
Logical Relations for Mutable State
Hakan Dingenc

1 Logical Relations for Mutable State
@phdthesis{Ahmed:2004:STM:1037736,
 author = {Ahmed, Amal Jamil},
 title = {Semantics of Types for Mutable State},
 year = {2004},
 note = {AAI3136691},
 publisher = {Princeton University},
 address = {Princeton, NJ, USA},
}

Summary: In the first half of her dissertation, Ahmed assigns a meaning
to each type in three different languages based on the lambda calculus:
a pure language, a language with immutable state, and a language with
mutable state. In each setting, the meaning of a type is formulated as a
certain set using the operational semantics of the language. By carefully
crafting the meaning of each type, Ahmed is able to prove the typing rules
of the language, which enables a proof of type safety, that is, evaluation
of well-typed terms do not get stuck. While the semantics of immutable
references uses a possible-world model that describes what kind of stores
are reachable in the future from a given store, the semantics of mutable
references uses a step-indexed possible-worlds model that is based on how
many operational steps are taken when considering a certain term. Ahmed
includes for each language a description of how her model corresponds to
the world of logical relations.

Evaluation: Giving meaning to types sets Ahmed’s work apart from the
usual syntactic approaches such as progress and preservation that consider
types as mere attributes of terms. The trade-off here is avoiding having to
type the intermediate terms in the operational semantics that don’t appear
in the original language such as stores at the cost of having to carefully

1

come up with meaning of types that leads to the sought proofs. Logical
relations have been used to prove a wide range of important properties
of programming languages and Ahmed’s work on step-indexing provides
the foundations for dealing with semantically challenging features such as
mutable references and impredicative polymorphism.

2

