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Abstract Context: Database-backed applications often run queries withmore authority than necessary. Since
programs can access more data than they legitimately need, flaws in security checks at the application level
can enable malicious or buggy code to view or modify data in violation of intended access control policies.

Inquiry: Although database management systems provide tools to control access to data, these tools are
not well-suited for modern applications which often have many users and consist of many different software
components. First, databases are unaware of application users, and creating a new database user for each
application user is impractical for applications with many users. Second, different components of the same
applicationmay require different authority, which would require creating different database users for different
software components. Thus, it is difficult to use existing tools to properly limit the authority an application has
when executing queries. For this reason, we consider a new, language-based approach to application-specific
database security.

Approach: Prior work has addressed the difficulty of running applications with least privilege using
capability-based security and software contracts, which we adapt to the setting of database-backed appli-
cations.

Knowledge: This paper’s main contribution is the design and implementation of ShillDB, a language
for writing secure database-backed applications. ShillDB enables reasoning about database access at the
language level through capabilities, which limit which database tables a program can access, and contracts,
which limit what operations a program can perform on those tables. ShillDB contracts are expressed as
part of function interfaces, making it easy to specify different access control policies for different components.
Contracts act as executable security documentation for ShillDB programs and are enforced by the language
runtime. Further, ShillDB provides database access control guarantees independent of (and in addition to)
the security mechanisms of the underlying database management system.

Grounding: We have implemented a prototype of ShillDB and have used it to implement the backend
for a lending library reservation system with contracts for each endpoint to evaluate the performance and us-
ability of ShillDB. Further, we benchmark individual database operations in ShillDB to better understand
the language’s performance overhead.

Importance: Our experience indicates that ShillDB is a practical language for enforcing database ac-
cess control policies in realistic, multi-user applications and has reasonable performance overhead. ShillDB
allows developers to reason about security at the component level, safely compose components, and reuse
third-party components with their own application-specific database security policies.
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Fine-Grained, Language-Based Access Control for Database-Backed Applications

1 Introduction

Database-backed applications often require dynamic, fine-grained access control
to secure sensitive information. Further, applications may need to control access
differently depending on what part of an application is querying the database or on
which user’s behalf the query is made. Existing techniques make it difficult to meet
these security requirements for database-backed applications. This paper introduces
ShillDB, a language that makes it easier to write database-backed applications while
enforcing security requirements.
To examine the difficulty of securing database-backed application, consider a student

directory application for use by professors at a university. The application is backed by
data from two database tables: students, which stores student records, and advising,
which maps student IDs to advisors (figure 1).

Suppose the university’s policy is that professors can view non-sensitive information
about any student (for example, their name and email), but a professor should only be
able to view grade-point averages (GPAs) for her own advisees. Even though professors
can view some students’ GPAs, there are likely parts of the student directory application
that should not be able to access any student grades. For example, a component that
lets a professor send an email to all her advisees has no reason to access GPAs. If this
component cannot access GPAs, then even if a malicious user exploits a bug in this
part of the application, she cannot access student grades.
Even this simple web application necessitates controlling database access based on

who the logged-in user is and what part of the application is accessing data. Further,
the access control policies are specific to the application, as other applications with
different policies may use the same database tables.
The following Python snippet shows how a program would typically connect to the

database and issue a query. Here, the code uses a popular PostgreSQL adaptor for
Python [22] to connect to the database and issues a query to get information for all of
the students advised by the logged-in user:

1 conn = psycopg2.connect(user="admin", password="12345", host="localhost",
2 port="5432", database="student_records")
3
4 cursor = conn.cursor()
5 cursor.execute(
6 "SELECT * FROM students JOIN advising ON id = student WHERE advisor = %(user)s",
7 {"user": currentUser.getName()})

students
id name email gpa
1 Mike Birbiglia birbigs@college.edu 2.5
2 Tig Notaro tnotaro@college.edu 3.9
3 Patton Oswalt poswalt@college.edu 3.4

advising
student advisor
1 Jerome Seinfeld
2 Jerome Seinfeld
3 Joan Rivers

Figure 1 Schema and example data used by a student directory application.
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While this snippet happens to obey the described policy (assuming that the cur-
rentUser value is actually the currently logged-in user), a bug in the code (such as
forgetting the WHERE clause) could easily violate the policy. How could we enforce that
the code obeys the policy? Securing the directory application using access controls at
the database level would be difficult or impossible. While commodity database man-
agement systems (DBMSs) provide access-control mechanisms, some DBMSs (e. g.,
MySQL) do not provide the row-level access controls necessary to enforce the access
control policies for the application. Further, most DBMS access control mechanisms
are based on database users which are cumbersome for large applications because
each application-level user must map to a distinct database user. Giving different
application components different privilege levels using DBMS-level access controls
would require creating even more database users.
Due to the limitations of using DBMS-level access controls for multi-user, multi-

component applications, in practice, developers must write security checks as part of
application code. However, because most existing database interfaces rely on queries
expressed as strings that reference specific table and column names (as seen in the
above Python code), enforcing security means inserting checks wherever strings are
used in queries. Further, for any third-party code that may access a database, one must
read through the code and examine how it constructs query strings to understand
what database queries it may run. Because of these difficulties, developers often do
not enforce the fine-grained policies they intend and instead settle for more coarse-
grained policies, violating the Principle of Least Privilege (POLP). The POLP is the
idea that a program should execute with just the authority needed to perform its
functionality. When programs violate the POLP and run with more privilege than
needed, if malicious users are able to find vulnerabilities in the application’s input
validation or access control, they may be able to take advantage of this excess privilege.

To address the difficulty of running database-backed applications with least privilege,
this paper presents the design and implementation of ShillDB, a language with
a security-focused design that helps application developers control which parts of
a database different application components can access (for example, only certain
tables) and write fine-grained restrictions on how components can access these parts
of the database (for example, restricting that a function can read a table but not
update it). Two key pieces of ShillDB support these goals:

CapQL, the capability-safe database runtime of ShillDB. Interactions between
an application and databases are not directly via query strings but via operations
that consume view capabilities, an abstraction representing access to a table or a
view of a database. View capabilities are unforgeable: a component cannot create
them but has to receive them from its calling environment or derive them from
other capabilities. CapQL is a new, capability-based database interface we develop
for ShillDB.
The ShillDB contract language, a language for controlling the database ac-
cess of ShillDB applications. Contracts state and restrict how an application
component can use the capabilities it receives. Using contracts, developers can
express and enforce application-specific, capability-based security policies. Con-
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ShillDB Application 
Language & CapQL

ShillDB Contract 
Language

Capability safety
Express & enforce 

policies at interfaces

Reason about 
component DB access just by 

examining interface
Reason about security at 

the component level

Reuse components with 
different app-specific policies 

Safely compose 
components

Benefits

ShillDB Features

Goals

Control which parts of DB 
components can access

Enforce fine-grained 
restrictions on DB access 

Enforce access restrictions 
on third-party code

Developers can…

Figure 2 Overview of how the design goals of ShillDB map to language features and the
benefits of those language features.

tracts can be added in and refined gradually so programmers can take advantage
of the capability safety of ShillDB even before they write contracts to express
finer-grained policies.

