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Summary:  The paper begins with an introduction to combinatory logic and a rationale for 
Curry's desire to study computable functions in that setting. Curry goes on to define notation 
and axioms with a special importance placed on axiom F, the definition of what it means to be a 
function in combinatory logic, and axiom  , an axiom pertaining to self application of F. UsingΠ  
these, he observes that every type of a function could be read as a provable proposition and 
vice versa. From this basis, he defines F’, the property of being a function in combinatory logic. 
He then shows that F’ precludes axiom  and leads to contradictions such as Russell’s andΠ  
Epimenide’s paradoxes.  
Evaluation: Although not the most seminal of Curry's work, the observations that function types 
could be viewed as propositions was an important first step in understanding the Isomorphism. 
His exploration and observation of function types as propositions paved the way for his future 
findings in 1958 and the eventual Curry-Howard correspondence. 
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Summary: The paper opens with a background in Intuitionistic Propositional Logic and Natural 
Deduction. Howard explains how the connectives  ( , ) in this logic directly relate to⋀ →  
computation types  (x, +) in simply typed lambda calculus. He enriches the analogy further by 
pointing out the similarity between the normalization of terms and cut elimination in a proof. 
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Howard then adds a discussion of Heyting arithmetic to introduce the idea that the Universal 
and Existential quantifiers could correspond to new types themselves.  
Evaluation: This paper’s exploration of the simply typed lambda calculus and Intuitionistic 
Propositional Logic was a massive academic finding. Prior to this, comparisons between the two 
systems had been informal at best. As such, Howard’s contribution laid the groundwork for a 
deep equivalence between logic and programming languages that has allowed the two fields to 
continually inspire one another. 
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Summary: This paper begins with an introduction to the type free lambda calculus and its 
features. Barendgret then details typing a la Church and typing a la Curry and uses that as a 
basis for comparison between different type systems. He goes on to discuss the lambda cube 
as a geometric representation of different lambda calculi with each axis representing a particular 
feature of either terms depending on types, types depending on terms, or types depending on 
types. Using the lambda cube, he goes on to describe pure type systems and verify the 
viewpoint of propositions as types. 
Evaluation: The paper provides a strong geometric foundation for understanding typed 
programming languages.  It's greatest contribution can be thought of relating lambda calculi to 
one another in a way that is visual, intuitive and useful and relating them to logical systems. This 
intuition laid the framework for work in dependent types and more advanced type systems. 
 
 


