
Informed search algorithms

(Based on slides by Oren Etzioni, 

Stuart Russell)



Outline

• Greedy best-first search

• A* search

• Heuristics

• Local search algorithms

• Hill-climbing search

• Simulated annealing search

• Local beam search

• Genetic algorithms



Best-first search

• A search strategy is defined by picking the order of node 
expansion

• Idea: use an evaluation function f(n) for each node
– estimate of "desirability“

Expand most desirable unexpanded node

• Implementation:

Order the nodes in fringe in decreasing order of 
desirability

• Special cases:
– greedy best-first search

– A* search



Romania with step costs in km



Greedy best-first search

• Evaluation function f(n) = h(n) (heuristic)

= estimate of cost from n to goal

• e.g., hSLD(n) = straight-line distance from n

to Bucharest

• Greedy best-first search expands the node 

that appears to be closest to goal



Properties of greedy best-first 

search
• Complete?

• No – can get stuck in loops, e.g., Iasi  Neamt 

 Iasi  Neamt 

• Time?

• O(bm), but a good heuristic can give dramatic 

improvement

• Space?

• O(bm) -- keeps all nodes in memory

• Optimal?

• No



Romania with step costs in km



A* search

• Idea: avoid expanding paths that are 

already expensive

• Evaluation function f(n) = g(n) + h(n)

• g(n) = cost so far to reach n

• h(n) = estimated cost from n to goal

• f(n) = estimated total cost of path through 

n to goal



A* search example



A* search example



A* search example



A* search example



A* search example



A* search example



Admissible heuristics

• A heuristic h(n) is admissible if for every node n,

h(n) ≤ h*(n), where h*(n) is the true cost to reach the goal 

state from n.

• An admissible heuristic never overestimates the cost to 

reach the goal, i.e., it is optimistic

• Example: hSLD(n) (never overestimates the actual road 

distance)

• Theorem: If h(n) is admissible, A* using TREE-SEARCH is 

optimal



Properties of A*

• Complete?

Yes (unless there are infinitely many nodes with 

f ≤ f(G) )

• Time? Exponential

• Space? Keeps all nodes in memory

• Optimal?

Yes



Why optimal? By contradiction

1



A* is “optimally efficient”

• With an admissible heuristic,

– A* expands all nodes with f(n) < C

– A* expands some nodes with f(n) = C

– A* expands no nodes with f(n) > C

• So, except for the variable (usually small) 

number of nodes with f(n) = C,

– No optimal algorithm using h expands fewer nodes 

than A*



Admissible heuristics

E.g., for the 8-puzzle:

• h1(n) = number of misplaced tiles

• h2(n) = total Manhattan distance

(i.e., no. of squares from desired location of each tile)

• h1(S) = ? 

• h2(S) = ?



Admissible heuristics

E.g., for the 8-puzzle:

• h1(n) = number of misplaced tiles

• h2(n) = total Manhattan distance

(i.e., no. of squares from desired location of each tile)

• h1(S) = ? 8

• h2(S) = ? 3+1+2+2+2+3+3+2 = 18



Dominance

• If h2(n) ≥ h1(n) for all n (both admissible)

then h2 dominates h1

• h2 is at least as good as h1 for search, and likely better
– Why?

• Typical search costs (average number of nodes 
expanded):

– d=12 IDS = 3,644,035 nodes
A*(h1) = 227 nodes 
A*(h2) = 73 nodes 

– d=24 IDS = too many nodes
A*(h1) = 39,135 nodes 
A*(h2) = 1,641 nodes 



Relaxed problems

• A problem with fewer restrictions on the actions is called 
a relaxed problem

• The cost of an optimal solution to a relaxed problem is 
an admissible heuristic for the original problem

• If the rules of the 8-puzzle are relaxed so that a tile can 
move anywhere, then h1(n) gives the shortest solution

• If the rules are relaxed so that a tile can move to any 
adjacent square, then h2(n) gives the shortest solution



Traveling Salesman Problem

• Goal: find the least-cost cycle in the graph that visits 
each node exactly once 

A B

C D

8

12

30
3

5

7



TSP Relaxed Problem Heuristic

• Relaxed problem: find least-cost tree that connects all 
nodes (minimum spanning tree).
– Cost(MST) <= Cost(Best Tour – 1 edge) < Cost(Best Tour)

A B

C D

3

5

7



Combining Heuristics

• Say we have two heuristics, h1 and h2, and 
neither dominates the other.
– What can we do?

