregor Richards, Francesco Zappa Nardelli, and Jan Vitek. 2015. Concrete Types for TypeScript. In ECOOP. 76–100.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 241. Publication date: October 2023.

https://doi.org/10.1145/1028976.1028998
https://doi.org/10.1145/3468264.3473135
https://doi.org/10.1109/ICSE.2019.00045
https://doi.org/10.1145/3371097
https://doi.org/10.1145/3290331
https://doi.org/10.1145/3434334
https://doi.org/10.1145/3434334
https://doi.org/10.1145/3485504
https://doi.org/10.4108/eai.3-12-2015.2262403
https://github.com/rotateright/rrprofile
https://doi.org/10.1145/3485488
https://doi.org/10.1145/2103656.2103714

241:30 Ben Greenman, Ma�hias Felleisen, and Christos Dimoulas

Richard Roberts, Stefan Marr, Michael Homer, and James Noble. 2019. Transient Typechecks are (Almost) Free. In ECOOP.

15:1–15:29.

Claudiu Saftoiu. 2010. JSTrace: Run-time Type Discovery for JavaScript. Master’s thesis. Brown University. https://cs.brown.

edu/research/pubs/theses/ugrad/2010/saftoiu.pdf

Jeremy Siek, Peter Thiemann, and Philip Wadler. 2015a. Blame and Coercion: Together Again for the First Time. In PLDI.

425–435.

Jeremy Siek, Michael M. Vitousek, Matteo Cimini, Sam Tobin-Hochstadt, and Ronald Garcia. 2015b. Monotonic References

for E�cient Gradual Typing. In ESOP. 432–456.

Jeremy G. Siek, Ronald Garcia, and Walid Taha. 2009. Exploring the Design Space of Higher-Order Casts. In ESOP. 17–31.

Jeremy G. Siek and Walid Taha. 2006. Gradual Typing for Functional Languages. In SFP. University of Chicago, TR-2006-06.

81–92.

Jeremy G. Siek, Peter Thiemann, and Philip Wadler. 2021. Blame and Coercion: Together Again for the First Time. Journal

of Functional Programming 31 (2021), e20. https://doi.org/10.1017/S0956796821000101

Jeremy G. Siek and Manish Vachharajani. 2008. Gradual Typing with Uni�cation-Based Inference. In DLS. 7:1–7:12.

https://doi.org/10.1145/1408681.1408688

Herbert A. Simon. 1947. Administrative Behavior. MacMillan.

Jeremy Singer and Chris Kirkham. 2006. Dynamic Analysis of Program Concepts in Java. In PPPJ. 31–39. https://doi.org/10.

1145/1168054.1168060

Vincent St-Amour. 2015. How to Generate Actionable Advice about Performance Problems. Ph. D. Dissertation. Northeastern

University.

Vincent St-Amour, Leif Andersen, and Matthias Felleisen. 2015. Feature-Speci�c Pro�ling. In CC. 49–68.

Nikhil Swamy, Cédric Fournet, Aseem Rastogi, Karthikeyan Bhargavan, Juan Chen, Pierre-Yves Strub, and Gavin Bierman.

2014. Gradual Typing Embedded Securely in JavaScript. In POPL. 425–437.

Asumu Takikawa, Daniel Feltey, Ben Greenman, Max S. New, Jan Vitek, and Matthias Felleisen. 2016. Is Sound Gradual

Typing Dead?. In POPL. 456–468.

Sam Tobin-Hochstadt and Matthias Felleisen. 2006. Interlanguage Migration: from Scripts to Programs. In DLS. 964–974.

Sam Tobin-Hochstadt, Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, Ben Greenman, Andrew M. Kent, Vincent

St-Amour, T. Stephen Strickland, and Asumu Takikawa. 2017. Migratory Typing: Ten Years Later. In SNAPL. 17:1–17:17.

Yuya Tsuda, Atsushi Igarashi, and Tomoya Tabuchi. 2020. Space-E�cient Gradual Typing in Coercion-Passing Style. 8:1–8:29.

https://doi.org/10.4230/LIPICS.ECOOP.2020.8

Michael M. Vitousek. 2019. Gradual Typing for Python, Unguarded. Ph. D. Dissertation. Indiana University.

Michael M. Vitousek, Andrew Kent, Jeremy G. Siek, and Jim Baker. 2014. Design and Evaluation of Gradual Typing for

python. In DLS. 45–56.

Michael M. Vitousek, Jeremy G. Siek, and Avik Chaudhuri. 2019. Optimizing and Evaluating Transient Gradual Typing. In

DLS. 28–41.

Michael M. Vitousek, Cameron Swords, and Jeremy G. Siek. 2017. Big Types in Little Runtime: Open-World Soundness and

Collaborative Blame for Gradual Type Systems. In POPL. 762–774.

Jiayi Wei, Maruth Goyal, Greg Durrett, and Isil Dillig. 2020. LambdaNet: Probabilistic Type Inference using Graph Neural

Networks. In ICLR.

Bang Wong. 2011. Color blindness. Nature Methods 8, 6 (2011), 441–442. https://doi.org/10.1038/nmeth.1618

Tobias Wrigstad, Francesco Zappa Nardelli, Sylvain Lebresne, Johan Östlund, and Jan Vitek. 2010. Integrating Typed and

Untyped Code in a Scripting Language. In POPL. 377–388.

Ming-Ho Yee and Arjun Guha. 2023. Do Machine Learning Models Produce TypeScript Types That Type Check?. In ECOOP.

Schloss Dagstuhl, 37:1–37:28. https://doi.org/10.4230/LIPIcs.ECOOP.2023.37

Received 2023-04-14; accepted 2023-08-27

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 241. Publication date: October 2023.

https://cs.brown.edu/research/pubs/theses/ugrad/2010/saftoiu.pdf
https://cs.brown.edu/research/pubs/theses/ugrad/2010/saftoiu.pdf
https://doi.org/10.1017/S0956796821000101
https://doi.org/10.1145/1408681.1408688
https://doi.org/10.1145/1168054.1168060
https://doi.org/10.1145/1168054.1168060
https://doi.org/10.4230/LIPICS.ECOOP.2020.8
https://doi.org/10.1038/nmeth.1618
https://doi.org/10.4230/LIPIcs.ECOOP.2023.37

	Abstract
	1 Type Migration as a Navigation Problem
	2 Navigating the Deeps and Shallows by Profiling
	3 A Rational Approach to Navigation
	4 Experiment Design
	4.1 The Rational Programmer Strategies
	4.2 Migration Lattices and their Navigation
	4.3 The Experimental Questions

	5 Results
	5.1 Experiment
	5.2 Answering QX
	5.3 Answering QX/Y

	6 Lessons for Developers and Language Designers
	6.1 Data from Individual Benchmarks
	6.2 General Lessons
	6.3 Specific Lessons
	6.4 Threats to Validity

	7 Prior Research
	8 Onward!
	Acknowledgments
	A Modifications to the GTP Benchmarks
	B Skylines Per Benchmark
	C Head to Head Per Benchmark
	References