Together, these two design points ensure that it is possible to understand the author-
ity a ShillDB component will have at runtime just by examining what capabilities
are passed in and what contracts are part of the component’s interface. Since it is
possible to reason about and enforce security at the component level, developers
using ShillDB can safely compose components and reuse components with different
application-specific policies. ShillDB makes it easier to reason about the security
of third-party components since component consumers control what capabilities are
passed to a component. Further, developers can apply their own fine-grained contracts
to imported functions. Figure 2 summarizes how the features of ShillDB relate to its
high-level goals and the benefits of the language. These features make it possible to
run database-backed applications while following the POLP without needing to rely
solely on DBMS-level security tools or brittle application-level security code.

ShillDB builds on Shill [19], a secure shell scripting language that uses capabilities
and contracts to limit access to file system and network resources. Both ShillDB
and Shill are extensions to the Racket programming language [9], and we follow
a similar design and implementation to Shill, adding a contract language that is
specific for writing database access control policies. Further, while Shill builds on the
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capability-like standard UNIX file descriptor interface, for ShillDB, we develop and
use CapQL, a new, capability-based database interface.
Returning to the example of the student directory application, we can consider how

the design of ShillDB helps a developer enforce the application-specific database
access control policies. By passing each component only the view capabilities it needs
to perform its function, we can be confident that components cannot access arbitrary
parts of the database (compare this to the example Python code which can open
database connections in any part of the code and access any data the database user
can access). For example, while the component that lets professors view student grades
needs to access potentially all of the columns in the students table, the component
that lets professors email their advisees should not have access to the gpa column.
Thus, a developer could pass the email component a capability representing a view of
the students table with the gpa column projected away. In section 2, we demonstrate
how to create and manipulate view capabilities in ShillDB.
Further, although the application component for viewing student grades needs

access to all of the columns in the students and advising tables, professors should only
be able to view their own advisees’ grades and should not be able to modify any data.
In section 3, we demonstrate how the ShillDB contract language makes it possible
to write these fine-grained access control policies as contracts on view capabilities.
Section 4 describes the implementation of ShillDB. Section 5 reports on the

usability and performance of ShillDB. Section 6 examines related work. Section 7
concludes. In sum, the contributions of this paper are threefold:

We introduce CapQL, a new capability-based database interface.
We introduce ShillDB which extends the approach introduced by Shill to the
setting of database-backed applications and adds contract features for writing
fine-grained access control policies on view capabilities.
We evaluate the usability and performance of the ShillDB.

Threat Model In ShillDB, programs written in the capability-safe language are un-
trusted and are treated as though they may be malicious or contain bugs. A capability-
safe ShillDB program has no access to database resources for which it does not
possess a capability and cannot use capabilities in ways that are disallowed by the ca-
pabilities’ contracts. ShillDB assumes that contracts on functions are correct insofar
as the user executing a ShillDB program wishes to give the program the authority
that the contracts specify. ShillDB’s trusted computing base includes the ShillDB
runtime (and therefore the implementation of Racket), and the implementation of
any DBMS that a ShillDB program accesses. ShillDB therefore does not defend
against programs that exploit flaws in ShillDB, Racket, or the underlying DBMS.
ShillDB does, however, sanitize untrusted SQL expressions to explicitly defend
against programs that seek to exceed their authority through SQL injection. By design,
ShillDB prevents programs from performing any database operation for which they
do not have an appropriate capability.
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2 Design of CapQL

Running database-backed applications with least privilege is difficult when it is not
easy to reason about what parts of a database a program can access. In typical database
interfaces, queries are written as SQL strings that reference table and column names
directly as strings. Typical SQL-based database interfaces make this reasoning hard
for two primary reasons. First, queries can refer directly to any tables that the user
executing the query has access to, making it challenging to know what tables and
rows a program could access without reading through every query the program might
issue. Second, queries often conflate different operations into one SELECT statement: a
single statement might join tables, select rows, and aggregate data. Because different
operations in SQL queries are not always clearly distinct, it is difficult to write fine-
grained security policies using the same vocabulary as SQL queries.
To address these problems with SQL, database queries in ShillDB programs use

CapQL, a new, capability-based database interface where all interactions with the
database are mediated by view capabilities. These capabilities are language-level
abstractions representing access to a view of a database. A view can be thought of as
a window into a database that can be queried like a regular table. CapQL provides
operations for deriving new view capabilities from existing capabilities (e. g., by
projecting away a column) and for fetching/manipulating data in the underlying view.
Since all database operations accept only view capabilities (and not string references
to table names), it is possible to reason about database authority by restricting the
creation and propagation of capabilities. Further, as we will demonstrate in section 3,
these operations provide a vocabulary for writing fine-grained security policies
This section presents CapQL and its use in ShillDB as well as an introduction to

the ShillDB application language.

2.1 CapQL by Example

To introduce CapQL, we demonstrate how we can implement a function in the student
directory application to query the database for the GPAs of a professor’s advisees.
Since the query needs to access the students and advising table, the function must
take view capabilities for these tables as arguments (section 2.3 addresses how to
create view capabilities in ShillDB). Thus the function definition could be:

1 (define (grades-for-advisees v-students v-advising)
2 #| Implementation will go here... |#)

The grades-for-advisees function takes two arguments: v-students, and v-advising
(view capabilities for the students and advising tables, respectively). Suppose the
function should return the name, email, and GPA for all of the logged-in user’s
advisees. In SQL, the query would look like:

1 SELECT name, email, gpa
2 FROM students
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3 JOIN advising ON id = student
4 WHERE advisor = _user -- would be filled in with logged-in user's name

To express the same query in CapQL, one can use CapQL operations to derive new
view capabilities from the given capabilities and ultimately to fetch the data. CapQL
provides four primitive operations for deriving new views from existing views: where
(which corresponds to selection), select (which corresponds to projection), join, and
aggregate (which is like select but allows for aggregations).
The behaviors of where, select, and join operations map closely to that of the

corresponding SQL keywords: where takes a view and a WHERE clause and returns a
view capability with just the selected rows, select takes a view and a list of column
names and returns a view capability that has been projected to contain just those
columns, and join takes two views (and, optionally, a WHERE clause) and returns the
joined view. Using these operations, we can express the same query in CapQL:

1 (select
2 (where
3 (join v-students v-advising "id = student")
4 (sqlformat "advisor = $1" (current-user)))
5 "name, email, gpa")

Here, the query joins together the v-students and v-advising capabilities on the
condition id = student. From the resulting view, a new view is derived with only the
logged-in users’ advisees in it (assume that current-user is a function that returns
the name of the user for the current login session1). sqlformat is a standard library
function that safely inserts arguments into a SQL query while avoiding injection attacks.
Finally, the view is projected such that the final view has just the name, email, and
gpa columns. Note that the select operation supports most of the familiar features of
SQL SELECT such as expressions over columns but does not support renaming columns
since this could make it difficult to reason about access control policies.
At this point, no queries have actually been executed in the DBMS. In CapQL,

creating or deriving a view capability is distinct from fetching the data in that view.
Given a view capability, the fetch operation executes the query and fetches results
from the DBMS. Adding a fetch call, we can complete the grades-for-advisees function:

1 (define (grades-for-advisees v-students v-advising)
2 (fetch
3 (select
4 (where
5 (join v-students v-advising "id = student")

1We imagine current-user as a primitive of the capability-safe and ambient languages of
ShillDB. As such, it is part of ShillDB’s trusted codebase. The primitive can be configured
when launching ShillDB to find the information it needs from a database, a config file or
some other source. Thus, the power of the primitive is determined by the security profile
of the user that launches ShillDB rather than any untrustworthy capability-safe code.
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6 (sqlformat "advisor = $1" (current-user)))
7 "name, email, gpa")))

2.2 Modifying View Data

The grades-for-advisees function involves only fetching data, but CapQL also provides
delete, insert, and update operations that correspond to their SQL counterparts. Like
fetch, these three view modification operations consume a view and issue a query to
the underlying DBMS.
When inserting into or updating a CapQL view, we require that the new data must

satisfy the WHERE clause in the view definition (corresponding to the WITH CHECK
OPTION functionality that many DBMSs provide when creating views). As an example,
consider the following update which attempts to modify all student entries with a
GPA less or equal to 2.5 to have a GPA of 3.7. This query will fail because it would
cause the Mike Birbiglia entry in the table to no longer satisfy the gpa <= 2.5 clause:

1 > (define students-with-low-grades (where v-students "gpa <= 2.5"))
2 > (update students-with-low-grades #:set "gpa = 3.7")

update: violated view constraint: gpa <= 2.5
To execute the desired update, one can instead provide a WHERE clause argument

to the update operation to specify the subset of rows to update. This update will
succeed since CapQL will not treat the WHERE clause as part of the view definition:

1 > (update v-students #:set "gpa = 3.7" #:where "gpa <= 2.5")

Operations that modify data are not well-defined for all views. For example, if a
view contains a non-simple column (e. g., gpa + id), it is not clear how an update to this
column should modify the underlying table. CapQL does not provide a solution to this
view update problem. Instead, we use conservative restrictions similar to those found
in commercial DBMSs [14, 20] to determine which views are insertable and deleteable
and which columns are updatable. For example, any view that is the result of a join
or an aggregation is not insertable or deletable and has no updatable columns.

2.3 Where do View Capabilities Come From?

While the ShillDB application language (the capability-safe language) cannot create
new capabilities directly, it is necessary to use ambient authority (that is, the authority
derived from the program’s execution context [16]) to create a starting set of capabili-
ties. For this reason, ShillDB also has an ambient language which can use ambient
authority but is otherwise highly restricted: ambient programs can only create capabil-
ities for database tables, perform a limited set of actions on capabilities (such as using
a where operation to restrict a view), and apply functions from the capability-safe
language. These restrictions are so that ambient programs will be short and simple,
making it easy to reason about what ambient authority they use. Since the initial
set of capabilities must be created in the ambient language, ambient programs serve
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as the entry point for running ShillDB programs. Note that the ambient program
can only access database resources that the user invoking the program can access
using any database credentials that might be supplied to the program. In the case of a
multi-user application, the capability-safe program may choose to restrict the starting
set of capabilities dynamically based on who is accessing the server, as we illustrate
in section 3. The split between an ambient language and a capability-safe language
follows the design of Shill [19].
In the ambient language, a new view of a single table can be created by supplying

the name of the database and the name of the table to the make-view function. The
resulting view contains all of the data in the table, analogous to a SELECT * SQL query.
Figure 3 contains a complete example of invoking a capability-safe function from an

ambient program. Figure 3a contains the grades-for-advisees function in the context
of a full ShillDB program. The #lang shilldb/cap annotation on line 2 indicates that
this file contains capability-safe ShillDB code. Line 4 exports the function for use by
ambient programs or other capability-safe programs. The rest of the code listing is
the same grades-for-advisees shown previously.
Figure 3b shows an ambient program that invokes grades-for-advisees. The #lang

shilldb/ambient annotation on line 2 indicates that this file is an ambient ShillDB
program. Line 4 imports the definition of grades-for-advisees from the capability-safe
program from figure 3a. Lines 6-7 define view capabilities that are passed to the
capability-safe function on line 9.

3 Design of the ShillDB Contract Language

While we have shown how ShillDB controls database access through capabilities,
capability safety on its own does not provide guarantees on how capabilities will
be used. For example, although the informal specification of the student directory
application states that professors should not be able to view GPAs for students who
are not their advisees, there is no guarantee that the implementation of grades-for-
advisees will use the given view capabilities only in accordance with this policy. In
this small example, it is easy enough to examine the implementation and check that
it obeys the intended access policy; however, in a large application, it would be much
more difficult to decide if the database operations satisfy the intended policies.
To address this difficulty, every function a ShillDB program exports must be

accompanied by a contract which places restrictions on what arguments can be passed
to the function and how those arguments can be used, serving as executable documen-
tation for the function’s authority. Contracts on view capabilities can specify what
privileges are required on a capability, where privileges correspond to the authority to
invoke a particular CapQL operation. For example, a contract may specify that a view
capability passed as an argument has only the +fetch privilege in which case the view
can be read but cannot, for example, be used to update the database or be joined
with another view.
Figure 4 shows an overview of how contracts and capabilities together control

access to database tables in ShillDB. In the figure, the ambient program creates a
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1 ; cap.rkt
2 #lang shilldb/cap
3
4 (provide grades-for-advisees)
5
6 (define (grades-for-advisees v-students v-advising)
7 (fetch
8 (select
9 (where
10 (join v-students v-advising "id = student")
11 (sqlformat "advisor = $1" (current-user)))
12 "name, email, gpa")))

(a) Capability-safe program.

