
Karp: A Language for NP Reductions

Chenhao Zhang
Northwestern University

USA

Jason D. Hartline
Northwestern University

USA

Christos Dimoulas
Northwestern University

USA

Abstract

In CS theory courses, NP reductions are a notorious source of
pain for students and instructors alike. Invariably, students
use pen and paper to write down reductions that łworkž
in many but not all cases. When instructors observe that
a student’s reduction deviates from the expected one, they
have to manually compute a counterexample that exposes
the mistake. In other words, NP reductions are subtle yet,
most of the time, unimplemented programs. And for a good
reason: there exists no language tailored to NP reductions.

We introduce Karp, a language for programming and test-
ing NP reductions. Karp combines an array of programming
languages techniques: language-oriented programming and
macros, solver-aided languages, property testing, higher-
order contracts and gradual typing. To validate the correct-
ness of Karp, we prove that its core is well-defined. To val-
idate its pragmatics, we demonstrate that it is expressive
and performant enough to handle a diverse set of reduction
exercises from a popular algorithms textbook. Finally, we
report the results from a preliminary user study with Karp.

CCS Concepts: · Software and its engineering → Do-

main specific languages; · Social and professional top-

ics→ Computer science education; · Theory of compu-

tation→ Problems, reductions and completeness.

Keywords: domain-specific language, solver-aided program-
ming, reduction, teaching and learning theoretical computer
science

ACM Reference Format:

Chenhao Zhang, Jason D. Hartline, and Christos Dimoulas. 2022.

Karp: A Language for NP Reductions. In Proceedings of the 43rd

ACM SIGPLAN International Conference on Programming Language

Design and Implementation (PLDI ’22), June 13ś17, 2022, San Diego,

CA, USA. ACM, New York, NY, USA, 15 pages. https://doi.org/10.

1145/3519939.3523732

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

PLDI ’22, June 13ś17, 2022, San Diego, CA, USA

© 2022 Copyright held by the owner/author(s). Publication rights licensed

to ACM.

ACM ISBN 978-1-4503-9265-5/22/06. . . $15.00

https://doi.org/10.1145/3519939.3523732

1 Introduction

A staple recipe for solving a computational problem is by re-

duction: (i) construct a translation from problem𝐴 to problem
𝐵 and (ii) compose the translation with an existing algorithm
for 𝐵. In other words, reducing from 𝐴 to 𝐵 establishes that
if 𝐵 is tractable so is 𝐴; modulo the translation, 𝐴 is at most
as hard as 𝐵.

Reductions are also useful in the other direction. Reducing
from a hard problem𝐴 to a problem 𝐵 proves that 𝐵 is at least
as hard as 𝐴. Such reductions from hard problems constitute
the backbone of the study of complexity classes; the NP-
complete class [6] was populated via a series of transitive
reductions from Sat, the canonical NP-Complete problem.
Hence, it is no surprise that reductions feature promi-

nently in theory courses (e.g. [2, 7, 20]). As an example, a
prominent online textbook on data structures and algorithms
contains a module about the so called Karp reduction from
3-Sat to Directed-Hamiltonian-Cycle. A Karp [19], or
single-call, reduction is a restriction on general Turing reduc-
tions. In this case, the Karp reduction boils down to a correct
translation from CNF formulas to graphs. For the translation
to be correct, it must map an input satisfiable(unsatisfiable)
3-CNF formula to an output graph that has a(no) directed
cycle that passes through every vertex exactly once. To en-
sure this property holds, in typical fashion, the translation
builds its output out of repeating structural patterns, dubbed
gadgets, that each encode some aspects of the input.

1 22 3 24 5 26 7 28 9 210 11 212 13 214 15 216

1 22 3 24 5 26 7 28 9 210 11 212 13 214 15 216

1 22 3 24 5 26 7 28 9 210 11 212 13 214 15 216

2s

2t

1 2

4 55

56 57 583

Figure 1. From a 3-CNF formula to a directed graph

Figure 1 shows how the reduction from the textbook turns
a 3-CNF formula with 3 variables and 8 clauses (left) into an
involved graph (right). The output graph consists of repeti-
tions of triangles and rows of vertices. The careful crafting
and stitching together of these gadgets are key for correct-
ness: the direction of each triangle allows or blocks moving
along or between the rows of vertices. Hence, arranging the
gadgets appropriately makes it possible to construct a graph

762

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3519939.3523732
https://doi.org/10.1145/3519939.3523732
https://doi.org/10.1145/3519939.3523732

PLDI ’22, June 13ś17, 2022, San Diego, CA, USA Chenhao Zhang, Jason D. Hartline, and Christos Dimoulas

with a Hamiltonian cycle if and only if the input formula
is satisfiable. Unsurprisingly, even when students have the
right intuition about how to arrange gadgets correctly, they
often fail to get all the details right. And sometimes this is
also true for instructors! In fact, the reduction from the text-
book is incorrect: the 3-Sat instance on the left of Figure 1 is
unsatisfiable while the graph on the right has a Hamiltonian
cycle as shown in Figure 2. 1

1 22 3 24 5 26 7 28 9 210 11 212 13 214 15 216

1 22 3 24 5 26 7 28 9 210 11 212 13 214 15 216

1 22 3 24 5 26 7 28 9 210 11 212 13 214 15 216

2s

2t

1 2

4 55

56 57 583

Figure 2. The Hamiltonian cycle in the constructed graph

Most such mistakes remain undetected until a reader no-
tices a deviation from a correct reduction and painstakingly
constructs by hand a counterexample; a situation that is a
direct consequence of the fact that students and instructors
alike treat reductions as mere pen-and-paper exercises. Put
differently, they miss out on decades of experience on ex-
pressing algorithms that translate between complex data
structures, which is exactly what Karp reductions are, as
programs that can be run, tested and debugged.
To rectify this missed opportunity, we introduce Karp.

Karp builds on Racket’s language-oriented programming
tradition [13] to deliver math-based vocabulary that helps
students and instructors define problems and reductions be-
tween them as programs. In addition to notation tailored to
reductions, Karp automatically tests the correctness of

reductions. To that end, from each defined problem, Karp
produces (i) contracts [14] that recognize problem instances
and their solutions; (ii) a problem instance solver and; (iii)
a problem instance generator. When programmers define a
reduction from one problem to another, Karp puts together
the corresponding derived contracts and solvers to construct
a correctness contract for the reduction. Specifically, with
the help of the solvers, the contract checks, at run time, that
given (un)solvable instances of its from-problem, the reduc-
tion produces (un)solvable instances of its to-problem. As a
final step, Karp combines the contract with the derived gen-
erator for the reduction’s from-problem to property test [5]
the correctness of the reduction.

As outlined above, the instance solvers for the from- and
to- problem of a reduction are critical pieces of the correct-
ness contract of the reduction, and hence, its property testing.

1Roughly, a correct reduction requires additional vertices in between the

bases of triangles that restrict movement from one triangle to another along

each row.

However, their manual construction is erroneous and time-
consuming. Therefore, the derivation of instance solvers
from problem definitions is key for Karp to be a practical lan-
guage for programming and testing reductions. To address
the problem of deriving instance solvers, Karp leverages the
idea of solver-aided languages pioneered by Rosette [33]. In
particular, Karp translates a problem definition to a Rosette
function that, given a concrete problem instance, symboli-
cally solves for a certificate. However, the construction of
such instance solvers from Karp problem definitions requires
care; certificates consist of data structures, such as sets and
mappings, that, in general, Rosette cannot handle symboli-
cally in a safe manner. For that, inspired by recent work on
symbolic types [4], Karp problem definitions are written in a
dedicated domain-specific typed language that translates to
Rosette code that provably treats all its symbolic expressions
in a safe manner. To enforce that code generated from prob-
lem definitions is used according to its types by the untyped
code that implements and tests reductions, Karp wraps code
generated from problem definitions with type-like contracts.
Hence, a Karp program is in-effect a mix-typed program [23,
31, 32].
Overall, Karp strives to offer students and instructors a

robust but familiar and flexible setting to experiment with
reductions. Our experience with Karp so far confirms that
it can express solutions to a wide variety of reduction exer-
cises from Kleinberg and Tardos [20]’s standard algorithms
textbook. Property testing these solutions has helped us dis-
covermistakes, including the one in the reduction from 3-Sat

to Directed-Hamiltonian-Cycle discussed above. Finally,
the experimental use of Karp during a lab-style session of
the Design & Analysis of Algorithms course at Northwestern
University has offered similarly encouraging evidence.
The remainder of the paper is organized as follows. Sec-

tion 2 gives an introduction to Karp reductions. Section 3
demonstrates the key design elements of Karp. Section 4
discusses the implementation of Karp and provides a for-
mal account of Karp’s problem definitions together with a
proof of their safe translation to Rosette. Section 5 reports
on our experience from using Karp. Section 6 places Karp
in the context of prior work on software that facilitates the
instruction of theoretical computer science. Section 7 closes
the paper with a few concluding remarks and thoughts on
future work.

2 A Crash Course on Karp Reductions

In classroom settings, Karp reduction is a common tool for
proving that a decision problem is NP-Complete. As a run-
ning example for introducing key ideas and vocabulary about
Karp reductions, this section examines the reduction from
3-Sat to Independent-Set, which proves that the latter is
NP-Hard.

