| Constraint Satisfaction

Chapter 6
Sections 1 — 4

(based on slides by Oren Etzioni, Stuart
Russell)

B Outline

Constraint Satisfaction Problems (CSP)
Backtracking search for CSPs
Local search for CSPs

- Constraint satisfaction problems (CSPs)

Standard search problem:

state is a "black box™ — any data structure that supports successor
function, heuristic function, and goal test

CSP:

state is defined by variables X; with values from domain D,

goal test is a set of constraints specifying allowable combinations of
values for subsets of variables

Simple example of a formal representation language

Allows useful general-purpose algorithms with more power
than standard search algorithms

W Example: Map-Coloring

Northern
Territory

Westarn
Australia

Quesnsland

South
Australia

Variables WA, NT, Q, NSW, V, SA, T
Domains D; = {red,green,blue}

-_-___'_-_‘—-——-"""“-.--'
New South Wales

Tasmania

Constraints: adjacent regions must have different colors
e.g., WA # NT, or (WA,NT) in {(red,green),(red,blue),(green,red),

(green,blue),(blue,red),(blue,green)}

W Example: Map-Coloring

=
=

T

ghs

Tasm"a

Solutions are complete and consistent assignments,
e.g., WA =red, NT = green,Q = red,NSW =
green,V = red,SA = blue, T = green

M Constraint graph

Binary CSP: each constraint relates two variables
Constraint graph: nodes are variables, arcs are constraints

B Varieties of CSPs

Discrete variables

finite domains:
n variables, domain size d 2 O(d ") complete assignments
Boolean CSPs, (NP-complete, proof?)

infinite domains:
integers, strings, etc.
e.g., job scheduling, variables are start/end days for each job
need a constraint language, e.qg., StartJob, + 5 < Startjob,

Continuous variables
e.g., start/end times for Hubble Space Telescope observations
linear constraints solvable in polynomial time by linear programming

M Varieties of constraints

Jnary constraints involve a single variable,
e.g., SA # green

Binary constraints involve pairs of variables,
e.g., SA # WA

Higher-order constraints involve 3 or more
variables,
e.g., cryptarithmetic column constraints

M Example: Cryptarithmetic

T WO FY (T
+ T WO
FOUR

Variables: FTUW H\@{ \@D/
R O X, X, X;
Domains: {4,1,2,3,4,5,6,7,8,9}
Constraints: Alldiff (F, T,U W,R,0)
O+0=R+10- X,
X, +W+W=U+10- X,

X,+T+T=0+10-X;
X;=FT+0, F£0

‘hinese Dinner Constraint Network

1 <%30 T~
/

/

Must be

@ Hot&Sour

NO
Peanuts

Total Cost |~ .E

NO
Peanuts

Not Both
Spicy

Co D N
Not

Eggplant

What is the arity of each constraint?

10

B Real-world CSPs

Assignment problems

e.g., who teaches what class
Timetabling problems

e.g., which class is offered when and where?
Transportation scheduling

Factory scheduling

Notice that many real-world problems involve real-
valued variables

11

- Standard search formulation (incremental)

States are defined by the values assigned so far

[nitial state: the empty assignment { }

Successor function: assign a value to an unassigned variable that does
not conflict with current assignment

- fail if no legal assignments

Goal test?
the current assignment is complete

Every solution appears at depth n with n variables

n > 20, What search strategy to use?
- use depth-first search

12

M Backtracking search

What is the branching factor?
b = (n - k)d at depth k, hence n! - d" leaves

Observation: Variable assignments are commutative}, i.e.,
[WA = red then NT = green] same as [NT = green then WA = red]

Only need to consider assignments to a single variable at each node
- b = d and there are $d”~n$ leaves

Depth-first search for CSPs with single-variable assignments is called
backtracking search

Backtracking search is the basic uninformed algorithm for CSPs

Can solve n-queens for n = 25

13

M Backtracking search

function BACKTRACKING-SEARCH(csp) returns a solution, or failure
return RECURSIVE-BACKTRACKING({}, esp)

function RECURSIVE-BACKTRACKING(assignment,csp) returns a solution, or
failure
if assignment is complete then return assignment
var + SELECT- UNASSIGNED- VARIABLE(Variables/csp], assignment, csp)
for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do
if value is consistent with assignment according to Constraints[csp| then
add { var = value } to assignment
result «+— RECURSIVE- BACK TRACKING(assignment, csp)
if result failue then return result
remove { var = value } from assignment
return failure

14

M Backtracking example
(B

15

M Backtracking example

M Backtracking example

M Backtracking example

18

B Improving backtracking efficiency

General-purpose methods can give huge
gains in speed: How?
Which variable should be assigned next?
In what order should its values be tried?
Can we detect inevitable failure early?

