Informed search algorithms

(Based on slides by Oren Etzioni, Stuart Russell)
Outline

• Greedy best-first search
• A^* search
• Heuristics
• Local search algorithms
• Hill-climbing search
• Simulated annealing search
• Local beam search
• Genetic algorithms
Best-first search

• A search strategy is defined by picking the **order of node expansion**

• Idea: use an **evaluation function** $f(n)$ for each node
 – estimate of "desirability"

 \rightarrow Expand most desirable unexpanded node

• **Implementation**: Order the nodes in fringe in decreasing order of desirability

• **Special cases**:
 – greedy best-first search
 – A* search
Romania with step costs in km

Straight-line distance to Bucharest
- Arad: 366
- Bucharest: 0
- Craiova: 160
- Dobreta: 242
- Eforie: 161
- Fagaras: 178
- Giurgiu: 77
- Hirsova: 151
- Iasi: 226
- Lugoj: 244
- Mehadia: 241
- Neamt: 234
- Oradea: 380
- Pitesti: 98
- Rimnicu Vilcea: 193
- Sibiu: 253
- Timisoara: 329
- Urziceni: 80
- Vaslui: 199
- Zerind: 374
Greedy best-first search

• Evaluation function \(f(n) = h(n) \) (heuristic)
 = estimate of cost from \(n \) to goal

• e.g., \(h_{SLD}(n) \) = straight-line distance from \(n \) to Bucharest

• Greedy best-first search expands the node that appears to be closest to goal
Properties of greedy best-first search

- **Complete?**
- No – can get stuck in loops, e.g., Iasi → Neamt → Iasi → Neamt →
- **Time?**
- \(O(b^m)\), but a good heuristic can give dramatic improvement
- **Space?**
- \(O(b^m)\) -- keeps all nodes in memory
- **Optimal?**
- No
A* search

- Idea: avoid expanding paths that are already expensive
- Evaluation function $f(n) = g(n) + h(n)$
 - $g(n) =$ cost so far to reach n
 - $h(n) =$ estimated cost from n to goal
 - $f(n) =$ estimated total cost of path through n to goal
A* search example
A* search example
A* search example
A* search example

![A* search example diagram]

- **Aiad**
 - **Fagaras**: 646=280+366
 - **Oradea**: 415=239+176
 - **Sibiu**
- **Timisoara**: 447=118+329
- **Zerind**: 449=75+374
A* search example
A* search example
Admissible heuristics

• A heuristic $h(n)$ is **admissible** if for every node n, $h(n) \leq h^*(n)$, where $h^*(n)$ is the **true** cost to reach the goal state from n.

• An admissible heuristic **never overestimates** the cost to reach the goal, i.e., it is **optimistic**

• Example: $h_{SLD}(n)$ (never overestimates the actual road distance)

• **Theorem**: If $h(n)$ is admissible, A^* using **TREE-SEARCH is optimal**
Properties of A*

- **Complete?**
 Yes (unless there are infinitely many nodes with $f \leq f(G)$)

- **Time?** Exponential

- **Space?** Keeps all nodes in memory

- **Optimal?**
 Yes
Why optimal? By contradiction

Suppose some suboptimal goal G_2 has been generated and is in the queue. Let n be an unexpanded node on a shortest path to an optimal goal G_1.

Since $f(G_2) = g(G_2)$ since $h(G_2) = 0$

$> g(G_1)$ since G_2 is suboptimal

$\geq f(n)$ since h is admissible

Since $f(G_2) > f(n)$, A* will never select G_2 for expansion
A* is “optimally efficient”

• With an admissible heuristic,
 – A* expands all nodes with $f(n) < C$
 – A* expands some nodes with $f(n) = C$
 – A* expands no nodes with $f(n) > C$

• So, except for the variable (usually small) number of nodes with $f(n) = C$,
 – No optimal algorithm using h expands fewer nodes than A*
Admissible heuristics

E.g., for the 8-puzzle:

- \(h_1(n) = \) number of misplaced tiles
- \(h_2(n) = \) total Manhattan distance
 (i.e., no. of squares from desired location of each tile)

\[h_1(S) = _ _ _ \]
\[h_2(S) = _ _ _ \]
Admissible heuristics

E.g., for the 8-puzzle:

- \(h_1(n) \) = number of misplaced tiles
- \(h_2(n) \) = total Manhattan distance
 (i.e., no. of squares from desired location of each tile)

\[h_1(S) = ? \ 8 \]

\[h_2(S) = ? \ 3+1+2+2+2+3+3+2 = 18 \]
Dominance

• If $h_2(n) \geq h_1(n)$ for all n (both admissible) then h_2 dominates h_1

• h_2 is at least as good as h_1 for search, and likely better
 – Why?