763

Karp: A Language for NP Reductions PLDI ’22, June 13ś17, 2022, San Diego, CA, USA

As a decision problem, 3-Sat asks a yes or no question:
Given a 3-CNF formula 𝜑 , is there a variable assignment that

satisfies 𝜑?. This question can be cast into a generic form
that is common for all NP problems: given an instance of
the problem in hand, is there a certificate for the instance
that is accepted by a polynomial time certificate verifier
for the problem? For 3-Sat, (i) an instance 𝑎 is a structure
⟨𝜑⟩ with one field, the 3-CNF formula 𝜑 ; (ii) a certificate
𝑐𝑎 is a mapping from the variables of 𝜑 to Booleans; and
(iii) the certificate verifier 𝑉 3-SAT (𝑎, 𝑐𝑎) is a function that
checks whether, for every clause 𝐶 ∈ 𝜑 , there exists a literal
𝑙 ∈ 𝐿𝑖𝑡𝑒𝑟𝑎𝑙𝑠 (𝐶) that is true according to 𝑐𝑎 . In other words,
a description of instances and certificates, and the certificate
verifier are sufficient to formally define 3-Sat, or any other
NP problem.
For example, a formal definition of Independent-Set is:

(i) an instance𝑏 has the shape ⟨𝐺,𝑘⟩where𝐺 is an undirected
graph and 𝑘 is a natural number; (ii) a certificate 𝑐𝑏 is a
subset of the vertices of 𝐺 ; and (iii) the certificate verifier
𝑉 I-SET (𝑏, 𝑐𝑏) checks whether |𝑐𝑏 | ≥ 𝑘 and for all pairs of
vertices 𝑢, 𝑣 that are neighbors in 𝐺 , 𝑢 and 𝑣 are not both in
𝑐𝑏 .

Given these definitions of 3-Sat and Independent-Set, a
proof by reduction that Independent-Set is NP-Hard boils
down to the construction of three algorithms:

1. A polynomial-time forward instance construction 𝑓
that consumes a 3-Sat instance 𝑎 and produces an
Independent-Set instance 𝑏. The construction is cor-
rect if 𝑎 is a yes-instance, i.e., there exists 𝑐𝑎 such that
𝑉 3-SAT (𝑎, 𝑐𝑎) = 𝑡𝑟𝑢𝑒 , if and only if 𝑏 is a yes-instance,
i.e., there exists 𝑐𝑏 such that 𝑉 I-SET (𝑏, 𝑐𝑏) = 𝑡𝑟𝑢𝑒 .

2. A forward certificate construction𝑔𝑓 that consumes an
instance𝑎 and a certificate 𝑐𝑎 and produces a certificate
𝑐𝑏 = 𝑔𝑓 (𝑎, 𝑐𝑎) of the instance 𝑏 = 𝑓 (𝑎).

3. A backward certificate construction ℎ𝑓 that consumes
an instance 𝑎 and a certificate 𝑐𝑏 of the instance 𝑏 =

𝑓 (𝑎) and produces a certificate 𝑐𝑎 = ℎ𝑓 (𝑎, 𝑐𝑏) of 𝑎.

The first algorithm, the forward instance construction, is the
Karp reduction itself. The other two are the proof that the
reduction is correct: it maps yes-instances to yes-instances
(step 2) and no-instances to no-instances (contrapositive of
step 3).
Figure 3 demonstrates with pictures how a standard for-

ward instance construction 𝑓 turns a 3-Sat instance 𝑎 = ⟨𝜑⟩

into an Independent-Set instance 𝑏 = ⟨𝐺,𝑘⟩ in three steps.
The first step creates the set of vertices 𝑉 of 𝐺 . Specifically,
𝑉 = {𝑣𝑙,𝑖 | 𝑙 ∈ 𝐿𝑖𝑡𝑒𝑟𝑎𝑙𝑠 (𝐶𝑖),𝐶𝑖 ∈ 𝐶𝑠} where 𝐶𝑠 is the set of
clauses of𝜑 and 𝑙 ranges over the literals of a clause𝐶𝑖 . Hence,
each vertex in𝑉 corresponds to a literal in𝜑 . The second step
adds an initial batch of edges 𝐸1 to 𝐺 . In particular, it adds
one edge between two vertices in 𝑉 that correspond to liter-
als from 𝜑 with the same variable but opposite sign. That is,
𝐸1 = {(𝑣𝑙1,𝑖 , 𝑣𝑙2, 𝑗) | 𝑙1 ∈ 𝐿𝑖𝑡𝑒𝑟𝑎𝑙𝑠 (𝐶𝑖), 𝑙2 ∈ 𝐿𝑖𝑡𝑒𝑟𝑎𝑙𝑠 (𝐶 𝑗),𝐶𝑖 ∈

𝐶𝑠,𝐶 𝑗 ∈ 𝐶𝑠 if 𝑙1 is the negation of 𝑙2}. The third step cre-
ates the final set of edges 𝐸2 that connect the vertices of
𝐺 that correspond to the literals of a clause 𝐶𝑖 in 𝜑 . Hence,
𝐸2 = {(𝑣𝑙1,𝑖 , 𝑣𝑙2,𝑖) | 𝑙1, 𝑙2 ∈ 𝐿𝑖𝑡𝑒𝑟𝑎𝑙𝑠 (𝐶𝑖) 𝑖 𝑓 𝑙1 ≠ 𝑙2}.
In essence, edges in 𝐸1 prevent any pair of vertices that

correspond to a literal and its negation from being members
of an independent set for𝐺 . At the same time, edges in 𝐸2 en-
sure that for every clause, there is at most one vertex in 𝐺 ’s
independent set. Consequently, the maximum independent
set of 𝐺 consists of as many vertices as the clauses 𝐶𝑠 of 𝜑 .
When 𝜑 has a satisfying assignment, the assignment renders
true at least one literal in each clause of 𝜑 , which implies that
𝐺 has an independent set of size |𝐶𝑠 | which is equal to |𝐶𝑠 |,
and vice versa. Putting all the pieces together, the resulting
independent set instance is 𝑏 = ⟨(𝑉 , 𝐸1 ∪ 𝐸2), |𝐶𝑠 |⟩. Proving
the correctness of this construction requires mapping cer-
tificates for 3-Sat instances to those of Independent-Set
instances and vice versa.

2

3

1

Figure 3. From a 3-Sat to an Independent-Set instance.

As foreshadowed above, a 3-Sat certificate 𝑐𝑎 corresponds
to the vertices of the Independent-Set instance 𝑏 = 𝑓 (𝑎)

that form an independent set of size |𝐶𝑠 |. Since a satisfying
assignment implies the existence of at least one true literal in
each𝐶𝑖 and an assignment cannot render true a literal and its
negation, the vertices of𝐺 that correspond to one of the true
literals of each𝐶𝑖 form an independent set whose size is |𝐶𝑠 |.

764

PLDI ’22, June 13ś17, 2022, San Diego, CA, USA Chenhao Zhang, Jason D. Hartline, and Christos Dimoulas

Precisely, given a 3-Sat certificate 𝑐𝑎 an Independent-Set

certificate is {𝑣𝑙𝐶𝑖
,𝑖 |𝐶𝑖 ∈ 𝐶𝑠} where 𝑙𝐶𝑖

is one of the literals

of 𝐶𝑖 such that either: (i) 𝑙𝐶𝑖
is positive and 𝑐𝑎 maps its un-

derlying variable to true; or (ii) 𝑙𝐶𝑖
is negative and 𝑐𝑎 maps

its underlying variable to false. Concretely, for the example
from Figure 3, the forward certificate construction 𝑔𝑓 can
turn any certificate 𝑐𝑎 that maps 𝑥1 and 𝑥4 to true to the set
of vertices 𝑣𝑥1,1 and 𝑣𝑥4,2.

In the opposite direction, a backward certificate construc-
tion ℎ𝑓 constructs a satisfying assignment for 𝑎 out of the
literals that correspond to the vertices in 𝑐𝑏 . If one of these lit-
erals is positive, then the assignment can map the underlying
variable to true:

𝑐𝑎 (𝑥) =

{

𝑡𝑟𝑢𝑒 𝑥 ∈ 𝑇

𝑓 𝑎𝑙𝑠𝑒 𝑥 ∈ 𝑉𝑎𝑟𝑠 (𝜑) \𝑇

where

𝑇 = {𝑥 | 𝑥 ∈ 𝑉𝑎𝑟𝑠 (𝜑), 𝑣𝑙𝑖 ,𝑖 ∈ 𝑐
𝑏, 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝑙𝑖),𝑉𝑎𝑟𝑂 𝑓 (𝑙𝑖 , 𝑥)}.

As a final remark, a common mistake is the omission of all
or some of the edges from step 3 of the forward instance con-
struction from 3-Sat to Independent-Set. These edges form
triangle gadgets that are important for establishing a proof
of correctness of the above reduction. Figure 4 shows why.
Due to the absence of the triangle gadgets, the reduction also
translates the 3-Sat instance ⟨(𝑥1∨¬𝑥2∨𝑥3)∧(¬𝑥1∨𝑥2∨𝑥4)⟩
to a graph that has an independent set of size 2. However,
the proof of correctness of the reduction falls apart because
of the backward certificate construction: it turns the cer-
tificate for the given Independent-Set instance into a non-
certificate for the corresponding 3-Sat instance. Specifically,
the resulting assignment fails to satisfy the clause 𝐶2 of the
3-Sat instance as shown in Figure 4. In fact, this reduction is
wrong and there is no backward certificate construction that
translates all Independent-Set certificates back to 3-Sat

certificates.

Figure 4. A wrong reduction from 3-Sat to
Independent-Set.

3 Karp by Example

We demonstrate programming in Karp by revisiting the re-
duction from 3-Sat to Independent-Set from Section 2.
Along the way, we discuss the rationale of Karp’s design.
Overall, the structure of the Karp version of the reduction

mirrors the structure of the exposition in Section 2 to demon-
strate how Karp’s design and notation create a familiar lin-
guistic setting for algorithms students and instructors.

3.1 Decision Problems in Karp

In Karp, programmers use karp/problem-definition, a
small typed language, to define new problems. The type
system helps Karp programmers avoid simple mistakes when
defining new problems, but as mentioned in Section 1 and
discussed in detail in Section 4, it also plays a significant role
in the correctness of karp/problem-definition.
The central construct of karp/problem-definition is

decision-problem that names a decision problem and out-
lines the shape of its instances and certificates. For example,
in Figure 5, it (i) binds the defined 3-Sat problem to the iden-
tifier 3sat; (ii) specifies that its instance is a data structure
whose single field 𝜑 is a 3-CNF formula and (iii) describes
that its certificate is a finite map from the set of variables
of 𝜑 to the set of booleans. When defining problems, Karp
programmers have at their disposal a collection of libraries
for data structures such as CNF formulas, finite maps and
graphs that are staple ingredients ofNP-Complete problems.
In the specific case of 3-Sat, the cnf and mapping libraries
contribute the relevant constructors and accessors for the
corresponding data structures that appear in the body of
decision-problem.