19

B Most constrained variable

Most constrained
choose the variable

e

variable:
with the fewest legal values

She e

a.k.a. minimum remaining values (MRV)

heuristic

20

M Most constraining variable

Tie-breaker among most constrained
variables

Most constraining variable:

choose the variable with the most constraints on
remaining variables

L Rt

21

M Least constraining value

Given a variable, choose the least
constraining value:

the one that rules out the fewest values in the
remaining variables

Allows 1 value for SA

Hp-—-«,:—-«bg% —

Combining these heuristics makes 1000
queens feasible

22

M Forward checking

Idea:

Keep track of remaining legal values for unassigned variables
Terminate search when any variable has no legal values

Lo

\u.._|L

WA NT Q NSW v SA T
ENfEENFEIETEENFEIENEfEINETEIETDE

M Forward checking

Idea:

Keep track of remaining legal values for unassigned variables
Terminate search when any variable has no legal values

S~

L1

WA NT Q NSW v SA T
ENEENEENEENE|ENE|ENEENE
B "EEfEENEE"E| SEEYE

M Forward checking

Idea:

Keep track of remaining legal values for unassigned variables
Terminate search when any variable has no legal values

WA NT Q NSW v SA T
ENfEENFEIETEENFEIENEfEINETEIETDE
B "EjENE|EfFEENE]) EEYEH
] HjOTTT N EETE 1L

M Forward checking

Idea:
Keep track of remaining legal values for unassigned variables
Terminate search when any variable has no legal values

WA NT Q NSW v SA T
ENfEENFEIETEENFEINEfEINET"EIETE
B "'EjENEEfEENE]) "EEYEH
] HjOTTT N EETE 1L
] | Q| I ENE

M Constraint propagation

Forward checking propagates information from assigned to
unassigned variables, but doesn't provide early detection for

all failures:
SO St S
BTN EIENTEETNTEIRETNEIRETEIDETEEIRTDE
] CPHECTEIECNEIRET R CTHIET R
I B EErTE BEETR

NT and SA cannot both be blue!

Constraint propagation repeatedly enforces constraints
locally

27

M Arc consistency

Simplest form of propagation makes each arc consistent

X = Yis consistent iff
for every value x of Xthere is some allowed y

WA NT Q NSW v SA T
| H|iTTT|E EETE HETH

~¢—

M Arc consistency

Simplest form of propagation makes each arc consistent

X = Yis consistent iff
for every value x of Xthere is some allowed y

WA NT Q NSW v SA T
| E[ae e m HETH

\V

M Arc consistency

Simplest form of propagation makes each arc consistent

X = Yis consistent iff
for every value x of Xthere is some allowed y

H:—"‘H:—"‘H:

WA Q NSW SA T
] 1)J:I:ll EEEEm

If Xloses a value, neighbors or X need to be rechecked

M Arc consistency

Simplest form of propagation makes each arc consistent

X = Yis consistent iff
for every value x of Xthere is some allowed y

H:—"‘H:—"‘H:

] O |I)I(l) (1

— —
If X'loses a value, neighbors O X need to be rechecked
Arc consistency detects failure earlier than forward checking
Can be run as a preprocessor or after each assignment

31

B Arc consistency algorithm AC-3

function AC-3(csp) returns the CSP, possibly with reduced domains
inputs: csp, a binary CSP with variables {X;, Xy, ..., X,}
local variables: queue, a queue of arcs, initially all the arcs in esp

while gueue is not empty do
(Xi, X;) 4+ REMOVE-FIRST(queue)
if RM-INCONSISTENT- VALUES(X;, X;) then
for each X} in NEIGHBORS[X;] do
add (X%, X;) to queue

function RM-INCONSISTENT-VALUES(X;, X;) returns true iff remove a value
removed +— false
for each z in DomaIN[X;] do
if no value y in DOMAIN[X]] allows (z,y) to satisfy constraint(X;, X;)
then delete z from DOMAIN[X;]; removed + true
return removed

Time complexity: O(n2d?3)

M Local search for CSPs

Hill-climbing, simulated annealin? typically work with
"complete" states, i.e., all variables assigned

To apply to CSPs:
allow states with unsatisfied constraints
operators reassign variable values

Variable selection: randomly select any conflicted variable

Value selection by min-conflicts heuristic:
choose value that violates the fewest constraints
i.e., hill-climb with A(n) = total number of violated constraints

33

M Example: 4-Queens

States: 4 queens in 4 columns (4* = 256 states)
Actions: move queen in column

Goal test: no attacks

Evaluation: A(n) = number of attacks

EE (W [(Em
G- r e dr
BN EE| E®

h=5 h=2 h=0
Given random Initial state, can solve r-queens in almost
constant time for arbitrary n with high probability (e.g., n =
10,000,000)

34

M Summary

CSPs are a special kind of problem:
states defined by values of a fixed set of variables
goal test defined by constraints on variable values

Backtracking = depth-first search with one variable assigned per node
Variable ordering and value selection heuristics help significantly
Forward checking prevents assignments that guarantee later failure

Constraint propagation (e.g., arc consistency) does additional work to
constrain values and detect inconsistencies

Iterative min-conflicts is usually effective in practice

Planning = states as sets of logical propositions.

35