1 ; ambient.rkt
2 #lang shilldb/ambient
3
4 (require "cap.rkt")
5
6 (define students (make-view "database.db" "students"))
7 (define advising (make-view "database.db" "advising"))
8
9 (grades-for-advisees students advising)

(b) Ambient program.

Figure 3 An ambient program creates capabilities and invokes a capability-safe function.

Figure 4 Contracts and capabilities in ShillDB.
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capability for the students table and passes the capability to a capability-safe program.
The interface of the capability-safe program then applies the contract (view/c +fetch)
to the given capability which declares that the only allowed operation on the view
is fetch. The contract serves as a wrapper or proxy object that receives operations
that the capability-safe program invokes on the capability. If the program calls fetch
on the capability, the contract will forward this operation on to the view capability,
which in turn will fetch the contents of the view from the DBMS. If, however, the
capability-safe program invokes an operation that is prohibited by the contract (e. g.,
update), the wrapper will reject the operation and signal a contract failure, blaming
(that is, assigning responsibility for the failure to) the capability-safe program. A
capability is wrapped in a new proxy object whenever it passes through a contracted
function, so a raw view capability can have multiple wrappers enforcing multiple
contracts. Contracts are enforced conjunctively since any operation must pass through
all of the proxies (while this incurs runtime overhead per wrapper, improving the
space and time efficiency of multiple contract wrappers is active area of research [8]).
Since the capability-safe program can access the DBMS only through the given

capabilities, contracts mediate all interactions between programs and the DBMS.
Capability-safe programs are a collection of functions that all come with contracts
and clients of these programs (other capability-safe programs or ambient programs)
can only interact with the database by calling these capability-safe functions.
While both contracts and capabilities are used in ShillDB to control access to

database tables, they serve distinct purposes. A capability reifies unrestricted access
to a database view; contracts wrap around capabilities and restrict how the capability
can be used. A contracted capability (i. e., a capability with a contract wrapped around
it) can be used wherever a capability can be used. For the remainder of the paper,
we use the term “capability” to include raw capabilities (i. e., capabilities without any
contracts) as well as contracted capabilities.
The rest of this section introduces the ShillDB contract language by continuing

the student directory application example and demonstrating how to express and
enforce the desired database access policy using the contract language. Appendix A
contains a reference of ShillDB contract syntax.

3.1 A Simple Contract

Consider a function display-students that displays basic information about all students
as well as GPA information for any student who is advised by the logged-in professor
(this is similar to the grades-for-advisees function from section 2 except that it will
also retrieve some data for non-advisees). This function takes in a view capability for
the students table and a view capability for the advising table, so the signature is the
same as grades-for-advisees:

1 (define (display-students v-students v-advising)
2 #| Implementation goes here |#)
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In ShillDB, one can attach a contract to the function to restrict its arguments. A
simple contract would prescribe that v-students and v-advising are view capabilities.
For simplicity, suppose we are not concerned about the return value of the function.

1 (provide
2 [display-students
3 (-> view/c view/c any)])

The provide form attaches a contract to an exported value (in future snippets, we
may omit the provide form and just write the contract for brevity). The -> contract
combinator takes a contract on each of the function arguments (in order) along with a
contract on the return value and returns a contract that will check that the argument
and result contracts are satisfied. view/c is a built-in contract that checks that a value
is a view capability. The any contract on the result is a contract that is always satisfied.
view/c and any are known as flat contracts: that is, contracts that can be checked
immediately when arguments are passed to the function or when the function returns.
This is analogous to standard Racket contracts that check what kind of data functions
consume and return such as the integer? and string?.
This contract, like a simple type signature, is sufficient to prevent certain obviously

wrong programs (such as a program that invokes display-students with arguments that
are not views), but so far does not restrict how the implementation of display-students
can use the provided view capabilities.

3.2 Privileges on View Capabilities

The implementation of display-students legitimately needs to restrict the provided
view capabilities (using select and where), join them together to match students to
advisors, and fetch data from the views. However, the function should not modify
data in the underlying tables. To express this policy, one can modify the previous
contract to specify which privileges are required on the view capabilities (for clarity,
the contracts on the view capability arguments are labelled with comments):

1 (->
2 (view/c +select +where +join +fetch) ; v-students
3 (view/c +select +where +join +fetch) ; v-advising
4 any)

The above ShillDB contract employs privileges to indicate that the function it pro-
tects can only invoke where, join and fetch on its two view capability arguments. The
ShillDB view/c contract combinator can take privileges to specify what operations
can be invoked on a view capability. Each privilege (e. g., +select or +join) represents
the right to invoke the corresponding CapQL operation on the capability. Within the
function, allowed operations will be proxied to the underlying view capability, while
operations for which there is not a corresponding privilege (such as delete in this
example) will be rejected by the contract wrapper.
Unlike the earlier simple view/c contract that checks only that the argument is

a view, these view/c contracts are not flat contracts since we cannot determine at
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function application time whether the function body will use the view in accordance
with the contract. Instead, these contracts wrap the function argument within the
function body and intercept operations on the capability to check if they are allowed
(as illustrated in figure 4). This is analogous to higher-order function contracts in
Racket which wrap function values so that subsequent applications of the function
can be monitored for contract violations.
This contract is sufficient to prevent certain buggy or malicious implementations of

display-students (such as an implementation that modifies students grades), but it is
overly permissive: the contract on v-students includes a +fetch privilege which means
that the function can read the GPA of any student, violating the intended policy.

3.3 Privilege Modifiers

While the +fetch privilege is too permissive for the desired policy, privileges support
modifiers which further refine what operations a privilege permits. A complete listing
of privilege modifiers is in appendix A.2.

1 (->
2 (view/c +join
3 [+fetch #:restrict (lambda (v) (select v "name, email"))]
4 [+where #:prohibit "gpa"]) ; v-students
5 (view/c +select +where +join +fetch) ; v-advising
6 any)

To enforce that the function body should not be able to freely access the gpa column
of the students table, we can use the #:restrict modifier on the +fetch privilege. This
modifier takes a function that transforms the view into another view and applies the
function before executing the fetch operation. On line 3, the +fetch privilege has been
modified so that the gpa column will be projected away before any fetch operations.
To prevent GPA information from being revealed indirectly, two more privilege

modifications are needed. On line 4, the #:prohibit modifier on +where prohibits WHERE
clauses that mention gpa such as gpa < 3.0 since these queries could be used to guess
GPAs by examining which students are in the result set. Note the result of a join
inherits the contracts of both joined views, so joining v-students with v-advising could
not be used to derive an unmodified +fetch privilege on the gpa column.
Note, however, that this contract is now too restrictive: the function body can not

fetch the gpa column for any students, but the intended policy is that professors can
view their own advisees GPAs.