#lang karp/problem-definition

(require karp/lib/cnf

karp/lib/mapping)

(decision-problem #:name 3sat

#:instance ([𝜑 is-a (cnf #:arity 3)])

#:certificate (mapping

#:from (variables-of 𝜑)

#:to (the-set-of boolean)))

; 3-SAT verifier definition

(define-3sat-verifier a c^a

(∀ [c ∈ (clauses-of (𝜑 a))]

(∃ [l ∈ (literals-of c)]

(or

(and

(positive-literal? l)

(c^a (underlying-var l)))

(and

(negative-literal? l)

(not (c^a (underlying-var l))))))))

Figure 5. 3sat.karp: 3-Sat problem definition

The use of decision-problem in Figure 5 produces a
new specific form for defining the verifier for 3-Sat in Karp:

765

Karp: A Language for NP Reductions PLDI ’22, June 13ś17, 2022, San Diego, CA, USA

define-3sat-verifier. It consumes a 3sat instance a and
a 3sat certificate c^a, and its body describes when c^a is in-
deed a certificate of a. The body of define-3sat-verifier
matches exactly the description of the 3-Sat verifier from
Section 2. Most importantly, the verifier description is declar-
ative and uses math-inspired notation that mimics a pen-and-
paper definition of a 3-Sat verifier. In general, verifiers in
Karp are written in a subset of first-order predicate logic and,
by construction, they are polynomial time with respect to
the size of their arguments.

Analogous to Figure 5 and 3-Sat, Figure 6 depicts the prob-
lem definition for Independent-Set. It uses Karp’s graph
library and specifies an iset instance as a data structure
with two fields: an undirected graph G and a natural num-
ber k. The certificate of an iset instance is a subset of the
vertices of G. The verifier for iset checks two conditions: (i)
the size of the certificate c^b is greater than or equal to the
k field of the input instance and (ii) for all pairs u and v of
neighbors in G, 𝑢 and 𝑣 are not both in 𝑐𝑏 . Overall, same as
for 3sat, the definition of iset matches closely the content
and notation of the description of Independent-Set from
Section 2.

#lang karp/problem-definition

(require karp/lib/graph)

(decision-problem

#:name iset

#:instance ([G is-a (graph #:undirected)]

[k is-a natural])

#:certificate (subset-of (vertices-of G)))

; INDEPENDENT-SET verifier definition

(define-iset-verifier b c^b

(define g (G b))

(and

(>= (set-size c^b) (k b))

(∀ [u ∈ (vertices-of g)]

(∀ [v ∈ (neighbors g u)]

(not (and (set-∈ u c^b)

(set-∈ v c^b)))))))

Figure 6. iset.karp: Independent-Set problem definition

In addition to define-X-verifier, decision-problem
produces a collection of utilities that are necessary for writ-
ing and testing reductions in Karp about a defined problem
X. The instance constructor create-X-instance expects ar-
guments that comply with the shape of the pieces of an
instance and produces instances that are recognized by the
instance contract X-instance/c. The contract combinator
X-certificate/c consumes an X instance and produces a
contract that recognizes certificates of the appropriate shape.
For instance, given a 3sat instance, 3sat-certificate/c

returns a contract that recognizes mappings from the vari-
ables of the instance to the booleans. The instance genera-
tor generate-X-instance is derived from the shape of the
definition of X and hand-rolled generators for the data struc-
tures from the libraries that come with Karp. Specifically,
generate-iset-instance generates a graph using the gen-
erator from graph library and packages it together with a
natural k in an iset instance using create-iset-instance.

The define-X-verifier construct contributes two more
important utilities: X-verifier and X-solver. The first is
the expected verifier for problem X. The second is an instance
solver that given an instance x of X returns a certificate for
x. To produce the second function, Karp compiles the body
of define-X-verifier to a Rosette function that given an
instance solves for a certificate. We return to the compilation
from Karp to Rosette in Section 4; herein we focus on how
Karp programs use these utilities.

As a final note about the utilities from decision-problem

and define-X-verifier, all these functions are protected
appropriately with the derived contracts from decision-

problem, which reject ill-formed instances and certificates.
Taking a leaf out of the book of gradual typing [23, 30, 31,
32], the contracts protect these functions that are produced
by the typed definition language from their unsafe use in
code written in the reduction language, which is untyped.

3.2 Reductions in Karp

The untyped reduction language, karp/reduction, comes
with three main forms. Each of them corresponds to one
of the three constructions of a reduction and its proof as
described Section 2. First, the define-forward-instance-
construction form consumes the names of from- and to-
problem of the reduction, and its body defines a function that
translates an instance of the from-problem to an instance of
the to-problem.
The body of this form (and of the other two forms) is

written in a simple terminating language that can only ex-
press polynomial time algorithms with respect to the size
of the form’s instance and certificate arguments. Specifi-
cally, the body consists of comprehensions over finite data
structures or numbers (akin to for-loops), and local defini-
tions that bind first-order data such as pieces of the given
instance of the from-problem or the results of the compre-
hesions, and calls to a restricted set of primitive operations
on numbers. Moreover, in order to emphasize the distinc-
tion between polynomial time and pseudo-polynomial time
algorithms, karp/reduction treats differently cardinal num-
bers (for counting the size of sets) such as the k field of the
problem definition for Independent-Set from Figure 6, and
general numbers (whose size is equal to the length of their bi-
nary representation).2 In detail, karp/reduction disallows

2By default, all numbers are cardinal except explicitly annotated numerical

fields of numerical problems, e.g. Subset-Sum

766

PLDI ’22, June 13ś17, 2022, San Diego, CA, USA Chenhao Zhang, Jason D. Hartline, and Christos Dimoulas

comprehensions on general numbers, and as a result, pseudo-
polynomial enumerations. The accompanying technical re-
port [36] provides a formal model of karp/reduction to-
gether with a cost semantics and a proof of the asymptotic
complexity bounds of the algorithms karp/reduction can
express.

#lang karp/reduction

(require "3sat.karp"

"iset.karp"

karp/lib/cnf

karp/lib/graph

karp/lib/mapping-reduction)

(define-forward-instance-construction

#:from 3sat #:to iset

(3sat->iset a)

(define Cs (clauses-of (𝜑 a)))

; create the set of vertices (Fig. 1 Step 1)

(define V (for/set {(el l i)

for [l ∈ C]

for [(C #:index i) ∈ Cs]}))

; create a 1st set of edges (Fig. 1 Step 2)

(define E1

(for/set

{((el l1 i) . -e- . (el l2 j))

for [l1 ∈ (literals-of C1)]

for [l2 ∈ (literals-of C2)]

for [(C1 #:index i) ∈ Cs]

for [(C2 #:index j) ∈ Cs]

if (literal-neg-of? l1 l2)}))

; create a 2nd set of edges (Fig. 1 Step 3)

(define E2

(for/set

{((el (fst p) i)

. -e- . (el (snd p) i))

for [p ∈ (all-pairs-in

(literals-of C))]

for [(C #:index i) ∈ Cs]}))

(create-iset-instance

([G (create-graph V (set-∪ E1 E2))]

[k (set-size Cs)])))

Figure 7. 3-Sat to Independent-Set forward instance
construction in Karp

Figure 7 depicts the definition of the forward instance con-
struction for the reduction from 3-Sat to Independent-Set.
In detail, the function 3sat->iset extracts the set of clauses
Cs from the field 𝜑 of its argument a and uses them to con-
struct the vertices and edges of an iset instance. The con-
struction follows faithfully the corresponding three-step con-
struction from Section 2. For the first step, comprehension

for/set builds the set of vertices of a graph by creating
abstract set elements (el l i) out of the literals l of the
clauses C in Cs. The comprehension also enumerates the
clauses C and embeds the index i of each clause in the ver-
tices of its literals to distinguish appearances of the same
literal in different clauses. For the second step, a for/set

comprehension builds a first set of edges by creating vertices
same as the previous step and packaging them with the edge
constructor -e- from Karp’s graph library if the underlying
literals are a negation of each other. The third step makes
the triangle gadgets by creating edges for all pairs of literals
of each clause in Cs similar to the previous step. Finally, the
create-3sat-instance constructor collects all these pieces
in a new iset instance.
The define-forward-certificate-construction and

define-backward-certificate-construction forms de-
fine the two certificate constructions from Section 2 that
prove the correctness of a reduction. The forms consume the
names of the from- and to- problem of the reduction, and
their body defines a function of three arguments. For the for-
ward certificate construction, the three arguments are a for-
ward instance construction, an instance of the from-problem
and a certificate for that instance. The forward certificate
construction uses its arguments to compute a certificate
for the to-problem instance obtained by applying the given
forward instance construction on the given from-problem
instance. Analogously, the three arguments of the backward
certificate construction are a forward instance construction,
an instance of the from-problem and a certificate for the to-
problem instance translated from the from-problem instance
via the given forward instance construction. The function
uses the three arguments to compute a certificate for the
given from-problem instance. In other words, the forward
and backward certification constructions in Karp reflect their
math counterparts from Section 2.
Figure 8 shows the definition of the forward certificate

construction for the 3-Sat to Independent-Set reduction
in Karp. Following the corresponding construction from Sec-
tion 2, the function 3sat->iset->>-cert constructs a set
of vertices out of literals of the 3sat instance a that the cer-
tificate c^a maps to true. To achieve this, the function uses
the find-one comprehension to obtain a single literal from
each clause that satisfies the above property. Then it bundles
the literal together with the index of the clause it appears in
in an abstract element to form a vertex.
We omit the Karp code for the backward certificate con-

struction; the interested reader can find the complete code
for this reduction in the accompanying technical report.

