Decision Trees

Doug Downey
EECS 348 Spring 2010
several slides from Pedro Domingos

Recall: Toward “Modern” Al

e Classical Al Limitations:

— Knowledge Acquisition Bottleneck, Brittleness

e “Modern” directions:

— Learning from data (machine learning)
— Probability

Learn function from x = (x,, ..., x,) to f(x) e {0, 1}
given labeled examples (x, f(x))

General Machine Learning Task

DEFINE:

e Set X of Instances (of n-tuples x = <x, ..., x.>)
— E.g., days decribed by attributes (or features):
Sky, Temp, Humidity, Wind, Water, Forecast

e Target function y, e.g..
— EnjoySport X —» Y ={0,1} (our running example)
— HoursOfSport X > Y =10, 1, 2, 3, 4}
— InchesOfRain X — Y =[O0, 10]

GIVEN:

e Training examples D
— examples of the target function: <x, y(x)>

FIND:
e A hypothesis h such that h(x) approximates y(x).

Hypothesis Spaces

e Hypothesis space H is a subset of all y: X > Y e.g.:
— Linear separators

— Conjunctions of constraints on attributes (humidity
must be low, and outlook != rain)

— Etc.

e |[n machine learning, we restrict ourselves to H
— The subset thing turns out to be important

Inductive Learning Hypothesis

e Any hypothesis found to approximate the target
function well over the training examples will also

approximate the target function well over
unobserved examples.

Number of Instances, Concepts, Hypotheses

e Sky: Sunny, Cloudy, Rainy
e AirTemp: Warm, Cold

e Humidity: Normal, High

e Wind: Strong, Weak

e Water: Warm, Cold

e Forecast: Same, Change

distinct instances : 3*2*2*2*2*2 = 96

distinct concepts: 2%

distinct conjunction-of-constraints hypotheses:
1+ 4*3*3*3*3*3 =973

7

Decision Tree Hypothesis Space

e Internal nodes test the value of particular features z; and branch according to the

results of the test.

e Leaf nodes specify the class h(x).

Outlook
Sunny Overcast Rain
/ \\
Humidity Yes Wind
ZAN AN
High Normal Strong Weak
/ N / N
No Yes No Yes

Suppose the features are Outlook (z;), Temperature (z;), Humidity (z3), and Wind
(24). Then the feature vector x = (Sunny, Hot, High, Strong) will be classified as No. The

Temperature feature is irrelevant.

Inductive Bias

e To learn, we must prefer some concepts to others

— Selection bias

e use a restricted hypothesis space
(e.g., linear separators)

— Preference bias

e use the whole concept space, but state a preference
over concepts (e.g., decision trees)

Decision Tree Hypothesis Space

If the features are continuous, internal nodes may test the value of a feature against a threshold.

Outlook
Sunny Overcast Rain
Hum;(Yes \\V:nd
> 75%A<= 75% > 20A<: 20

/ N / N

No Yes No Yes

Decision Tree Decision Boundaries

Decision trees divide the feature space into axis-parallel rectangles, and label each rectangle

with one of the K classes.

X2A 1 x2 <3
1 /\
6 x1 <4 x1<3
1
1 1 /\ /\
0 0 1 x2 <4 1
4 0 /\
0 1
0 1
0
0
5 1
0 1
0 1
0 —

Decision Trees Can Represent Any Boolean Function

X2A

1

0

x1 <0.5

/\

x2 < 0.5 x2 < 0.5

The tree will in the worst case require exponentially many nodes, however.

Learning Algorithm for Decision Trees
The same basic learning algorithm has been discovered by many people independently:

GROWTREE(S)
if (y = 0 for all (x,y) € S) return new leaf(0)
else if (y =1 for all (x,y) € S) return new leaf(1)
else
choose best attribute z;
So = all (x,y) € § with z; = 0;
S1 =all (x,y) € S with z; = 1;
return new node(z;, GROWTREE(Sy), GROWTREE(S)))

Choosing the Best Attribute

One way to choose the best attribute is to perform a 1-step lookahead search and choose the

attribute that gives the lowest error rate on the training data.

