Informed search algorithms

(Based on slides by Oren Etzioni,
Stuart Russell)

Outline

Greedy best-first search
A" search

. oca
Hill-c
Simu

Heuristics

search algorithms
iImbing search
ated annealing search

Local beam search
Genetic algorithms

Best-first search

A search strategy is defined by picking the order of node
expansion

ldea: use an evaluation function f(n) for each node
— estimate of "desirability”

- Expand most desirable unexpanded node

Implementation:

Order the nodes in fringe in decreasing order of
desirability

Special cases:
— greedy best-first search
— A’ search

Romania with step costs

Y Vaslui

Pitesti

] Mehadia
75

Dobreta [

. Eforie
] Giurgiu

N km

Straight—line distance

to Bucharest
Arad
Bucharest
Craiova
Dobreta
Eforie
Fagaras
Giurgiu
Hirsova
Iasi

Lugoj
Mehadia
Neamt
Oradea
Pitesti
Rimnicu Vilcea
Sibiu
Timisoara
Urziceni
Vaslui
Zerind

366
0
160
242
161
178
77
151
226
244
241
234
380
o8
193
253
329
80
199
374

Greedy best-first search

« Evaluation function f(n) = h(n) (heuristic)
= estimate of cost from n to goal

* e.g., hg p(n) = straight-line distance from n
to Bucharest

» Greedy best-first search expands the node
that appears to be closest to goal

Properties of greedy best-first
search

Complete?

No — can get stuck in loops, e.g., lasi 2 Neamt
- lasi -2 Neamt -

Time?

O(b™), but a good heuristic can give dramatic
Improvement

Space?

O(b™) -- keeps all nodes in memory
Optimal?

NoO

Romania with step costs

Y Vaslui

Pitesti

98

™] Hirsova

Urziceni

. Eforie
] Giurgiu

N km

Straight—line distance

to Bucharest
Arad
Bucharest
Craiova
Dobreta
Eforie
Fagaras
Giurgiu
Hirsova
Iasi

Lugoj
Mehadia
Neamt
Oradea
Pitesti
Rimnicu Vilcea
Sibiu
Timisoara
Urziceni
Vaslui
Zerind

366
0
160
242
161
178
77
151
226
244
241
234
380
o8
193
253
329
80
199
374

A’ search

ldea: avoid expanding paths that are
already expensive

Evaluation function f(n) = g(n) + h(n)

g(n) = cost so far to reach n
h(n) = estimated cost from n to goal

f(n) = estimated total cost of path through
n to goal

A’ search example

366=0+366

A’ search example

imisoara

393=140+253 447=118+329

4489=F5+374

A’ search example

< Amd

——

biu imisoara
>

— 447-118+329

-

646=280+366 415=239+176 671=201+380 413=220+193

449=75+374

A’ search example

 Amd
e)

{:h'}

H47=118+329

@

G46=280+366 -1-15—213'El+1?ﬁ 87 1= Eﬂ1+:3-E|E|

526=366+1680 417=317+100 553=300+253

449=75+374

A’ search example

< Amd >

H47=118+329

ﬁ

G46=280+366 P 87 1= Eﬂ1+:3-E|E|

--

581=338+4253 450=450+0 526=366+ 160 41?_131?+1[|U 553=300+253

{:h'}

449=75+374

A’ search example
-

G46=2080+3656 PN 671=281+380 Pl

581=338+253 450=450+0 R26=388+ 180 = - 553=300+253

> TD o> @D

418=418+0 615=455+160 G0T=414+193

Admissible heuristics

A heuristic h(n) is admissible if for every node n,

h(n) < h'(n), where h(n) is the true cost to reach the goal
state from n.

An admissible heuristic never overestimates the cost to
reach the goal, I.e., it is optimistic

Example: hg p(n) (never overestimates the actual road
distance)

Theorem: If h(n) is admissible, A" using TREE-SEARCH IS
optimal

Properties of A*

Complete?