3.3 Property Testing Reductions in Karp

Central to the design of Karp is that reductions are programs,
and hence, should be tested. In general, the correctness of a
reduction can be tested two ways. First, since a reduction is
correct if and only if its forward instance construction maps

767

Karp: A Language for NP Reductions PLDI ’22, June 13ś17, 2022, San Diego, CA, USA

#lang karp/reduction

(require "3sat.karp"

"iset.karp"

karp/lib/cnf

karp/lib/graph

karp/lib/mapping-reduction)

(define-forward-certificate-construction

#:from 3sat #:to iset

(3sat->iset->>-cert f a c^a)

(for/set

{(el (find-one [l ∈ C] s.t.

(or (and

(positive-literal? l)

(c^a (underlying-var l)))

(and

(negative-literal? l)

(not

(c^a (underlying-var l))))))

i)

for [(C #:index i) in (𝜑 a)]}))

Figure 8. 3-Sat to Independent-Set forward certificate
construction in Karp

(no)yes-instances of the from-problem of the reduction to
(no)yes-instances of the to-problem, we can test the instance
construction. Second, since a proof of the correctness of a
reduction is the existence of forward and backward certifi-
cate constructions that translate a certificate for an instance
of the from-problem of the reduction to a certificate for the
translated instance of the to-problem and vice versa, we can
test the certificate constructions. The reduction language of
Karp comes with an automated property testing procedure,
check-reduction, that tests both the instance construction
and the two certificate constructions. Put differently, Karp
tests both the correctness of a reduction and its alleged proof
of correctness.
In more detail, the check-reduction construct of the

karp/reduction language consumes the names of the form-
and to-problem of a reduction along with the forward in-
stance construction, and the forward and backward certifi-
cate construction. For instance, the following snippet prop-
erty tests the 3-Sat to Independent-Set reduction from this
section:

(check-reduction #:from 3sat #:to iset

3sat->iset

3sat->iset->>-cert

3sat->iset-<<-cert)

When run, this call to check-reduction initiates a number
of rounds of testing3 and each round of testing proceeds as
follows:

1. The generator generate-3sat-instance produces a
3sat instance a.

2. The instance solver 3sat-solver returns a certificate
c^a for a or declares it as a no-instance.

3. The forward instance construction 3sat->iset trans-
lates a to an iset instance b.

4. The instance solver iset-solver attempts to find a
certificate c^b for b. If it can not find one, it declares b
a no-instance.

5. If a and b are not both yes- or no-instances the cur-
rent round of testing has discovered an issue with the
reduction because it detected a violation of the first
correctness criterion. Hence, the testing procedure ter-
minates and reports a as a counterexample.

6. If a and b are both no-instances, the current round of
testing has succeeded and another one with a different
3sat instance can begin.

7. If a and b are both yes-instances, the testing procedure
moves to examining the second correctness criterion.
For that, the forward certificate construction 3sat-

>iset->>-cert translates c^a to a candidate iset

certificate c1 for b, and the verifier iset-verifier
checks whether c1 is indeed a certificate for b.

8. If c1 is not a certificate for b, the current round of
testing has discovered an issue with the reduction be-
cause it detected a violation of the second correctness
criterion. Hence, the testing procedure terminates and
reports a as a counterexample.

9. If c1 is a certificate for b, the backward certificate
construction 3sat->iset<<-cert translates c^b to a
candidate 3set certificate c2 for a, and the verifier
3set-verifier checks whether c2 is indeed a certifi-
cate for a.

10. If c2 is not a certificate for a, the current round of
testing has discovered an issue with the reduction be-
cause it detected a violation of the second correctness
criterion. Hence, the testing procedure terminates and
reports a as a counterexample.

11. If c2 is a certificate for a,the current round of testing
has succeeded and another one with a different 3sat
instance can begin.

The above procedure relies on the contracts that are de-
rived from the from- and to-problem definitions. Verifiers
and solvers are produced by karp/problem-definition,
which is typed, but the testing process supplies to them the
results of the untyped instance and certificate constructions.
These results may be ill-formed; they may not conform to
the expected shape of instances and certificates that the code

3The default is 10 but it can be configured with an optional argument of

check-reduction that we leave out herein for simplicity.

768

PLDI ’22, June 13ś17, 2022, San Diego, CA, USA Chenhao Zhang, Jason D. Hartline, and Christos Dimoulas

of verifiers and solvers expects. Hence, the contracts that
recognize instances and certificates enforce the expected
type-level invariants at the boundary between verifiers and
solvers, and the rest of the reduction code. When the con-
tracts discover that an instance or certificate is ill-formed,
the testing procedure terminates and reports which of the in-
stance and certificate constructions is buggy along with the
arguments to the construction that make the bug manifest.
Besides the instance and certificate contracts, the qual-

ity of the results of the testing procedure depends on the
quality of the instance generators that are derived from the
definition of the from-problem of the reduction. Specifically,
it is necessary that the generators produce both yes- and
no-instances for a problem in order for the testing procedure
to exercise the first correctness criterion properly. However,
due to the variety of decision problems, this is a challenging
task. For example, graphs with way more edges than ver-
tices are more likely to include a Hamiltonian cycle than an
independent set. Put differently, the łsemanticsž rather than
the structure of a decision problem determines the strategy
for generating an effective set of instances, which makes
difficult the derivation of effective generators from problem
definitions.
To mitigate this issue, Karp takes two counter-measures.

The first has been already discussed: check-reduction tests
both the correctness of the reduction and its alleged proof
even though the two ways of testing the reduction exercise
the same notion of correctness. However, a testing procedure
that checks for correctness both ways increases its chances
of discovering an incorrect reduction. For example, check-
reduction can discover the wrong reduction from Figure 4
either at step 5 or step 10 of a testing round.
As a second counter-measure, Karp comes with highly-

fined tuned generators for built-in data structures such as
CNF formulas and graphs. For example, the generator of the
CNF library produces both satisfiable and unsatisfiable for-
mulas. Similarly, the generator of the graph library produces
a mix of graphs with cycles, cliques, isolated components etc.
Moreover, to keep testing reductions betweenNP-Complete
problems tractable, the built-in generators take advantage
of known size thresholds for which random instances of a
data structure are highly likely to either satisfy or not sat-
isfy a given property. For example, random 3-CNF formulas
with 𝑚 clauses and 𝑛 variables are highly likely to be ei-
ther satisfiable or unsatisfiable when the ratio𝑚/𝑛 is around
4.36 [8, 35]. Buidling on the fine-tuned built-in generators,
Karp derives an instance generator for a problem based on
the structure of the problem’s definition. Such derived gen-
erators are effective for testing most reductions Ð Section 5
provides evidence of the pragmatic value of the derived gen-
erators and the out-of-the-box use of check-reduction for
discovering incorrect reductions. For reductions where the
out-of-the-box generators are not effective, Karp also offers
a small language for the definition of custom generators.

4 Karp under the Hood

Karp’s problem definition and reduction languages are łlittlež
languages built with Racket’s language-oriented program-
ming infrastructure [13]. This makes it possible for the two
languages to inter-operate; a Karp program that defines two
decision problems, spells out a reduction between them and
tests the reduction is really a Racket program in disguise.
In detail, the constructs and forms of the two languages are
a mere domain-specific syntactic veneer on top of regular
Racket data structures, functions and contracts implemented
with Racket macros [15]. The design and implementation of
the macros mostly follows well-known patterns and recipes.
For instance, the implementation of the simple type system
of karp/problem-definition is an adapation of the tech-
nique for building type systems with macros [11]. After the
expansion [16] of the macros all that is left is plain Racket
code.4

The exception to the above rule is the implementation of
the macro define-X-verifier, which as Section 3 explains
is produced itself by a use of the macro decision-problem

that defines problem X. A use of define-X-verifier, such
as the one in Figure 5, expands into two functions and binds
them to the identifiers X-verifier and X-solver respec-
tively. The first function is a Racket predicate that checks if
its certificate argument is indeed a certificate for its problem
instance argument. The second one is a Rosette function.
Rosette [33] consists of a language that extends a core

of Racket with constraint solving utilities, and a symbolic
virtual machine that evaluates programs (symbolically) to
logical constraints. In more detail, a Rosette program can
declare symbolic variables, state an assertion that involves
some of these symbolic variables, and ask Rosette to solve,
if possible, the assertion to obtain concrete values for its
variables that make the assertion evaluate to true. Rosette’s
virtual machine attempts to translate the program to an
appropriate formula and asks a constraint solver, such as
Z3 [24], if there is an assignment of concrete variables that
satisfies the formula, and hence, makes the program’s asser-
tion true. Assertions in Rosette programs can use regular
Racket functions whose bodies, same as any other code in
a Rosette program, Rosette’s virtual machine attempts to
interpret symbolically. At the same time, since Rosette is just
another language in the Racket universe, Racket programs
can call any Rosette function.
Karp takes advantage of exactly this interoperation be-

tween Rosette and Racket to obtain an instance solver for
a problem X. A use of define-X-verifier expands to a
Rosette function X-solver that has a concrete instance ar-
gument, declares symbolic variables for the certificate of the
instance, asserts that the body of the verifier has to be true
and calls Rosette’s solve on the assertion. Rosette’s virtual

4In fact, the built-in libraries of Karp are written directly in Racket.