3.4 Join Groups and Contracts on Join

Intuitively, we wish to express that the function can fetch the gpa column of the
students view only after the table has been restricted to just the logged-in user’s
advisees. This can be thought of as a policy involving joins: if the students and
advising tables are equi-joined on student ID (the id and student columns) and the
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resulting view restricted to the logged-in user’s advisees, the resulting view can then
have an unrestricted fetch privilege.
While most operations on view capabilities operate only on a single capability, join

is inherently binary. In many cases, it is natural to think of policies in terms of how
a particular set of views can be joined together. To this end, ShillDB provides the
->/join contract combinator for writing join group constraints on function arguments.
A join group confers the privilege that any views in the group can be joined together.
Using an ->/join contract, we can use a join group to express the intended policy

for the display-students function. An ->/join contract has two parts: the definition of
the join group and the contracts on the function arguments and return value.

1 (->/join
2 ([X #:post (lambda (v) (where v (sqlformat "student = id AND advisor = $1" (current-user))))
3 #:with (view/c +select +where +fetch)])
4 #| Contracts on the arguments and the result will go here... |#)

Lines 2-3 define a join group called X. Line 2 uses the #:post modifier to express
that any join on views in the group must join on the two student ID columns and
restrict the resulting view to just those rows where the advisor column matches the
output of the current-user function (again assume this function returns the name of
the user for the current login session).2 Line 3 uses the #:with modifier to express that
the view resulting from joining views in the join group should derive unrestricted
+select, +where, and +fetch privileges.

Adding in the contracts on the arguments and the return value from the previous
example gives the final contract:

1 (->/join
2 ([X #:post (lambda (v) (where v (sqlformat "student = id AND advisor = $1" (current-user))))
3 #:with (view/c +select +where +fetch)])
4 [(view/c +join
5 [+fetch #:restrict (lambda (v) (select v "name, email"))]
6 [+where #:prohibit "gpa"])
7 #:groups X] ; v-students
8 [(view/c +select +where +join +fetch) #:groups X] ; v-advising
9 any)

Lines 1-3 are the same as above. Lines 4-9 are the same as the contracts on the view
capabilities and the return value from the contract in section 3.3 except that the two
view/c contracts have been annotated with #:groups X (lines 7 and 8) to indicate that
the views are in the join group defined above. Adding the views to the group modifies
the +join privileges such that the #:post and #:with modifiers in the group definition
will apply when the two views are joined.

2Note that the #:post condition in the contract will construct a query dynamically when a
join is applied to the contracted capability. If the WHERE clause defined in the contract
were invalid, this would go undetected until a join is applied to the capability at which
point CapQL will check that the provided SQL clause is valid (see section 4.1).
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While this contract is sufficient to enforce the desired access control policy, it cannot
enforce stronger information flow policies such as “no professor can ever learn the
GPA of a student who is not her advisee.” For example, if the GPA values returned
from this function were passed to another function that had a capability that allowed
it to write to the database, the program could write those values somewhere else in
the database where other users could access them. For a brief discussion of alternative
approaches to database security that deal with information flow, see section 6.

3.5 How are Contracts Enforced?

View contracts work in two different ways. First, they might prohibit an operation
outright. Second, they may allow an operation but modify its effect. Simple privileges
are an example of the first sort of contract: calling update on a capability without the
update privilege will result in a contract failure (as shown in figure 4), and program
execution will stop. Similarly, attempting to join a view with another view that is not
in the same join group will cause a contract failure.
The second type of contract enforcement is used for contracts with #:restrict mod-

ifiers. The modifiers are enforced through dynamic query rewriting: any operations
invoked on the view are rewritten to enforce the security policy. For example, if a
view had a delete privilege with the modifier #:restrict (lambda (v) (where v "id = 3")),
any delete queries on the view will be rewritten by adding id = 3 to the WHERE clause
of the query to enforce that only rows with the ID 3 can be deleted.

4 Implementation of ShillDB

We have implemented a prototype of ShillDB in Racket [9] using Racket’s macro
system and tools for creating languages [28]. Racket’s macro system allows writing
functions from syntax objects to other syntax objects (and is thus a form of source-to-
source compilation). ShillDB syntax is defined using macros that expand into Racket
code which the standard Racket runtime can execute. ShillDB contract combinators
like ->/join are compiled into contract combinators from Racket’s contract system.
Implementing ShillDB in this way allows reuse of Racket’s contract implementation
and makes it easy to reuse other Racket features that do not compromise security.

4.1 CapQL

We implemented a prototype of CapQL in Racket on top of Racket’s standard database
library [4]. View capabilities are structs that store metadata (such as information about
the underlying table’s schema) and an abstract syntax tree for the query that the view
represents. Operations produce new views from existing views by manipulating the
syntax tree. The query is concretized into database-specific SQL syntax only when an
operation is invoked that requires database interaction (i. e., fetch, update, delete, or
insert). CapQL views are language-level abstractions: no operations create DBMS-level
views. We currently support SQLite3 [29]; other DBMSs can be added modularly.
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The update and insert operations use database triggers to enforce view constraints.
For these operations, we install a trigger on the underlying DBMS table, execute the
query, and then remove the trigger. The trigger installed for insert operations checks
that each inserted row satisfies the WHERE clause of the view, and aborts the insert if
any row does not satisfy it. Similarly, for an update, the installed trigger checks that
each updated row still satisfies the WHERE clause of the view, and aborts the entire
update if not. Using SQLite’s temp trigger functionality [24] (which installs a trigger
just for the current database connection), the trigger-based approach works even if
multiple applications with different access control policies access a table concurrently.
Other DBMSs have similar mechanisms, so this approach is portable.
To provide early detection for invalid operations on views, CapQL parses and

validates any user-provided SQL expressions in WHERE clauses, update expressions,
and select statements. The SQL parser supports a limited but representative set of SQL
expressions (boolean and arithmetic expressions over columns, strings, and number
literals). This validation ensures that when an operation is eventually executed, it will
produce valid SQL (e. g., all column names are unambiguous and refer to columns
in the view). This validation is for usability rather than security: Racket’s standard
database library provides robust checks against SQL injection, and the underlying
DBMS will reject queries that correspond to invalid view operations (e. g., referencing
a column that has been projected away). Early detection allows CapQL to raise an
error as soon as an invalid view is created, which facilitates debugging.

