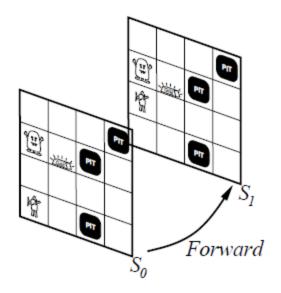
Challenges for Logic AI Systems

Northwestern EECS 348 Doug Downey

Logic as a Foundation for AI

• Logic: extremely expressive, powerful

- Theorem provers: useful in practice


- But:
 - Writing down needed knowledge is hard
 - So-called Frame, qualification, ramification problems
 - => Knowledge acquisition bottleneck
 - Logic systems are "incomplete"
 - Logic systems are brittle

The real world: Sensing and Acting

- Perception
 - three binary inputs [smell, breeze, glitter] at each time t
 - $\forall s, b, t$ Percept([s, b, Glitter], t] => AtGold(t)
- ∀t AtGold(t) => Action(Grab, t) ?
 Infinite Loop!
- ∀*t* AtGold(*t*) ∧ ¬Holding(Gold, *t*) =>
 - Action(Grab, t)

Keeping track of Change

- Facts hold in particular situations
 - E.g., Holding(Gold, t) may be False,
 Holding(Gold, t+8) true
- Agent must keep track of change

Frame Problem

- Effect axioms
 - $\forall t$ Standing((i, j), t) \land Facing(Up, t) \land Action(Forward, t)

=> Standing((i,j+1), t + 1)

- But...HaveArrow(t + 1)?
- "Frame" axioms keep track of what *doesn't* change
 - Action(Forward, t) => (HaveArrow(t) ^ HaveArrow(t + 1))
 - Etc. etc. etc.

Representational Frame Problem

- Historically thought to be extremely tricky
- Can be solved by writing axioms about fluents rather than actions

```
Holding(Gold, t)
<=>
¬ Holding(Gold, t-1) and action at t-1 made it true
or
Holding(Gold, t-1) and no action at t-1 made it false
```

Qualification Problem

- Action's preconditions can be complex
- Action(Grab, t) => Holding(t)

....unless gold is slippery or nailed down or too heavy or our hands are full or...

Ramification Problem

- Actions can have many consequences
 - ∀t Standing((i, j), t) ∧ Facing(Up, t) ∧ Action(Forward, t)

=> Standing((i,j+1), *t* + 1)

– But also

=> In(Basketball, (i, j+1), t + 1)

if I'm holding a basketball

- Writing all these down -- difficult

Knowledge Acquisition

- Remember the Colonel West story
 - We converted text to logic
 - In practice...who does this?
- Qualification, Ramification problems tell us we need tons of "common-sense" knowledge
- The infamous "knowledge acquisition bottleneck"

Knowledge Acquisition: Options

• Type it all in yourself

- Cyc

 Get Web citizens to type it all in – Open Mind

- Extract it from the Web
 - KnowItAll, TextRunner

Logic as a Foundation for AI

- Logic: extremely expressive, powerful
 - Theorem provers: useful in practice
- But:
 - Writing down needed knowledge is hard
 - So-called Frame, qualification, ramification problems
 - => Knowledge acquisition bottleneck
 - Logic systems are "incomplete"
 - Logic systems are brittle

Gödel's Incompleteness Theorem

 Completeness Theorem: All valid statements have proofs in FOL

 Incompleteness Theorem: For any FOL KB enhanced to allow mathematical induction, there are true statements that *can't* be proved.

Gödel's Theorem: Sketch (1)

• Idea:

This statement is false.

• More specifically:

This statement has no proof.

Gödel's Theorem: Sketch (2)

- Assign numbers to sentences, proofs
 - E.g. by sorting by length, then alphabetically
- Consider the sentence α(*j*, *A*)
 - For all numbers *i*, statement #*i* is not a proof for statement #*j* from the axioms A
- Let σ be the sentence α (# σ , A)
 - σ false? But it has a proof!
 - $-\sigma$ true? It's unprovable!