769

Karp: A Language for NP Reductions PLDI ’22, June 13ś17, 2022, San Diego, CA, USA

machine interprets the body, along with any Racket func-
tions it calls, to produce a query to the constraint solver for
a value of the symbolic certificate that makes the assertion-
body of define-X-verifier true. The resulting instance
solver X-solver can be called by any Racket code, including
the correctness contract of a reduction that involves prob-
lem X, and transitively Karp’s testing procedure while it is
property testing the correctness of a reduction from or to X.
However, there is a caveat. The types of Rosette’s sym-

bolic variables are limited to those that constraint solvers
support while the types of symbolic certificates include the
unsupported types of mappings, sets, and graphs. The imple-
mentation of Karp works around this issue by encoding its
data structures as Racket’s functional hash tables, dubbed
hashes. For example, a Karp set is represented as a hash
from the elements of its concrete domain to true or false;
true if the element is in the set and false otherwise. Hence,
Karp represents a symbolic certificate as a concrete hash
whose range consists of symbolic boolean variables. In gen-
eral terms, given that certificates of NP problems are always
finite and constrained by a known concrete data structure,
in order to solve a given problem instance, Karp encodes
a symbolic certificate using the above technique and, via
Rosette’s solve, issues queries to a constraint solver that
reference the symbolic boolean variables from the encoding
of the symbolic certificate. In terms of a concrete example,
the certificate of a Independent-Set is a subset of the set
of vertices of a concrete Independent-Set instance. Hence,
Karp encodes it as a hash from the vertices of the instance
to symbolic boolean variables and calls Rosette’s solve to
determine which vertices need to be included in the certifi-
cate.
Alas, hashes are not part of safe Rosette, i.e., the core of

Racket that Rosette’s virtual machine can interpret symbol-
ically. When the Rosette symbolic interpreter encounters
a call to a hash lookup, such as (hash-ref hash key), it
delegates to the runtime of Racket whose behavior, is unde-
fined when key is a symbolic value, i.e., an expression that
contains symbolic variables and cannot be interpreted by
Rosette’s virtual machine further.
To turn the bodies of verifiers to Rosette code with well-

defined behavior, the implementation of Karp generates uses
of unsafe Rosette operations only when it can prove that
they are safe. Otherwise, it elaborates them to code that
is safe for Rosette but that, in contrast to the sub-linear
asymptotic complexity of a hash lookup, has suboptimal
linear asymptotic complexity with respect to the size of the
hash. For instance, if the implementation of Karp cannot
prove that (set-∈ x S) is safe, i.e., x is a concrete value,
then it generates safe code that searches linearly through
the hash representation of S instead of performing a hash
lookup directly.

𝐾

p = (solve pd (instance [𝑥 = data] . . . [𝑥 = data]))

pd = (𝑒 where (instance [𝑥 : 𝑖𝑠𝑝𝑒𝑐] . . . [𝑥 : 𝑖𝑠𝑝𝑒𝑐])

(certificate [𝑥 : 𝑐𝑠𝑝𝑒𝑐]))

𝑐𝑠𝑝𝑒𝑐 = Int | Bool | (subset-of 𝑥) | (element-of 𝑥)

| (mapping 𝑥 𝑐𝑠𝑝𝑒𝑐)

𝑖𝑠𝑝𝑒𝑐 = 𝑐𝑠𝑝𝑒𝑐 | (set 𝑖𝑠𝑝𝑒𝑐) | Symbol | (mapping 𝑥 𝑖𝑠𝑝𝑒𝑐)

𝑒 = . . .

data = . . .

𝜏 = Int | Bool | Symbol | (SetOf 𝜏) | (Map 𝜏 𝜏)

Figure 9. Syntax of 𝐾

To validate this approach, we have developed 𝐾 , a formal
model of karp/problem-definition, together with a type-
driven translation from𝐾 to 𝑅, a formal model of safe Rosette
extended with hashes. To prove the correctness of 𝐾 , we
show that well-typed 𝐾 programs translate to 𝑅 programs
that use unsafe operations such as hash lookups in a safe
manner. In technical terms, inspired by Chang et al. [4],
𝑅 has a concreteness-aware type system that distinguishes
between expressions that evaluate to concrete and symbolic
values and that guarantees that well-typed 𝑅 programs avoid
uses of symbolic values that endanger the safety of unsafe
operations. Hence, the correctness of 𝐾 follows from the fact
that the translation maps well-typed 𝐾 programs to well-
typed 𝑅 ones. The remainder of this section outlines the
formal development; the complete definitions and proofs are
in the accompanying technical report.

4.1 𝐾 , A Core Karp Problem Definition Language

Figure 9 shows the most interesting elements of the syntax
of 𝐾. The top-level of a program in 𝐾 represents a call to an
instance solver derived from a problem definition and veri-
fier. In detail, a program p consists of a problem definition pd
and a problem instance (instance [𝑥1 = data1] . . . [𝑥𝑛 =

data𝑛]). The problem definition pd has access to the fields
𝑥1, ..., 𝑥𝑛 of the problem instance, and bundles up the body
of a verifier 𝑒 with the specification of the corresponding
decision problem. The body of a verifier 𝑒 , omitted from Fig-
ure 9, can use operations on the integers, boolean, symbols,
sets and mappings that form the data of the given problem
instance, also omitted from the figure.

Figure 10 demonstrates the expressiveness of𝐾. It shows a
program that solves an instance of Set-Cover, the problem
that, given a set 𝑥𝐹 of subsets of a set 𝑥𝐸 , asks whether there
are at most 𝑘 elements of 𝑥𝐹 such that every element 𝑥𝑒 of
𝑥𝐸 belongs to one of these 𝑘 elements of 𝑋𝐹 .

The same as karp/problem-definition,𝐾 comes with a
standard simple type system. However, the type system also
checks statically that an instance problem given to a verifier
is well-typed, i.e., its type matches the specification of the

770

PLDI ’22, June 13ś17, 2022, San Diego, CA, USA Chenhao Zhang, Jason D. Hartline, and Christos Dimoulas

(solve

((and (<= (card 𝑥𝑐) 𝑥𝐾)

(forall (𝑥𝑒 𝑥𝐸) (exists (𝑥𝑆 𝑥𝑐) (∈ 𝑥𝑒 𝑥𝑆))))

where (instance [𝑥𝐸 : (set Symbol)]

[𝑥𝐹 : (set (subset-of 𝑥𝐸))]

[𝑥𝐾 : Int])

(certificate [𝑥𝑐 : (subset-of 𝑥𝐹)]))

(instance [𝑥𝐸 = (‘𝑥1 ‘𝑥2 ‘𝑥3 ‘𝑥4 ‘𝑥5)]

[𝑥𝐹 = (set (set ‘𝑥1 ‘𝑥2 ‘𝑥3) (set ‘𝑥2 ‘𝑥3)

(set ‘𝑥3 ‘𝑥4) (set ‘𝑥4 ‘𝑥5))]

[𝑥𝐾 = 2]))

Figure 10. A 𝐾 program solving a Set-Cover instance

fields of an instance of the corresponding problem. In the
implementation of karp/problem-definition, contracts
check that instances are well-typed at runtime as instances
are provided by the untyped reduction language.
𝐾 does not come with a semantics. Instead, 𝐾 programs

translate to 𝑅, our model of core Rosette.

4.2 𝑅, the Core Rosette Language

𝑅 has the necessary safe Rosette features in order to be an ad-
equate target language for the translation of 𝐾 programs. It
comes with integers, booleans, symbols, their usual primitive
operations and conditionals, symbolic variables of the above
data types, and symbolic unions. Moreover it offers a collec-
tion of operations for creating and manipulating hashes that
encode 𝐾 ’s sets and mappings, and their operations. Due to
lack of space, we omit a detailed discussion of the syntactic
elements of 𝑅 and their semantics and instead we focus on
𝑅 hashes.

Hashes in 𝑅 are of the form (hash struct [𝑒𝑘 𝑒𝑣] ...) where
the tag struct is either Set orMap to allow 𝑅 to distinguish
whether a hash represents a 𝐾 set or a mapping. The se-
mantics of 𝑅 uses the tag of a hash to determine how to
simplify symbolic unions of hashes. The latter simplifica-
tions perform the so-called merging of symbolic values that
is critical for avoiding path explosion during symbolic in-
terpretation [27, 33], and its details depend on whether the
hashes to be merged represent sets or mappings. Similarly,
the tags determine how 𝑅 compares hashes for equality as
this operation is meaningful only between hashes that rep-
resent the same kind of 𝐾 data structure.
𝑅 offers two lookup operations for hashes. The first one,

(hash-ref ℎ 𝑘), is akin to Racket’s hash lookup and it’s
behavior is not defined when 𝑘 is a symbolic value. Second,
(hash-branchℎ 𝑘), aims to allow hash lookups for symbolic
keys, and in essence evaluates to an expression that inspects
all keys 𝑘 ′ of ℎ, compares them one by one with the symbolic
𝑘 , and calls (hash-ref ℎ 𝑘 ′) for the first𝑘 ′ that is equal to𝑘 . In
other words, when 𝑘 is a symbolic value, (hash-branchℎ 𝑘)
results in a symbolic union that search linearly through the
keys of ℎ.

The type system of 𝑅 is concreteness-aware. A type of
an 𝑅 expression consists of two parts: a concreteness tag
T and a base type 𝜏𝑏. The tag can be either concrete • or
symbolic ◦, and serves as a conservative overapproximation
of whether an expression evaluates to a concrete or a sym-
bolic value. The base type is standard simple type. The type
system ensures that an expression with the tag • always
evaluates to a concrete value of the appropriate simple type.
In contrast, the result of an expression that typechecks to
a type with the tag ◦ is not necessarily symbolic; it can be
either a concrete or symbolic value of the appropriate type.
Most other aspects of the type system are standard except
that it rejects programs where expressions whose type has
the tag ◦ appear at positions where only concrete values are
expected. For instance, the type system rejects a program
with an expression (hash-ref ℎ 𝑘) where 𝑘 has a type with
the tag ◦.
The (reduction) semantics of 𝑅 models the symbolic exe-

cution of programs in core Rosette. In particular, it attempts
to evaluate a program to a query that can be issued to a
constraint solver, but does not model the interaction with
the solver. Formally the semantics induces an evaluation
function that for any program gives one of three results: (i)
the program evaluates to a concrete or symbolic value; or
(ii) it evaluates to an error; or (iii) it gets stuck. Errors are
the results of looking up nonexistent keys in hash tables. In
contrast, programs get stuck when the semantics attempts
to reduce an expression such as (hash-ref ℎ 𝑘) where 𝑘 is
symbolic, i.e., stuck expressions correspond to undefined
behavior.