• Typical search costs (average number of nodes expanded):
 – $d=12$
 IDS = 3,644,035 nodes
 $A^*(h_1) = 227$ nodes
 $A^*(h_2) = 73$ nodes
 – $d=24$
 IDS = too many nodes
 $A^*(h_1) = 39,135$ nodes
 $A^*(h_2) = 1,641$ nodes
Relaxed problems

• A problem with fewer restrictions on the actions is called a relaxed problem

• The cost of an optimal solution to a relaxed problem is an admissible heuristic for the original problem

• If the rules of the 8-puzzle are relaxed so that a tile can move anywhere, then $h_1(n)$ gives the shortest solution

• If the rules are relaxed so that a tile can move to any adjacent square, then $h_2(n)$ gives the shortest solution
Traveling Salesman Problem

• Goal: find the least-cost cycle in the graph that visits each node exactly once
TSP Relaxed Problem Heuristic

• Relaxed problem: find least-cost tree that connects all nodes (minimum spanning tree).
 – $\text{Cost(MST)} \leq \text{Cost(Best Tour – 1 edge)} < \text{Cost(Best Tour)}$
Combining Heuristics

• Say we have two heuristics, \(h_1 \) and \(h_2 \), and neither dominates the other.
 − What can we do?

• \(h_3(n) = \max(h_1(n), h_2(n)) \)
 − \(h_3 \) dominates \(h_1, h_2 \)
Pattern Databases

- \(h(n) = \text{cost to get \{1,2,3,4\} in right place} \)
 - Compute once for all possible configurations and store
- Can use multiple sub-problems (e.g., \{5,6,7,8\}) and combine with max
 - Or, ignore * moves and add disjoint subproblems
Summary of A* Search

• Expands node \(n \) with minimum \(f(n) = g(n) + h(n) \)

 = path cost so far + heuristic estimate

• Optimal for *admissible* heuristic \(h(n) \)

 – I.e. \(h \) that underestimates true path cost

• Designing good heuristics is crucial for performance

 – One method: Relaxed problems

• Combining heuristics

 – Take max or add “disjoint” heuristics
Outline

• Greedy best-first search
• A* search
• Heuristics
• Local search algorithms
• Hill-climbing search
• Simulated annealing search
• Local beam search
• Genetic algorithms
Local search algorithms

• In many optimization problems, the path to the goal is irrelevant
 – the goal state itself is the solution

• State space = set of "complete" configurations
• Find configuration satisfying constraints, e.g., n-queens

• In such cases, we can use local search algorithms
• keep a single "current" state, try to improve it
Example: n-queens

- Put n queens on an $n \times n$ board with no two queens on the same row, column, or diagonal
Hill-climbing search

• "Like climbing Everest in thick fog with amnesia"
Hill-climbing search

- Problem: depending on initial state, can get stuck in local maxima
Hill-climbing search: 8-queens problem

- h = number of pairs of queens that are attacking each other, either directly or indirectly
- $h = 17$ for the above state
Hill-climbing search: 8-queens problem

- A local minimum with $h = 1$
Simulated annealing search

- Idea: escape local maxima by allowing some "bad" moves but gradually decrease their frequency

```
function SIMULATED-ANNEALING(problem, schedule) returns a solution state
inputs: problem, a problem
        schedule, a mapping from time to "temperature"
local variables: current, a node
                next, a node
                T, a "temperature" controlling prob. of downward steps

current ← MAKE-NODE(INITIAL-STATE[problem])
for t ← 1 to ∞ do
    T ← schedule[t]
    if T = 0 then return current
    next ← a randomly selected successor of current
    ΔE ← VALUE[next] − VALUE[current]
    if ΔE > 0 then current ← next
    else current ← next only with probability $e^{ΔE/T}$
```
Properties of simulated annealing search

• One can prove: If T decreases slowly enough, then simulated annealing search will find a global optimum with probability approaching 1.

• Widely used in VLSI layout, airline scheduling, etc.
Local beam search

- Keep track of \(k \) states rather than just one
- Start with \(k \) randomly generated states
- At each iteration, all the successors of all \(k \) states are generated
- If any one is a goal state, stop; else select the \(k \) best successors from the complete list and repeat.
Genetic algorithms

• A successor state is generated by combining two parent states

• Start with k randomly generated states (population)

• A state is represented as a string over a finite alphabet (often a string of 0s and 1s)

• Evaluation function (fitness function). Higher values for better states.

• Produce the next generation of states by selection, crossover, and mutation
Genetic algorithms

- Fitness function: number of non-attacking pairs of queens (min = 0, max = $8 \times 7/2 = 28$)
- $24/(24+23+20+11) = 31\%$
- $23/(24+23+20+11) = 29\%$ etc
Genetic algorithms

• Genetic algorithm is “stochastic beam search”
 – Key difference: combine multiple parents

For which problems is this helpful?
Continuous Optimization

• Many AI problems require optimizing a function \(f(\mathbf{x}) \), which takes continuous values for input vector \(\mathbf{x} \)

• Huge research area

• Examples:
 – **Machine Learning**
 – Signal/Image Processing
 – Computational biology
 – Finance
 – Weather forecasting
 – Etc., etc.
Gradient Ascent

- Idea: move in direction of steepest ascent (gradient)

- $x_k = x_{k-1} + \eta \nabla f(x_{k-1})$
Types of Optimization

- Linear vs. non-linear
- Analytic vs. Empirical Gradient
- Convex vs. non-convex
- Constrained vs. unconstrained
Continuous Optimization in Practice

- *Lots* of previous work on this

- Use packages