Limitations CapQL does not currently support all features of SQL, such as different
kinds of joins, union and intersection operations, or nested queries in WHERE clauses.
It also does not provide functionality for running a sequence of queries in a transaction.
These limitations are not fundamental, and the features could be added to CapQL.

4.2 Contracts

ShillDB contracts are implemented using Racket’s contract facilities. Contracts
on view capabilities create proxy objects around capabilities, allowing contracts
to interpose on operations and check privileges. Contracts also allow for privilege
modifiers that can restrict or modify an operation’s arguments. We thus implement
proxy objects as struct impersonators [27] which allow redirecting or modifying
operations on structs. The use of these proxy objects follows the implementation of
contracts in Shill [19], but Shill does not use struct impersonators since Shill contracts
do not modify operations.

Join Contracts and Join Groups Because joins are binary, the join operation requires
special consideration in implementation. Each view can store join constraints for that
view. A join constraint is a special stateful view contract. Adding a view to a join group
wraps the view in a join constraint and updates the state of the contracts on all views
in the group to include the new view. Invoking join on the view checks if the other
argument of the join is in the contract state. The ShillDB ->/join contract combinator
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is a macro that hides implementation details of join groups from users by creating
the join constraints and wrapping views in the join group with the constraints.

4.3 Language Restrictions

To provide capability safety, ShillDB must restrict available Racket functionality.
The restrictions in the ambient language have already been discussed in section 2.3,
so here we only consider the capability-safe language.

Capability-safe Language The capability-safe language disallows access to Racket
standard libraries that could access databases using ambient authority (e. g., the
system library or database library). Mutable global variables are not allowed to
prevent functions storing capabilities between calls. Capabilities cannot be serialized
or deserialized so that programs cannot store capabilities in database tables. Capability-
safe programs can import definitions only from other capability-safe programs (and
vetted standard libraries) to prevent access to functions that can use ambient authority.

5 ShillDB in Action

To evaluate the usability and performance of ShillDB, we used it to implement
a library reservation system. We also used benchmarks to better understand the
performance characteristics of individual operations.

5.1 Case Study

We have used ShillDB to implement a library reservation backend. The server pro-
vides five endpoints with the following functionality and high-level security policies:

reserve: Given the ID of a book and a view of the reservations table, reserve that
book for the logged-in user. Should not modify any existing reservations or make a
reservation for a different user.
my-reservations: Given views of the table of books, authors, and reservations,
return details for all of the logged-in user’s reservations. Should not modify any
data or reveal information about reservations belonging to other users.
remove-reservations: Given the ID of a reservation and a view of the reservations
table, delete the given reservation. Should not delete the reservation if it does not
belong to the logged-in user.
search-author: Given the name of an author and views of the tables of books and
authors, return all the books by that author. Should not modify any data.
num-reservations: Given the ID of a book and a view of the reservations table,
return the number of reservations for the book. Should not modify any reservations
and should reveal no details of specific reservations.

Appendix B shows the database schema and the declaration of each endpoint with
the contract corresponding to the security policies described above. The server is
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written in a combination of Racket and ShillDB code. The main loop of the server is
implemented in Racket (to take advantage of Racket libraries for web servers which
have not been vetted for use in ShillDB). The backend functionality that interacts
with the database is implemented in capability-safe ShillDB code. A short ambient
ShillDB program provides an interface between the Racket and ShillDB code and
creates the capabilities needed by the capability-safe implementations of the server
endpoints. When the server receives a request, it calls the corresponding ShillDB
function to handle it. The server implementation required 35 lines of Racket code and
67 lines of capability-safe ShillDB code (of which 21 lines specify contracts).

5.2 Performance Analysis

The prototype implementations of ShillDB and CapQL focus on security, not
performance. Nonetheless, we used the library reservation system as a performance
benchmark to verify that the performance overhead of using ShillDB is reasonable.
We explore performance via four different implementations. As a baseline, we

implemented the reservation system using Racket’s standard database library. To
examine the overhead of using CapQL instead of the standard database library, we
implemented two different versions of the server in Racket using CapQL. One uses a
modified CapQL that does not install database triggers to enforce view constraints
for updates or inserts, and the other implementation uses CapQL as described in sec-
tion 4.1. The final implementation is the Racket/ShillDB implementation complete
with contracts as described in section 5.1.

For each implementation, we considered three different workloads. The first work-
load consists of 1,500 requests that require both reading from and writing to the
database (e. g., looking up books, adding new reservations, deleting existing reserva-
tions). The second workload consists of 750 requests that require only database reads.
The third workload consists of 2,000 requests that require only insert operations.

We ran each implementation for each workload 50 times on a four core, 2.7 GHz i7
machine with 8GB of RAM running macOS 10.12.6. Figure 5 displays the result.
First, observe that the slowdown for the ShillDB implementations is small for

all three workloads: the largest slowdown was 5.43% in the read & write workload.
Second, note that the biggest difference in performance is between the baseline and
CapQL implementation (we further explore the overhead of using CapQL below).
Adding database triggers to enforce view constraints and adding ShillDB contracts
both result in negligible slowdowns compared to the CapQL implementation. Finally,
note that ShillDB and CapQL have comparatively large slowdowns in the read
& write and read-only workloads (5.43% and 3.87% respectively) compared to the
insert-only workload (0.95%). The following section examines the performance char-
acteristics of different CapQL operations to better explain this finding. Overall, these
results suggest that future performance optimization ought to focus on CapQL.

5.2.1 CapQL Benchmarks
To better understand the overhead of database operations due to the implementation
of CapQL, we evaluated small benchmarks using Racket’s standard database library
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Figure 5 Mean time required to run library reservation system workloads for the baseline
( ), CapQL with no triggers (�), CapQL with triggers (Î), and ShillDB
implementation (�). 95% confidence intervals are indicated by vertical bars
(obscured by plotting symbols when intervals are small). Note: scale is consistent
between plots but y-axes begin at different values.

and CapQL operations. All benchmarks use a simple schema consisting of one table
with two integer columns. The where benchmark performs a selection and a fetch
for a particular query selectivity (that is, the portion of rows that a query affects).
The delete benchmark deletes a subset of rows. The update benchmark performs
an arithmetic update on a subset of rows in the table. To measure the overhead of
installing and executing the database triggers for views, the CapQL implementation of
the update benchmark restricts the view before updating using a simple where clause.
The insert benchmark inserts ten rows into the table. As in the update benchmark,
the CapQL implementation restricts the view before inserting. For both the update
and insert benchmarks, there is an accompanying version that uses a modified CapQL
implementation that does not install database triggers.
We timed each benchmark 100 times against a table with 50,000 rows for a variety of

selectivity values between 0% and 100% (except for the insert benchmarks for which
there is no notion of selectivity). We ran the benchmarks using the same hardware as
for the case study. Figure 6 shows the mean execution times with 95% confidence
intervals (left column) and the mean slowdown for the CapQL implementation
compared to the baseline (right column). Themean slowdown for the insert benchmark
(not shown in the figure) was 1.08× with triggers and 1.02× without triggers.