The type system of 𝑅 is sound with respect to its reduction
semantics. That is, a well-typed 𝑅 program evaluates to value

or an error.

4.3 Translating 𝐾 Programs to 𝑅

The translation from 𝐾 to 𝑅 is type-driven; when it trans-
lates a 𝐾 expression, it produces not only its 𝑅 image but
also the type of the image. This enables the translation of
a 𝐾 expression, such as a mapping lookup, to inspect the
concreteness tags of the types of the images of the arguments
to the lookup, and based on the tags, to decide whether to
produce a use of the unsafe operation hash-ref or to fall
back to a use of the safe operation hash-branch. The final
result of the translation is an open 𝑅 expression, which en-
codes a query for solving an instance of a decision problem,
and an environment from the expression’s free variables to
concrete and symbolic values, which are the encodings of
the problem instance and the certificate respectively.
As an example, Figure 11 shows the result of translating

the 𝐾 program from Figure 10 to 𝑅. The interesting bit is
that the translation replaces the (∈ 𝑥𝑆 𝑥𝑐) expression with
(hash-ref-def 𝑥 ′

𝑘
𝑥𝑘 false). The hash-ref-def operation is

a variant of hash-ref that also consumes a default value,
here false, for when its 𝑥𝑘 argument is not in 𝑥 ′

𝑘
. Hence, the

771

Karp: A Language for NP Reductions PLDI ’22, June 13ś17, 2022, San Diego, CA, USA

hash lookup is unsafe unless if 𝑥𝑘 is concrete. However, the
translation can prove that 𝑥𝑘 is concrete since 𝑥𝑘 ranges over
the elements of 𝑥𝐸 , the first field of the problem instance
that the query attempts to solve. Hence, the hash lookup is
indeed safe.
As a final note on Figure 11, it also demonstrates the en-

coding of sets with hashes in Karp. The two fields of the
instance, 𝑥𝐸 and 𝑥𝐹 , turn into hashes that trivially map each
element of the two sets to true. The certificate 𝑥𝑐 , which as
a set is a subset of 𝑥𝐸 , turns into a symbolic hash that maps
the keys of 𝑥𝐸 to symbolic variables. The result of issuing the
translated query to a solver is going to be concrete values
for these symbolic variables and, hence, a selection of the
elements of 𝑥𝐸 that should appear in the certificate for the
given instance.

(and (<= (h-summap (𝑥𝑘 𝑥𝑣 𝑥𝑐) (if 𝑥𝑣 1 0)) 𝑥𝐾)

(h-andmap (𝑥𝑘 𝑥𝑣 𝑥𝐸)

(if 𝑥𝑣 (h-ormap (𝑥′
𝑘
𝑥
′
𝑣 𝑥𝑐)

(if 𝑥′𝑣 (hash-ref-def 𝑥′
𝑘
𝑥𝑘 false) false))

true)))

𝑥𝐸 ↦→ (hash Set [‘𝑥1 true] [‘𝑥2 true] [‘𝑥3 true] [‘𝑥4 true] [‘𝑥5 true])

𝑥𝐹 ↦→ (hash Set [(hash Set [‘𝑥1 true] [‘𝑥2 true] [‘𝑥3 true]) true]

[(hash Set [‘𝑥2 true] [‘𝑥3 true]) true]

[(hash Set [‘𝑥3 true] [‘𝑥4 true]) true]

[(hash Set [‘𝑥4 true] [‘𝑥5 true]) true])

𝑥𝐾 ↦→ 2

𝑥𝑐 ↦→ (hash Set [(hash Set [‘𝑥1 true] [‘𝑥2 true] [‘𝑥3 true]) 𝑏◦
1
]

[(hash Set [‘𝑥2 true] [‘𝑥3 true]) 𝑏◦
2
]

[(hash Set [‘𝑥3 true] [‘𝑥4 true]) 𝑏◦
3
]

[(hash Set [‘𝑥4 true] [‘𝑥5 true]) 𝑏◦
4
])

Figure 11. Solving an instance of Set-Cover translated to 𝑅

A key property of the translation is that it preserves typa-
bility. That is, the translation maps a well-typed 𝐾 program

to a well-typed 𝑅 program. This property together with the
soundness of the type system of𝐾 imply the central theorem
about the correctness of Karp’s problem definition language:

Theorem 1 (Uniform Evaluation for 𝐾). All well-typed 𝐾
programs have well-defined behavior, that is they either evalu-

ate to values or errors.

5 Trying Karp in Practice

We put Karp to practice to mainly answer two questions:

• Q1: Is Karp sufficiently expressive to capture a wide
range of reductions?

• Q2: Is Karp sufficiently performant to property test a
wide range of reductions and find interesting bugs?

Secondarily, we also conducted a small formative user
study to get a glimpse of what are the friction points for
programming reductions in Karp.

5.1 On the Expressiveness of Karp

To evaluate the expressiveness of Karp, we attempted to
implement a proportion of the NP-reductions from Klein-
berg and Tardos [20]’s standard algorithm textbook. We first
formulated in Karp five common reductions that appears
as examples in the text. We then solved with Karp 20 of
the 42 NP-reduction end-of-chapter exercises. From the 22
exercises that we did not solve, we conjecture that 15 are
within reach. However, seven involve reductions that cannot
be expressed in Karp as is.

Overall, we observe that the limiting expressiveness factor
for Karp is the problem definition. Hence, the rest of this sec-
tion analyzes how the design and features of karp/problem-
definition measure up against the characteristics of the
various NP-Hard problems from the book.
Set Problems. Abstractly, the certificate for a set problem is
a subset of another set that satisfies some inclusion or exclu-
sion constraints. Karp’s built-in set operations are sufficient
to define 10 problems in a similar manner to the definition
of Set-Cover from Section 4.
Problems with Labeled Objects. Karp’s finite mappings
are essential to express five problems. We encode a set of
labeled objects as a mapping from a base set to a set of
labels. In some cases, labels are numerical values such as
the start time of jobs in Interval-Scheduling. In other
cases, they can also be abstract as the color of vertices in
Graph-3-Coloring.

Basic Graph Problems. The six problems of this group
resemble Independent-Set from Section 3. Besides opera-
tions on sets, they also depend on the basic operations from
Karp’s graph library.
Path and Connectivity Problems. These seven problems
are similar to the Directed-Hamiltonian-Cycle in Sec-
tion 1 and their certificates are paths, cycles or trees which
are all represented in Karp as subgraphs. Furthermore, their
verifiers check properties of the certificates related to connec-
tivity or acyclicity. Hence, they lean on the corresponding
predicates on graphs from Karp’s graph library. The macro
expansion of these predicates to Rosette is inspired by the
way Gebser et al. [17] devise a solver for acyclicity con-
straints using off-the-shelf SAT solver.
Beyond Connectivity. Three problems are graph problems
whose certificates have constraints that are not expressible
with Karp’s graph library. Two have certificates that are
graph partitions of unspecified number of parts Ð Karp does
support though partitions of constant number of parts. The
certificate of the third requires that each vertex in the graph
meets a constraint that involves properties of other vertices
in the graph Ð such dependent properties are well outside
the expressiveness of karp/problem-definition.
Problems with Unsupported Data Types. Four additional
problems require data types such as strings, real numbers
and functions on the real line that Karp does not support.

772

PLDI ’22, June 13ś17, 2022, San Diego, CA, USA Chenhao Zhang, Jason D. Hartline, and Christos Dimoulas

Table 1. The tables report the average time of 35 runs of the testing procedure, with the first 5 dropped. ± indicates the
margin of error for the 95% confidence interval. C: classroom setting, E: evaluation setting

Reduction Key Feauture(s) Time (ms)

3Sat->3D-Matching Set 1959±56
3Sat->Directed-Hamiltonian-Cycle (3SAT->D-HC) Graph, Connectivity 8898±204
?->Directed-Edge-Disjoint-Paths (?->D-EDP) Graph, Connectivity 35641±893
?->Fully-Compatible-Configuration Graph, Mapping 8759±465
3Sat->Graph-Coloring Graph, Mapping 6236±280
3Sat->Independent-Set (3SAT->ISET) Graph 1231±19
?->Low-Diameter-Clustering Mapping 1707±67
?->Plot-Fulfillment Graph, Path 1722±165
?->Winner-Determination-for-Combinatorial-Auctions Set, Mapping 916±35
?->Diverse-Subset Set, Mapping 1109±41
?->Resource-Reservation Set 901±26
?->Strongly-Independent-Set (?->SISET) Graph 26401±889
Independent-Set->Vertex-Cover (ISET->VC) Graph 855±49
?->Independent-Set Graph, Mapping 1586±24
?->(a,b)-Skeleton Set, Graph 3806±143
?->2-Partition (?->2-P) Set 711±43
?->Galactic-Shortest-Path (?->GSP) Mapping, Path 14381±3912
?->Dominating-Set (?->DS) Graph 1470±36
?->Nearby-Electromagnetic-Observation Set, Mapping 1329±25
?->Feedback-Vertex-Set (?->FVS) Graph, Acyclicity 1660±30
?->Hitting-Set Set 841±6
?->Monotone-Satisfiability CNF 1728±14
Vertex-Cover->Set-Cover Set 1049±24
?->Graphical-Steiner-Tree (?->GST) Graph, Connectivity 56078±7305
?->Strategic-Advertising Set 890±8

Reduction Error Source Time (ms)

3SAT->D-HC missing vertices that block the path from passing through all variables E 615±85
?->D-EDP not using a dedicated edge for each different part of the from-problem E 3197±896
3SAT->ISET missing triangle edges between vertices created from the literals of the same clause C 109±13
?->SISET missing the edges the different pieces of the from-problem C 845±22
ISET->VC incorrectly using the complement graph E 314±93
?->2-P not padding the values to ensure all numbers are nonnegative in all cases E 692±28
?->GSP missing extra edges with appropriate weight to balance out the weight accumulated E 1022±445
?->DS no consideration for isolated vertices C 1619±72
?->FVS no consideration for vertices that correspond to parts of the from-problem C 270±62
?->GST failure to maintain connectivity between all parts of the from-problem C 1510±71

5.2 On the Performance of Karp

We conducted a performance evaluation with Karp that has
two parts. Both parts involve using check-reduction, the
testing procedure of Karp described in Section 3 to test a
collection of reductions.