Yes (unless there are infinitely many nodes with
f<f(G))

Time? Exponential

Space? Keeps all nodes in memory

Optimal?
Yes

Why optimal? By contradiction

Suppose some suboptimal goal (G5 has been generated and is in the queue.

Let 7 be an unexpanded node on a shortest path to an optimal goal 1.
Start

..ﬁ‘-__i_‘-\. -, A\n_ﬂ i
.(,-7‘3-&.,-_.--;_.-..,. e ey

C@
flGs) = g(Gy) since h(Ga) =0
> g(Gy) since (2 is suboptimal
= f(n) since h is admissible

Since f(Go) > fin), A* will never select (G5 for expansion

A* is “optimally efficient”

* With an admissible heuristic,
— A* expands all nodes with f(n) < C
— A* expands some nodes with f(n) = C
— A* expands no nodes with f(n) > C

« S0, except for the variable (usually small)
number of nodes with f(n) = C,

— No optimal algorithm using h expands fewer nodes
than A*

Admissible heuristics

E.g., for the 8-puzzle:

* h,(n) = number of misplaced tiles

* h,(n) = total Manhattan distance
(i.e., no. of squares from desired location of each tile)

4

7 2 4
5 6
8 3 1

7

Start State

Goal State

Admissible heuristics

E.g., for the 8-puzzle:

* h,(n) = number of misplaced tiles
* h,(n) = total Manhattan distance
(i.e., no. of squares from desired location of each tile)

7 2 4 1

5 6 3 4

8 3 1 6 7
Start State Goal State

¢ hl(s) =78
* hy(S) =? 3+1+2+2+2+3+3+2 = 18

Dominance

If h,(n) =2 h,(n) for all n (both admissible)

then h, dominates h;
h, is at least as good as h, for search, and likely better
— Why?

Typical search costs (average number of nodes
expanded):
— d=12 IDS = 3,644,035 nodes
A’(h,) =227 nodes
A’(h,) = 73 nodes
— d=24 IDS =too many nodes
A’(h)) = 39,135 nodes
A’(h,) = 1,641 nodes

Relaxed problems

A problem with fewer restrictions on the actions is called
a relaxed problem

The cost of an optimal solution to a relaxed problem is
an admissible heuristic for the original problem

If the rules of the 8-puzzle are relaxed so that a tile can
move anywhere, then h,(n) gives the shortest solution

If the rules are relaxed so that a tile can move to any
adjacent square, then h,(n) gives the shortest solution

Traveling Salesman Problem

« Goal: find the least-cost cycle in the graph that visits

each node exactly once

38
A B
12
v
30 3
C D

TSP Relaxed Problem Heuristic

* Relaxed problem: find least-cost tree that connects alll
nodes (Mminimum spanning tree).

— Cost(MST) <= Cost(Best Tour — 1 edge) < Cost(Best Tour)

A B

Combining Heuristics

« Say we have two heuristics, hl and h2, and
neither dominates the other.

— What can we do?

* h3(n) = max(h1(n), h2(n))
— h3 dominates h1, h2

Pattern Databases

%* 2 4 1 2
* * 3 4 *
%* 3 1 * %* *

Start State Goal State

* h(n) = cost to get {1,2,3,4} in right place
— Compute once for all possible configurations and store

« Can use multiple sub-problems (e.g., {5,6,7,8}) and
combine with max
— Or, ignore * moves and add disjoint subproblems

Summary of A* Search

Expands node n with minimum f(n) = g(n) + h(n)
= path cost so far + heuristic estimate

Optimal for admissible heuristic h(n)
— l.e. h that underestimates true path cost

Designing good heuristics is crucial for performance
— One method: Relaxed problems

Combining heuristics
— Take max or add “disjoint” heursitics

Outline

Greedy best-first search
A" search

. oca
Hill-c
Simu

Heuristics

search algorithms
iImbing search
ated annealing search

Local beam search
Genetic algorithms

Local search algorithms

In many optimization problems, the path to the
goal is irrelevant

— the goal state itself is the solution

State space = set of "complete" configurations

Find configuration satisfying constraints, e.g., n-
gueens

In such cases, we can use local search
algorithms

keep a single "current" state, try to improve it

Example: n-queens

Put n queens on an n x n board with no
two gqueens on the same row, column, or
diagonal

TN
A

_
. .