• h3(n) = max(h1(n), h2(n))
– h3 dominates h1, h2



Pattern Databases

• h(n) = cost to get {1,2,3,4} in right place

– Compute once for all possible configurations and store

• Can use multiple sub-problems (e.g., {5,6,7,8}) and 

combine with max

– Or, ignore * moves and add disjoint subproblems



Summary of A* Search

• Expands node n with minimum f(n) = g(n) + h(n)

= path cost so far + heuristic estimate

• Optimal for admissible heuristic h(n)
– I.e. h that underestimates true path cost

• Designing good heuristics is crucial for performance
– One method: Relaxed problems

• Combining heuristics
– Take max or add “disjoint” heursitics



Outline

• Greedy best-first search

• A* search

• Heuristics

• Local search algorithms

• Hill-climbing search

• Simulated annealing search

• Local beam search

• Genetic algorithms



Local search algorithms

• In many optimization problems, the path to the 
goal is irrelevant
– the goal state itself is the solution

• State space = set of "complete" configurations

• Find configuration satisfying constraints, e.g., n-
queens

• In such cases, we can use local search 
algorithms

• keep a single "current" state, try to improve it



Example: n-queens

• Put n queens on an n × n board with no 

two queens on the same row, column, or 

diagonal

•



Hill-climbing search

• "Like climbing Everest in thick fog with 

amnesia"



Hill-climbing search

• Problem: depending on initial state, can 

get stuck in local maxima

•



Hill-climbing search: 8-queens problem

• h = number of pairs of queens that are attacking each other, either directly 
or indirectly 

• h = 17 for the above state



Hill-climbing search: 8-queens problem

• A local minimum with h = 1



Simulated annealing search

• Idea: escape local maxima by allowing some "bad" 

moves but gradually decrease their frequency



Properties of simulated 

annealing search
• One can prove: If T decreases slowly enough, 

then simulated annealing search will find a 

global optimum with probability approaching 1

• Widely used in VLSI layout, airline scheduling, 

etc



Local beam search

• Keep track of k states rather than just one

• Start with k randomly generated states

• At each iteration, all the successors of all k
states are generated

• If any one is a goal state, stop; else select the k
best successors from the complete list and 
repeat.



Genetic algorithms

• A successor state is generated by combining two parent 
states

• Start with k randomly generated states (population)

• A state is represented as a string over a finite alphabet 
(often a string of 0s and 1s)

• Evaluation function (fitness function). Higher values for 
better states.

• Produce the next generation of states by selection, 
crossover, and mutation



Genetic algorithms

• Fitness function: number of non-attacking pairs of queens (min = 0, 

max = 8 × 7/2 = 28)

• 24/(24+23+20+11) = 31%

• 23/(24+23+20+11) = 29% etc



Genetic algorithms

• Genetic algorithm is “stochastic beam search”

– Key difference: combine multiple parents

For which problems is this helpful?



Continuous Optimization 

• Many AI problems require optimizing a function f(x), 

which takes continuous values for input vector x

• Huge research area

• Examples:
– Machine Learning

– Signal/Image Processing

– Computational biology

– Finance

– Weather forecasting

– Etc., etc.



Gradient Ascent

• Idea: move in direction 

of steepest ascent 

(gradient)

• xk = xk-1 +  f(xk-1)



Types of Optimization

• Linear vs. non-linear

• Analytic vs. Empirical Gradient

• Convex vs. non-convex

• Constrained vs. unconstrained



Continuous Optimization in 

Practice

• Lots of previous work on this

• Use packages