For the first part, we measured the time of running Karp’s
testing procedure for the 25 reductions5 we solved from
Kleinberg and Tardos [20]. Every run of the testing procedure
tried 10 randomly generated instances of the from-problem

5The from-problems of some of these reductions are obfuscated for peda-

gogical reasons.

of the reduction. Based on our observations, 10 generated
instances discover most mistakes (see also the second part
of the evaluation) and, hence, they are a sensible unit of
property testing in Karp. The top table of Table 1 reports the
results for this part of the evaluation; in the worst case it
takes two minutes for the testing procedure to test a reduc-
tion.
For the second part of the evaluation, we implemented

non-trivial incorrect solutions for 10 out of the 25 exercises
and we measured the time it takes for Karp’s testing pro-
cedure to detect the error. We sourced five of the incorrect

773

Karp: A Language for NP Reductions PLDI ’22, June 13ś17, 2022, San Diego, CA, USA

solutions (marked with C) from instructors of algorithms
courses, who in turn reported mistakes made by their stu-
dents. The remaining five incorrect solutions (marked with
E) are mistakes that we encountered while trying to solve
the corresponding reductions. Those include mistakes we
did while working on the reductions together with incorrect
solutions we discovered when comparing our solutions with
those of others. One such mistake is described in Section 1.
As the bottom table of Table 1 demonstrates, the testing pro-
cedure discovers all the mistakes in less than 1.5 seconds,
i.e., in most cases within 10 testing rounds and in all cases
within 20.

All measurements were performed on a typical set up
for a CS undergrad student: a laptop with Intel Core i7-
1165G7 2.80GHz × 4 and 16 GiB memory running 64-bit
Arch Linux with kernel 5.16.12-arch1-1 and Racket 8.4 [cs].
Rosette was configured to use Z3 version 4.8.14. For most
reductions, the testing procedure used the default instance
generator for the corresponding from-problem. However, the
default generators for Subset-Sum, Internal-Scheduling,
Graph-Coloring and Hitting-Set do not produce a good
mixture of yes- and no-instances. Hence, we replaced them
with custom generators written in the small generator lan-
guage that accompanies Karp.

5.3 On Programming in Karp

We organized a small formative user study with five CS
Theory PhD students. We picked these students because of
their expertise in theory and reductions. Hence, problems
that they would run into during the study would be more
likely due to Karp rather than proficiency about reductions.
To help them get acquainted with Karp, we shared with the
students a walk-through tutorial about the reduction from
Vertex-Cover to Set-Cover in Karp. Then we asked them
to define Graphical-Steiner-Tree in Karp and program
the reduction to it.

Based on our observations, all students were able express
problem definitions and verifiers in Karp with a few lines
of code (in most cases less than 30). However, only four
out of five the students successfully completed the exercise
within four hours. The fifth student was successful in defin-
ing Graphical-Steiner-Tree in Karp but was not able to
come up with a reduction to try to program it. The four suc-
cessful students gave positive feedback about Karp citing the
lack of detailed documentation as the biggest friction point.
Moreover, three of the students discovered issues in the solu-
tion with Karp’s testing procedure and the counterexamples
it discovered helped the students get to the correct reduc-
tion. Despite the fact that Karp does not attempt to minimize
counterexamples, the students were able to analyze them,
and similar to debugging a program after a failed test, make
progress towards a correct reduction.

6 Related Work

NPReductions as Programs. The computational logic text-
book of Gonczarowski and Nisan [18] comes with a Python
library with programming exercises. One of these exercises
asks students to complete a specific reduction. The Python
library comes with a series of hard-coded tests to help stu-
dents debug that reduction-as-programs. In a similar spirit,
Enström and Kann [12] descibe a lab exercise where students
have to implement a specific reduction given specific data
definitions for the two problems involved. In addition, the ex-
ercise only concerns the forward instance construction part
and not the two certificate constructions. Finally, Barak [2]’s
textbook includes Python implementations of the proofs for a
few reductions as a way to enhance the material of the book.
Unlike Karp, these prior attempts to teach reductions via
programming uses general purpose programming languages.
As a result these attempts are limited to specific reductions
for which the instructors have hand-rolled bootstrap and
testing code.

Closer to our work, Creus et al. [10] propose REDNP, a do-
main specific language based on C for describing and testing
NP reductions. In contrast to Karp, REDNP does not support
the definition of new NP problems. Each new problem must
be added to RASCO, the underlying runtime system, via a re-
duction to SAT (or to some other already supported problem).
It is unclear whether one can use RASCO to test the correct-
ness of such bootstrapping reductions, which are, in essence,
RASCO’s way of obtaining a solver for new problems by
stitching together chains of reductions. Furthermore, the ad-
dition of a new problem to RASCO does not ask for defining
a verifier for the problem. Pedagogically, this is important as
the proof that a problem is NP is that it has a polynomial veri-
fier. Nor does REDNP require certificate constructions along-
side a forward instance construction. However, as described
in Section 2 the certificate constructions are an important
piece of a formal argument that a reduction is correct. As for
testing the correctness of reductions, RASCO and REDNP
do not offer automated property testing; the test cases (prob-
lem instances) need to be hand-crafted or generated outside
the framework. Finally, REDNP is fundamentally imperative
and does not provide complexity guarantees. Karp is declar-
ative. And as discussed in Section 3, reductions in Karp have
polynomial asymptotic complexity by construction.

Visualizing NP Reductions. Starting with the efforts of
Pape and Schmitt [26] and Page [25], most software tools
that aim to facilitate the instruction of NP reductions focus
on visualization (e.g. [3], [9], [34]). The most recent examples
include [22] from the OpenDSA project that designs online
interactive visualizations of reductions. Unlike Karp, none
of these tools help students formulate their own reductions
and their proofs in an executable and testable manner.

Tools for Teaching CS Theory Besides Reductions. De-
spite the prevailing pen-and-paper tradition of theoretical

774

PLDI ’22, June 13ś17, 2022, San Diego, CA, USA Chenhao Zhang, Jason D. Hartline, and Christos Dimoulas

computer science, there are numerous efforts to build soft-
ware tools that improve learning on topics besides reductions.
Most of these tools target topics from theory of computation
such as automata theory and formal languages, and offer au-
tomation for exercise generation, autograding and feedback
generation (e.g. [28], [1], [29], [21]).

7 Conclusion

Karp is the product of an observation about teaching com-
puter science and a conviction about programming languages.
The observation is that the instruction of the theory of algo-
rithms and programming go hand-in-hand. The conviction
is that programming languages technology, especially of
the domain-specific kind, is key to bring the two together
without disrupting the habits of students and instructors.
Specifically, the seed for Karp was planted when one of the
authors saw an increase in student learning after replacing
some pen-and-paper exercises on dynamic programming,
the other notoriously difficult topic of Algorithms courses,
with programming exercises in Python. The students had no
problem switching their math scribblings for Python com-
prehensions and benefited greatly from being able to run,
and most importantly, test their algorithms. Karp builds on
this lesson and combines it with a range of exciting program-
ming languages ideas. Preliminary evidence is encouraging
that Karp can be the basis for an educational programming
environment fit to NP reductions.

Plenty of work is necessary to get to a full-fledged produc-
tion environment for teaching NP reductions. First, the effec-
tiveness of Karp as a teaching aid would benefit significantly
from visualization. A visual evaluation of a Karp reduction
and, in particular, of its whole testing process will help stu-
dents detect the root of issues in their reductions and how to
fix them. In the direction of improving the effectiveness of
testing, a suitable notion of testing coverage could guide the
testing process and the generation of instances towards sub-
tle corner cases. Integration with a theorem prover, which
would take advantage of the restricted linguistic setting of
Karp, will enable the formal verification of NP reductions
closing the gap between what Karp offers and what students
are asked to do in pen-and-paper reduction assignments and
exams Ð in addition to the instance and certificate construc-
tions, students also have to argue that the constructions are
correct, which they cannot do currently in Karp. Moreover,
our attempt to put Karp to use so far has revealed certain
expressiveness deficiencies such as the lack of support for
strings. We believe that further experience with Karp will
bring up needs for additional libraries of data structures or,
even, the need for relaxing the restricted design of the re-
duction language. In this latter case, an interesting question
is how we can boost expressiveness without disrupting the
complexity guarantees of Karp, and without having to resort

to a complex type system that taxes students and instruc-
tors alike. But most importantly, it is critical to examine
Karp systematically through the lenses of learning sciences
and human-computer interaction to determine the friction
points in achieving its goal of improving learning outcomes
for algorithms students.

Acknowledgments

We thank the PLDI reviewers for their feedback. We also
thank the theory group and the programming languages
group at Northwestern for their help and support while we
were working on this paper.

References
[1] Rajeev Alur, Loris D'Antoni, Sumit Gulwani, Dileep Kini,

and Mahesh Viswanathan. Automated Grading of DFA con-

structions. In Proc. International Joint Conference on Artificial

Intelligence, pp. 1976ś1982, 2013. https://dl.acm.org/doi/10.

5555/2540128.2540412

[2] Boaz Barak. Introduction to Theoretical Computer Science.