CHOOSEBESTATTRIBUTE(S)
choose j to minimize J;, computed as follows:
So = all (x,y) € S with z; =0;
S =all (x,y) € S with z; = 1;
yo = the most common value of y in Sg
¢ = the most common value of ¢ in 5,
Jo = number of examples (x,y) € Sy with y # g
J1 = number of examples (x,y) € S; with y # 1
J;j = Jo + J1 (total errors if we split on this feature)

return j

Choosing the Best Attribute—An Example

Iy T2 T3|Y

0 0 0|1

0 0 1|0

0 1 0]1

0 1 1]1

1 0 0|0

1 0 1|1

1 1 010

1 1 110
4 | 4 4 | 4 4 | 4
x1 x2 x3

J :2 J :4 J:4

Choosing the Best Attribute (3)

Unfortunately, this measure does not always work well, because it does not detect cases where

we are making “progress” toward a good tree.

20110

x1
121 8 8|2 J=10
x2 x3

N TN

121 0 0|8 810 0|2

A Better Heuristic From Information Theory

Let V' be a random variable with the following probability distribution:

The surprise, S(V = v) of each value of V' is defined to be

S(V =v) = —Ig P(V =).

An event with probability 1 gives us zero surprise.

An event with probability 0 gives us infinite surprise!

It turns out that the surprise is equal to the number of bits of information that need to be
transmitted to a recipient who knows the probabilities of the results.

This is also called the description length of V = v.

Fractional bits only make sense if they are part of a longer message (e.g., describe a whole

sequence of coin tosses).

Entropy

The entropy of V', denoted H (V') is defined as follows:

H(V)= Y —P(H = v)1g P(H = v).

v=0

This is the average surprise of describing the result of one “trial” of V' (one coin toss).

08]
07 | 1

/ i
0.6 4 k b
i / \
3 \\
/

HV)

v \
/
‘ \
05 ; \
,
s 2
/

i \\

1

v \
04 | v

< \
r X
’ \
03 ; -
‘ ‘\
1 “
, \
02/ -
;
¢ \

! i
/ \
0.1 | iy

P(V=0)

Entropy can be viewed as a measure of uncertainty.

Mutual Information

Now consider two random variables A and B that are not necessarily independent. The mutual
information between A and B is the amount of information we learn about B by knowning

the value of A (and vice versa—it is symmetric). It is computed as follows:
I(A;B)=H(B)—YP(B=b)- H(LA|B =b)
b

In particular, consider the class Y of each training example and the value of feature z; to be
random variables. Then the mutual information quantifies how much z; tells us about the

value of the class Y.

20110 H(Y) = 0.9183

x1
P(x1=0) = 0.6667 P(x1=1) = 0.3333

H(YIx1=0) =0.9710 12| 8 8|2 H(YIx1=1)=0.7219

I(Y;x1) = 0.0304

Non-Boolean Features

e Features with multiple discrete values
Construct a multiway split?
Test for one value versus all of the others?

Group the values into two disjoint subsets?

e Real-valued features

Consider a threshold split using each observed value of the feature.

Whichever method is used, the mutual information can be computed to choose the best split.

Decision Trees represent
disjunctions of conjunctions

Outlook
Sunny Overcast Rain
/ \
Humidity Yes Wind
a at
High Normal Strong Weak
/ N 7 N
No Yes No Yes

= (Sunny ”~ Normal) v Overcast v (Rain ~ Weak)

Learning Parity with Noise

When learning exclusive-or (2-bit parity), all splits look equally good. If extra random boolean
features are included, they also look equally good. Hence, decision tree algorithms cannot

distinguish random noisy features from parity features.

1 T2 T3
0 O

e e e == I == I = B e}

o T e T =T == T = S =
e T e T == S = S e
e B e B e = R e B RV

x1 x2 x3

J= J= J=

Decision Trees Inductive Bias

= How to solve 2-bit parity:
= Two step look-ahead, or
= Split on pairs of attributes at once

=For k-bit parity, why not just do k-step look ahead?
Or split on k attribute values?

=> Parity functions are the “victims” of the decision
tree s inductive bias.

Overfitting in Decision Trees

Outlook

Sunny Overcast Rain
Humidity Yes Wind
;{igh Normal Strong Weak
No Yes No Yes

Consider adding a noisy training example:
Sunny, Hot, Normal, Strong, PlayTennis=No
What effect on tree?