Gödel's Theorem: Ramifications

 Argument: Computers are limited by Gödel's theorem, whereas humans aren't.

• Thus, AI is doomed

Three counter-arguments

 Gödel's theorem applies to math induction systems, e.g. Turing Machines

 Computers aren't *really* Turing machines

"Steve cannot say this sentence is true."
But Steve might be able to do other cool stuff

• Are humans really immune to the theorem?

Logic as a Foundation for AI

- Logic: extremely expressive, powerful
 Theorem provers: useful in practice
 - Theorem provers: useful in practice
- But:
 - Writing down needed knowledge is hard
 - So-called Frame, qualification, ramification problems
 - => Knowledge acquisition bottleneck
 - Logic systems are "incomplete"
 - Logic systems are brittle

Brittleness of Logic Systems

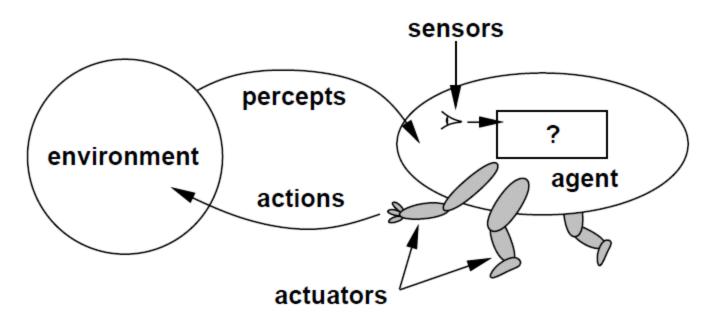
• Consider a KB with just one contradiction

• That KB entails everything

- This is a problem because much of the world is uncertain
 - Perception, action, incomplete information, controversies, etc.

Toward "Modern" AI

• Limitations:


Knowledge Acquisition Bottleneck, Brittleness

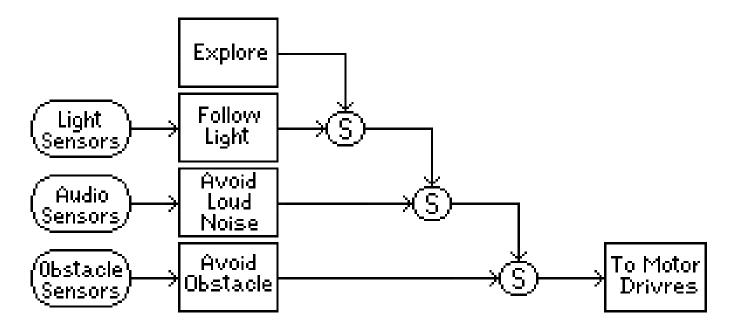
- "Modern" directions:
 - Situatedness, embodiment
 - Probability
 - Learning from data

Alternatives: Focus on Behavior

- Argument: we can't even build systems that do what ants do
- In the timeline of evolution, simple cells->ants took much longer than ants->humans
- Let's start by building ants
 - Environment, body can make tasks easier
 - Incrementally solve real problems end-to-end

Intelligent Agents

- Sensory/motor aspect
 - more important, more coupled, more integrated with rest of intelligence than originally thought


Behavior-based robots as a foundation for AI

• Common-sense knowledge arises from our interaction in the world

- Thus, the road to AI is paved with real-world interaction
 - We must build robots
- Another possibility: softbots

Subsumption Architecture

Behavior-based robotics

Beam-wiki.org

Other "modern" trends

- Biological inspiration, e.g.:
 - Neural networks
 - Hexapod robots drawing on insect nervous systems followed subsumption architecture
- Probability theory

– Handles uncertainty, overcomes brittleness

• Data

Learning from Data

Quantities of data are exploding -- let's learn from it

• "Machine learning"