Online, 2019. https://introtcs.org

[3] Markus Andreas Brändle. GraphBench: Exploring the Limits

of Complexity with Educational Software. PhD dissertation,

ETHZürich, 2006. https://doi.org/10.3929/ETHZ-A-005128663

[4] Stephen Chang, Alex Knauth, and Emina Torlak. Symbolic

types for lenient symbolic execution. In Proc. ACM Symposium

on Principles of Programming Languages, pp. 40:1ś40:29, 2017.

https://doi.org/10.1145/3158128

[5] Koen Claessen and John Hughes. QuickCheck: A Lightweight

Tool for Random Testing of Haskell Programs. In Proc. ACM

International Conference on Functional Programming, pp. 268ś

279, 2000. https://doi.org/10.1145/351240.351266

[6] Stephen A. Cook. The Complexity of Theorem-Proving Pro-

cedures. In Proc. ACM Symposium on Theory of Computing,

pp. 151ś158, 1971. https://doi.org/10.1145/800157.805047

[7] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest,

and Clifford Stein. Introductions to Algorithms. MIT Press,

1990.

[8] James M. Crawford and Larry D. Auton. Experimental Re-

sults on the Crossover Point in Random 3-SAT. Artificial In-

telligence 81, pp. 31ś57, 1996. https://doi.org/10.1016/0004-

3702(95)00046-1

[9] Pilu Crescenzi. Using AVs to Explain NP-completeness. In

Proc. International Conference on Innovationand Technology in

Computer Science Education, pp. 93ś97, 2010. https://doi.org/

10.1145/1822090.1822175

[10] Carles Creus, Pau Fernández, and Guillem Godoy. Automatic

Evaluation of Reductions between NP-Complete Problems.

In Proc. International Conference on Theory and Applications

of Satisfiability Testing, pp. 415ś421, 2014. https://doi.org/10.

1007/978-3-319-09284-3_30

775

https://dl.acm.org/doi/10.5555/2540128.2540412
https://dl.acm.org/doi/10.5555/2540128.2540412
https://introtcs.org
https://doi.org/10.3929/ETHZ-A-005128663
https://doi.org/10.1145/3158128
https://doi.org/10.1145/351240.351266
https://doi.org/10.1145/800157.805047
https://doi.org/10.1016/0004-3702(95)00046-1
https://doi.org/10.1016/0004-3702(95)00046-1
https://doi.org/10.1145/1822090.1822175
https://doi.org/10.1145/1822090.1822175
https://doi.org/10.1007/978-3-319-09284-3_30
https://doi.org/10.1007/978-3-319-09284-3_30

Karp: A Language for NP Reductions PLDI ’22, June 13ś17, 2022, San Diego, CA, USA

[11] Ryan Culpepper, Sam Tobin-Hochstadt, and Matthew Flatt.

Advanced Macrology and the Implementation of Typed

Scheme. In Proc. Workshop on Scheme and Functional Pro-

gramming volume 4, 2007.

[12] Emma Enström and Viggo Kann. Computer Lab Work on

Theory. In Proc. International Conference on Innovationand

Technology in Computer Science Education, pp. 93ś97, 2010.

https://doi.org/10.1145/1822090.1822118

[13] Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, Shri-

ram Krishnamurthi, Eli Barzilay, Jay McCarthy, and Sam

Tobin-Hochstadt. A programmable programming language.

Communications of the ACM 61(3), pp. 62ś71, 2018. https:

//doi.org/10.1145/3127323

[14] Robert B. Findler andMatthias Felleisen. Contracts for Higher-

Order Functions. In Proc. ACM International Conference on

Functional Programming, pp. 48ś59, 2002. https://doi.org/10.

1145/581478.581484

[15] Matthew Flatt. Composable and Compilable Macros. In Proc.

ACM International Conference on Functional Programming, pp.

72ś83, 2002. https://doi.org/10.1145/581478.581484

[16] Matthew Flatt. Binding as Sets of Scopes. In Proc. ACM Sym-

posium on Principles of Programming Languages, pp. 72ś83,

2016. https://doi.org/10.1145/2837614.2837620

[17] Martin Gebser, Tomi Janhunen, and Jussi Rintanen. SAT Mod-

ulo Graphs: Acyclicity. In Proc. European Workshop on Logics

in Artificial Intelligence, pp. 137ś15, 2014. https://doi.org/10.

1007/978-3-319-11558-0_10

[18] Yannai A. Gonczarowski and Noam Nisan. Mathematical

Logic through Python. Cambridge University Press, 2021.

[19] Richard M. Karp. Reducibility Among Combinatorial Prob-

lems. In Complexity of Computer Computations, pp. 85ś103,

1972.

[20] Jon Kleinberg and Eva Tardos. Algorithm Design. Pearson

Education, 2006.

[21] Loris D'Antoni, Martin Helfrich, Jan Kretinsky, Emanuel Ram-

neantu, and Maximilian Weininger. Automata Tutor v3. In

Proc. International Conference on Computer Aided Verification,

pp. 3ś14, 2020. https://doi.org/10.1007/978-3-030-53291-8_1

[22] Nabanita Maji. An Interactive Tutorial for NP-Completeness.

Master dissertation, Virginia Polytechnic Institute and State

University, 2015.

[23] Jacob Matthews and Robert B. Findler. Operational Seman-

tics for Multi-Language Programs. ACM Transactions on Pro-

gramming Languages and Systems 31(3), pp. 12:1ś12:44, 2009.

https://doi.org/10.1145/1190216.1190220

[24] Leonardo de Moura and Nikolaj Bjùrner. Z3: An Efficient

SMT Solver. In Proc. International Conference on Tools and

Algorithms for the Construction and Analysis of Systems, pp.

337ś340, 2008. https://doi.org/10.1007/978-3-540-78800-3_24

[25] Christian Page. Using interactive visualization for teach-

ing the theory of NP-completeness. In Proc. ED-MEDIA/ED-

TELECOM, pp. 1070ś1075, 1998.
[26] Christian Pape and Peter H. Schmitt. Visualizations for proof

presentation in theoretical computer science education. In

Proc. International Conference on Computers in Education, pp.

229ś236, 1997.

[27] Sorawee Porncharoenwase, Luke Nelson, Xi Wang, and Em-

ina Torlak. A Formal Foundation for Symbolic Evaluation

with Mergings. In Proc. ACM Symposium on Principles of Pro-

gramming Languages, 2022. https://doi.org/10.1145/3498709

[28] Susan H. Rodger and Thomas Finley. JFLAP - An Interactive

Formal Languages and Automata Package. Jones and Bartlett,

2006. https://www2.cs.duke.edu/csed/jflap/jflapbook/

[29] Varun Shenoy, Ullas Aparanji, K. Sripradha, and Viraj Kumar.

Generating DFA Construction Problems Automatically. In

Proc. International Conference on Learning and Teaching in

Computing and Engineering, pp. 32ś37, 2016. https://doi.org/

10.1109/LaTiCE.2016.8

[30] Jeremy G. Siek and Walid Taha. Gradual Typing for Func-

tional Languages. In Proc. Workshop on Scheme and Functional

Programming, pp. 81ś92, 2006.

[31] Sam Tobin-Hochstadt and Matthias Felleisen. Interlanguage

Migration: from Scripts to Programs. In Proc. ACM Conference

on Object-Oriented Programming, Systems, Languages and Ap-

plications, pp. 964ś974, 2006. https://doi.org/10.1145/1176617.

1176755

[32] Sam Tobin-Hochstadt and Matthias Felleisen. The Design and

Implementation of Typed Scheme. In Proc. ACM Symposium

on Principles of Programming Languages, pp. 395ś406, 2008.

https://doi.org/10.1145/1328438.1328486

[33] Emina Torlak and Rastislav Bodik. A Lightweight Symbolic

Virtual Machine for Solver-Aided Host Languages. In Proc.

ACM Conference on Programming Language Design and Imple-

mentation, pp. 135ś152, 2014. https://doi.org/10.1145/2594291.

2594340

[34] Steven Vegdahl. Visualizing NP-completeness through circuit-

based widgets. Journal of Computing Sciences in Colleges 30(1),

pp. 190ś198, 2010.

[35] Ian P. Welsh and Toby Walsh. The SAT Phase Transition. In

Proc. European Conference on Artificial Intelligence volume 94,

pp. 105ś109, 1994.

[36] Chenhao Zhang, Jason Hartline, and Christos Dimoulas. Karp:

A Language for NP Reductions. Northwestern University, NU-

CS-2022-03, 2022.

776

https://doi.org/10.1145/1822090.1822118
https://doi.org/10.1145/3127323
https://doi.org/10.1145/3127323
https://doi.org/10.1145/581478.581484
https://doi.org/10.1145/581478.581484
https://doi.org/10.1145/581478.581484
https://doi.org/10.1145/2837614.2837620
https://doi.org/10.1007/978-3-319-11558-0_10
https://doi.org/10.1007/978-3-319-11558-0_10
https://doi.org/10.1007/978-3-030-53291-8_1
https://doi.org/10.1145/1190216.1190220
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1145/3498709
https://www2.cs.duke.edu/csed/jflap/jflapbook/
https://doi.org/10.1109/LaTiCE.2016.8
https://doi.org/10.1109/LaTiCE.2016.8
https://doi.org/10.1145/1176617.1176755
https://doi.org/10.1145/1176617.1176755
https://doi.org/10.1145/1328438.1328486
https://doi.org/10.1145/2594291.2594340
https://doi.org/10.1145/2594291.2594340

	Abstract
	1 Introduction
	2 A Crash Course on Karp Reductions
	3 Karp by Example
	3.1 Decision Problems in Karp
	3.2 Reductions in Karp
	3.3 Property Testing Reductions in Karp

	4 Karp under the Hood
	4.1 K, A Core Karp Problem Definition Language
	4.2 R, the Core Rosette Language
	4.3 Translating K Programs to R

	5 Trying Karp in Practice
	5.1 On the Expressiveness of Karp
	5.2 On the Performance of Karp
	5.3 On Programming in Karp

	6 Related Work
	7 Conclusion
	References