First, note that for read operations, the slowdown due to CapQL is negligible for
large queries: the fixed overhead of using CapQL is dominated by the high cost of
fetching results into memory. Second, while the slowdown trends downwards with
increasing query size for update and delete operations, the overhead is still significant
for large queries. This is not due to the overhead of checking triggers in updates
because the trend is consistent for updates, for deletes (which do not install triggers),
and for the modified update benchmark with no triggers. The cost of executing updates
and deletes at the DBMS level in this case does not increase dramatically enough to
dominate the overhead of CapQL, even for large queries. Finally, these results are
consistent with the performance results from the library case study. Low selectivity
deletes, updates, and fetches are the worst case for CapQL compared to the standard
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Figure 6 Results for each CapQL benchmark. The left column shows mean runtime vs.
query selectivity % for the baseline ( ) and CapQL (�) implementations. Vertical
bars indicate 95% confidence intervals. The right column plots the slowdown of
the CapQL implementation compared to the baseline vs. query selectivity %.

database library, whereas the overhead of insertions is small. This corroborates the
result that the read & write workload (which consists primarily of low-selectivity
deletes and fetches with some inserts) and the read workload (low-selectivity fetches
only) performed much worse than the insert-only workload.
Finally, to understand why certain CapQL operations have such significant overhead

compared to Racket’s standard database interface, we used Racket’s statistical pro-
filer [21] to profile one of the CapQL microbenchmarks. We ran the where benchmark
with 0% query selectivity 10,000 times, and the profiler collected samples to estimate
the execution costs for different functions called during the benchmark. The results
suggest that a significant portion of running time (about 1/3) was spent parsing and
validating the WHERE clause argument supplied to the where operation. This helps
explain the results of the microbenchmarks, as where, update, and delete all must
validate SQL expressions they are passed, while insert does not have any SQL expres-
sion arguments. Further, this suggests that future performance optimizations ought
to focus on speeding up validation of SQL arguments or pushing more of this work to
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the DBMS (for example, by caching prepared queries or by using stored queries in the
DBMS). Since the SQL-parsing functionality exists for usability, we could also provide
an option to disable it.

6 Related Work

We overview three categories of related work in language-based security. For a com-
prehensive review of access control at the DBMS level, see Bertino, Ghinita, and
Kamra [1].

Language Support for Principle of Least Privilege Other systems have also used
language-level capabilities to support POLP. The E programming language [17] is an
object capability language, where object references are treated as capabilities to invoke
operations on that object. Passing an object reference provides unattenuated access
to the underlying object, but it is possible to protect sensitive behaviors of objects by
wrapping them in proxy objects. Both ShillDB and Shill use contracts to express and
enforce these access abstractions at component interfaces. CapDesk [26] provides sup-
port to launch applications written in E with limited authority. Melicher, Shi, Potanin,
and Aldrich [12] propose a module system where modules are first-class capabilities:
a module can be accessed only via a capability for that module, and capabilities for
sensitive resource modules are obtained only as arguments to an ML-style functor [11].
Many research efforts seek to limit mainstream languages to capability-safe subsets

to better support reasoning about and limiting the authority of programs. These
approaches typically limit the API of the original language and restrict access to
ambient authority. Examples include Joe-E [13] (a subset of Java), Emily [25] (a
subset of OCaml), and Caja [15] (a subset of JavaScript). ShillDB and Shill are
capability-safe subsets of Racket. Specifying and verifying security policies in object-
capability languages is still an active area of research [7]. However, since capability-
safe languages enable security reasoning based on the flow of capabilities, informal
security reasoning can be easier than in languages with ambient authority.

Software Contracts for Security Prior work also used contracts to enforce access
control policies. Heidegger, Bieniusa, and Thiemann [10] introduce access permission
contracts to restrict the fields that a method can access. Contracts have also been used
to restrict how capabilities flow between components in object-capability languages
[5]. Other contract systems allow enforcing more general policies. Moore, Dimoulas,
Findler, Flatt, and Chong [18] use authority environments to manage rights within an
execution context and authorization contracts to limit authority environments.

Language-based Database Security Caires, Pérez, Seco, Vieira, and Ferrão [2] propose
a refinement type system that statically ensures programs adhere to database access
control policies. UrFlow [3] also uses static policies, written as SQL queries, to enforce
access control policies.
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The refinement type system, UrFlow, and ShillDB are different points in the
design space of language-based database security. In the refinement type approach,
programmers specify policies for each column of a table (for example, “you can see
my profile picture only if you are my friend”) and add annotations to aid the type
checker. In UrFlow, programmers write policies using SQL queries that define what
data a user can see (so the same photo policy would be written as a query fetching
the profile pictures a user can view) and do not require additional annotations. In
ShillDB, access is controlled by database capabilities and further refined by policies
expressed as contracts on capabilities. To express the same profile picture policy, a
developer would write a contract allowing the picture column to be fetched only after
doing a join to the current user’s friends. All three of these approaches are declarative
(i. e., developers write policies but not how to enforce them) but present different
interfaces to express policies.
When considering the trade-off between ShillDB’s run time validation of contracts

and compile time approaches, we consider three main axes of comparison. For a
general comparison between contract systems and other enforceable specification
techniques, see Dimoulas, New, Findler, and Felleisen [6].

1. Runtime performance overhead: Performance overheads of run time checks for
contracts are well-studied and are an active area of research [8]. While our bench-
marks show that the contract checking overhead is reasonable in the artificial cases
considered, the overhead may not be acceptable for all applications. Note that
the checking cost from contracts is pay-as-you-go: removing contracts or making
contracts less precise decreases the overhead.

2. Annotation burden: To use a compile-time technique, such as a type system,
programmers must typically provide hints to the checker, such as type annotations,
often to significant portions of code. Compare this to Racket and ShillDB where
contracts can be added gradually, starting with no contracts at all. Further, these
contracts are expressed in terms of the normal program semantics and thus present
a lower barrier to entry, while usually the annotations for compile-time techniques
are expressed in terms of some formal logic.

3. Expressiveness: At run time, contracts can enforce properties that cannot be easily
checked statically, such as properties that depend on the dynamic contents of
a database table. However, run time validation of contracts cannot prove safety
properties of a program in general (e. g., “this function never writes a null value to
the database”) — it can only prove that a specific execution of the program does
not violate the contract. Finally, having run time contract failures halt program
execution may be unacceptable in some settings.