Hill-climbing search

 "Like climbing Everest in thick fog with
amnesia"

function HiLL-CLIMBING(problem) returns a state that is a local maximum
inputs: problem, a problem
local variables: current, a node
neighbor, a node

current +— MAKE-NODE(INITIAL-STATE[problem])

loop do
neighbor+— a highest-valued successor of current
if VALUE[neighbor] < VALUE[current] then return STATE[current]
current <— neighbor

Hill-climbing search

* Problem: depending on initial state, can
get stuck in local maxima

° -::I:n_j:cti'.'ifun:tinn El..-_-.lnl TTHUE 1 T

—

shonlder

\ local maximmm

o

"flat" local maximmm

m=stals space
coment

stafe

Hill-climbing search: 8-queens problem

13.14 13.14
16 15.14.15
14.13 15.14

14 w 16 16
w 17 w 16
W8] 1o (8T W (11 W
18 ‘w 15 ‘ﬂ'
14 17 . 14 . 18

h = number of pairs of queens that are attacking each other, either directly
or indirectly

h = 17 for the above state

Hill-climbing search: 8-queens problem

e Alocal mnimumwithh=1

Simulated annealing search

ldea: escape local maxima by allowing some "bad"
moves but gradually decrease their frequency

function SIMULATED-ANNEALING(problem, schedule) returns a solution state
inputs: problem, a problem
schedule, a mapping from time to “temperature”

local variables: current, a node
next, a node
T, a "temperature” controlling prob. of downward steps

current ¢ MAKE-NODE(INITIAL-STATE[problem])
for t+ 1to oc do
T + schedule[{]
if T'= 0 then return current
next+— a randomly selected successor of current
AE <+ VALUE[nezt] - VALUE[current]
if AE > 0 then current + next

else current + next only with probability e® #/7

Properties of simulated
annealing search

* One can prove: If T decreases slowly enough,
then simulated annealing search will find a
global optimum with probability approaching 1

* Widely used in VLSI layout, airline scheduling,
etc

L ocal beam search

Keep track of k states rather than just one
Start with k randomly generated states

At each iteration, all the successors of all k
states are generated

If any one Is a goal state, stop; else select the k
best successors from the complete list and
repeat.

Genetic algorithms

A successor state is generated by combining two parent
states

Start with k randomly generated states (population)

A state Is represented as a string over a finite alphabet
(often a string of Os and 15s)

Evaluation function (fithess function). Higher values for
better states.

Produce the next generation of states by selection,
crossover, and mutation

24748552

32752411

24415124

32543213

Genetic algorithms

24 31%

e

la)

Thitial E'-:nj_::u lation

11 14%

=]

Fith=ss Function

32752411

24748552

>~

32752411

>~

24415124

)

Selecticn

32748552

o e

3274812

24722411

24752411

32752124

Y

32k z2124

24415411

24415417

idj

Cioss—Ovel

=]
vl tation

Fitness function: number of non-attacking pairs of queens (min =0,
max = 8 x 7/2 = 28)

24/(24+23+20+11) = 31%
23/(24+23+20+11) = 29% etc

Genetic algorithms

* Genetic algorithm is “stochastic beam search”
— Key difference: combine multiple parents

For which problems is this helpful?

Continuous Optimization

Many Al problems require optimizing a function f(x),
which takes continuous values for input vector x

Huge research area

Examples:

— Machine Learning

— Signal/lmage Processing
— Computational biology
— Finance

— Weather forecasting

— Etc., etc.

Gradient Ascent

* ldea: move in direction P
of steepest ascent '
(gradient)

* Xk= X1 + n Vf(X k-l) :i | ::k& O

Types of Optimization

Linear vs. non-linear
Analytic vs. Empirical Gradient
Convex vSs. non-convex

Constrained vs. unconstrained

Continuous Optimization In
Practice

 Lots of previous work on this

« Use packages