Overfitting

Consider error of hypothesis h over
e training data: erroryrqin(h)

e entire distribution D of data: errorp(h)

Hypothesis h € H overfits training data if there is an
alternative hypothesis A’ € H such that

errorirain(h) < erroriqin(h’)

and
errorp(h) > errorp(h’)

Overfitting is due to “noise”

e Sources of noise:

— Erroneous training data
e concept variable incorrect (annotator error)
e Attributes mis-measured

— Much more significant:

e [rrelevant attributes
e Target function not deterministic in attributes

Irrelevant attributes

e If many attributes are noisy, information

gains can be spurious, e.g.:

e 20 noisy attributes
e 10 training examples

e =>Expected # of depth-3 trees that split the training
data perfectly using only noisy attributes: 13.4

e Potential solution: statistical significance
tests (e.g., chi-square)

Non-determinism

e In general:

— We can’t measure all the variables we need to
do perfect prediction.

— => Target function is not uniquely determined
by attribute values

Non-determinism: Example

Decent hypothesis:

Humidity > 0.70 — No

0.90 0

0.87 1 Otherwise — Yes
0.80 0

0.75 0 Overfit hypothesis:

0.70 1 Humidity > 0.89 — No
0.69 1 Humidity > 0.80

0.65 1 N Humidity <= 0.89 — Yes
0.63 1 Humidity > 0.70

A Humidity <= 0.80 — No
Humidity <= 0.70 — Yes

Rule #2 of Machine Learning

The best hypothesis almost never achieves
100% accuracy on the training data.

(Rule #1 was: you can’t learn anything
without inductive bias)

Overfitting in Decision Tree Learning

0-9 1 1 1 1 1 1 1] 1

0.85

0.8

0.75

0.7

Accuracy

0.65

06 On training data —— -
On test data -——-

0.55 -

0'5 1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100

Size of tree (number of nodes)

Avoiding Overfitting

How can we avoid overfitting?

e Stop growing when data split not statistically
significant

e Grow full tree, then post-prune

How to select “best” tree:
e Measure performance over training data
e Measure performance over separate validation data set

e Add complexity penalty to performance measure

Reduced-Error Pruning

Split data into training and wvalidation set

Do until further pruning is harmful:

1. Evaluate impact on validation set of pruning each
possible node (plus those below it)

2. Greedily remove the one that most improves validation
set accuracy

Accuracy

Effect of Reduced-Error Pruning

0.9

0.85

0.8

0.75

0.7

0.65

0.6

0.55

0.5

On training data ——
On test data —-—-
On test data (during pruning) -----

10

20

30 40 50 60 70 30 90

Size of tree (number of nodes)

Rule Post-Pruning

1. Convert tree to equivalent set of rules
2. Prune each rule independently of others

3. Sort final rules into desired sequence for use

Perhaps most frequently used method (e.g., C4.5)

Converting A Tree to Rules

Outlook
Sunny Overcast Rain
Humidity Yes Wind
High Normal Strong Weak

/ \ / \

No Yes No Yes

IF (Outlook = Sunny) AND (Humidity = High)
THEN PlayTennis = No

IF (Outlook = Sunny) AND (Humidity = Normal)
THEN PlayTennis = Yes

Scaling Up

e ID3, C4.5, etc. assume data fits in main memory
(OK for up to hundreds of thousands of examples)

e SPRINT, SLIQ: multiple sequential scans of data
(OK for up to millions of examples)

e VFDT: at most one sequential scan
(OK for up to billions of examples)

Hypothesis Space comparisons

Task: concept learning with k binary
attributes

Hypothesis Space H # of Semantically distinct h

Rote Learning 2zk
MC2 1+ 3
1-level decision tree k
n-level decision tree ! .
min [H)2 22 J
0

Decision Trees — Strengths

e Very Popular Technique
e [ast

e Useful when
— Instances are attribute-value pairs
— Target Function is discrete
— Concepts are likely to be disjunctions
— Attributes may be noisy

Attributes with Many Values

Problem:
e If attribute has many values, Gain will select it

e Imagine using Date = Jun_3-1996 as attribute

One approach: use GainRatio instead

Gain(S, A)

GainRatio(S, A) = SplitIn formation(S, A)

SplitIn formation(S, A) = — Z ||S|| log, ||S||

where S; is subset of S for which A has value v;

Unknown Attribute Values

What if some examples are missing values of A?

Use training example anyway, sort through tree

e If node n tests A, assign most common value of A
among other examples sorted to node n

e Assign most common value of A among other examples
with same target value

e Assign probability p; to each possible value v; of A
Assign fraction p; of example to each descendant in tree

Classify new examples in same fashion