Other approaches have considered the problem of information flow instead of access
control. Information flow is able to address the propagation of sensitive information,
in addition to access to data. SeLINQ [23] and UrFlow [3] use static types to reject
queries that violate information flow policies. Jacqueline [30] performs dynamic query
rewriting to enforce information flow policies (like ShillDB does for some access
control policies). Jacqueline uses a policy-agnostic approach in which information flow
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policies are separated from the rest of the application code. Similarly in ShillDB,
access control policies are pushed to function interfaces.

7 Conclusion

ShillDB provides language-level support for running database-backed applications
with least privilege and enforcing database access control policies. ShillDB is ca-
pability safe and ensures that programs access database resources based only on
the capabilities they are given. ShillDB provides contract combinators tailored for
writing fine-grained specifications for the use of database views, and the ShillDB
runtime enforces these specifications. This allows pushing access control policies to
program interfaces, making it easy to inspect or modify policies without looking at
the program’s implementation.

Acknowledgements We thank James Mickens and Margo Seltzer for their helpful
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A ShillDB Contract Reference

A.1 ShillDB Contract Syntax

view/c: The general form of the view/c contract is:
1 (view/c privilege ...)
2
3 privilege = simple-privilege
4 | [simple-privilege modifier ...]
5
6 simple-privilege = +fetch
7 | +update
8 | +delete
9 | +insert
10 | +where
11 | +select
12 | +aggregate

Which produces a contract for a view capability with only the privileges listed,
where privilege ... indicates one or more privilege expressions and modifier ... indicates
one or more modifier expressions (appendix A.2 has a listing of available modifiers).
As a special case, view/c on its own (with no privileges) checks only that a value is
a ShillDB view capability and does not wrap the capability in a proxy, effectively
conferring all privileges if the capability was not previously wrapped in a more
restrictive contract.

->/join: The general form of the ->/join contract combinator is:
1 (->/join (group-definition ...) dom-expr ... range)
2
3 group-definition = [identifier join-modifier ...]
4
5 dom-expr = ctc
6 | [ctc #:groups group-identifier ...]

Which produces a contract on a function which, when applied, places arguments
in the join groups defined in the contract. Above, ctc is any valid contract (including
standard Racket contracts), range is any valid contract or any, join-modifier ... is one or
more modifier expressions taken from the list of valid join modifiers in appendix A.2,
identifier is a valid Racket identifier, and group-identifier ... is one or more of the
identifiers defined in the group-definition portion of the same contract. The contracts

3:26

https://doi.org/10.1145/2908080.2908098


Ezra Zigmond, Stephen Chong, Christos Dimoulas, and Scott Moore

in dom-expr are contracts on the function arguments and range is the contract on the
result (analogous to the structure of the -> contract combinator in Racket).

A.2 ShillDB Privilege Modifiers

Privileges and Modifiers
Privileges Modifier Description Example

+fetch
+update
+delete
+insert

#:restrict
Provides a restricted window into 
the view for an operation based on 
the given view to view function.

#:restrict (λ (v) (where v “id < 10”))

+aggregate

#:having
Filters out any groups in the 
resulting view that do not satisfy the 
given HAVING clause.

#:having “COUNT(*) > 10”

#:aggrs
Rejects any aggregation query that 
contains an aggregation function 
other than those listed.

#:aggrs “MIN, MAX”

#:with
Specifies what contract the view 
should derive after an aggregation. #:with (view/c +fetch)

+join

#:pre
Rejects any joins that do not satisfy 
the given predicate over tables and 
join condition.

#:pre valid-foreign-key?

#:post Applies the given view to view 
function to the result of joins. #:post (λ (v) (select v “id”))

#:with
Specifies what contract the view 
should derive after a join. #:with (view/c +fetch)

+where #:prohibit
Specifies columns that cannot be 
referred to in WHERE clauses. #:prohibit “gpa”

+select ——— ——— ———

Figure 7 Privileges and modifiers in ShillDB. Modifiers can be used to refine what
operations a particular privilege permits. To come up with the available modifiers,
we identified cases where it was desirable to have more nuanced restrictions on
operations, but we do not claim that this set of modifiers is complete in their
expressiveness. In the example, valid-foreign-key? in the example used for #:pre
is a function that takes two views and a WHERE clause and returns true just when
either of the tables corresponding to the views has a foreign key field for the
other table (based on schema information stored in the view capability) and the
WHERE clause represents an equijoin on that key.
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B Library Reservation Backend

B.1 Schema

cardholders
card_id firstname lastname
1 Steve Martin
2 Richard Pryor

authors
author_id firstname lastname
1 Trevor Noah
2 Tina Fey

books
book_id author title copies
1 1 Born a Crime 4
2 2 Bossypants 6

reservations
r_id book cardholder_id
1 2 2
2 1 2

Figure 8 Schema and example data used by the library reservation backend.

B.2 Contracts on Endpoints

Figure 9 shows the definitions of the library reservation server endpoints along with
contracts. The definitions use the define/contract macro which is similar to define
except that it also takes a contract and attaches that contract to the bound value.
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1 (define/contract (reserve book v-reservation)
2 (-> string?
3 (view/c [+insert #:restrict (lambda (v) (where v (sqlformat "cardholder_id = $1"

(current-user))))]),→

4 any/c)
5 #| Implementation... |#)
6
7 (define/contract (my-reservations v-reservations v-books v-authors)
8 (-> (view/c
9 [+fetch #:restrict (lambda (v) (where v (sqlformat "cardholder_id = $1" (current-user))))]
10 +join +where +select)
11 (view/c +join +fetch +select +where)
12 (view/c +join +fetch +select +where)
13 string?)
14 #| Implementation... |#)
15
16 (define/contract (remove-reservation rid v-reservations)
17 (-> string?
18 (view/c +where
19 [+delete #:restrict (lambda (v) (where v (sqlformat "cardholder_id = $1"

(current-user))))]),→

20 any/c)
21 #| Implementation... |#)
22
23 (define/contract (search-author fname lname v-authors v-books)
24 (-> string?
25 string?
26 (view/c +fetch +join +select +where)
27 (view/c +fetch +join +select +where)
28 string?)
29 #| Implementation... |#)
30
31 (define/contract (num-reservations book-id v-reservations)
32 (-> string?
33 (view/c [+aggregate #:with (view/c +fetch)] +where)
34 string?)
35 #| Implementation... |#)

Figure 9 Library reservation backend endpoints with contracts. The implementations are
omitted for brevity.
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