Informed search algorithms

(Based on slides by Oren Etzioni,
Stuart Russell)
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Best-first search

A search strategy is defined by picking the order of node
expansion

ldea: use an evaluation function f(n) for each node
— estimate of "desirability”

- Expand most desirable unexpanded node

Implementation:

Order the nodes in fringe in decreasing order of
desirability

Special cases:
— greedy best-first search
— A’ search
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Greedy best-first search

« Evaluation function f(n) = h(n) (heuristic)
= estimate of cost from n to goal

* e.g., hg p(n) = straight-line distance from n
to Bucharest

» Greedy best-first search expands the node
that appears to be closest to goal



Properties of greedy best-first
search

Complete?

No — can get stuck in loops, e.g., lasi 2 Neamt
- lasi -2 Neamt -

Time?

O(b™), but a good heuristic can give dramatic
Improvement

Space?

O(b™) -- keeps all nodes in memory
Optimal?

NoO
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A’ search

ldea: avoid expanding paths that are
already expensive

Evaluation function f(n) = g(n) + h(n)

g(n) = cost so far to reach n
h(n) = estimated cost from n to goal

f(n) = estimated total cost of path through
n to goal



A’ search example

366=0+366



A’ search example
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A’ search example
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A’ search example
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A’ search example

< Amd >

H47=118+329

ﬁ

G46=280+366 P 87 1= Eﬂ1+:3-E|E|

--

581=338+4253 450=450+0 526=366+ 160 41?_131?+1[|U 553=300+253

{:h'}

449=75+374



A’ search example
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Admissible heuristics

A heuristic h(n) is admissible if for every node n,

h(n) < h'(n), where h(n) is the true cost to reach the goal
state from n.

An admissible heuristic never overestimates the cost to
reach the goal, I.e., it is optimistic

Example: hg p(n) (never overestimates the actual road
distance)

Theorem: If h(n) is admissible, A" using TREE-SEARCH IS
optimal



Properties of A*

Complete?

Yes (unless there are infinitely many nodes with
f<f(G))

Time? Exponential

Space? Keeps all nodes in memory

Optimal?
Yes




Why optimal? By contradiction

Suppose some suboptimal goal (G5 has been generated and is in the queue.

Let 7 be an unexpanded node on a shortest path to an optimal goal 1.
Start

_..ﬁ_‘-\__i_‘-\. -, A\n_ﬂ i
.(,-7‘3-&.,-_.--;_.-..,. e ey

C@
flGs) = g(Gy) since h(Ga) =0
> g(Gy) since (2 is suboptimal
= f(n) since h is admissible

Since f(Go) > fin), A* will never select (G5 for expansion



A* is “optimally efficient”

* With an admissible heuristic,
— A* expands all nodes with f(n) < C
— A* expands some nodes with f(n) = C
— A* expands no nodes with f(n) > C

« S0, except for the variable (usually small)
number of nodes with f(n) = C,

— No optimal algorithm using h expands fewer nodes
than A*



Admissible heuristics

E.g., for the 8-puzzle:

* h,(n) = number of misplaced tiles

* h,(n) = total Manhattan distance
(i.e., no. of squares from desired location of each tile)
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Admissible heuristics

E.g., for the 8-puzzle:

* h,(n) = number of misplaced tiles
* h,(n) = total Manhattan distance
(i.e., no. of squares from desired location of each tile)

7 2 4 1

5 6 3 4

8 3 1 6 7
Start State Goal State

¢ hl(s) =78
* hy(S) =? 3+1+2+2+2+3+3+2 = 18




Dominance

If h,(n) =2 h,(n) for all n (both admissible)

then h, dominates h;
h, is at least as good as h, for search, and likely better
— Why?

Typical search costs (average number of nodes
expanded):
— d=12 IDS = 3,644,035 nodes
A’(h,) =227 nodes
A’(h,) = 73 nodes
— d=24 IDS =too many nodes
A’(h)) = 39,135 nodes
A’(h,) = 1,641 nodes



Relaxed problems

A problem with fewer restrictions on the actions is called
a relaxed problem

The cost of an optimal solution to a relaxed problem is
an admissible heuristic for the original problem

If the rules of the 8-puzzle are relaxed so that a tile can
move anywhere, then h,(n) gives the shortest solution

If the rules are relaxed so that a tile can move to any
adjacent square, then h,(n) gives the shortest solution



Traveling Salesman Problem

« Goal: find the least-cost cycle in the graph that visits

each node exactly once

38
A B
12
v
30 3
C D



TSP Relaxed Problem Heuristic

* Relaxed problem: find least-cost tree that connects alll
nodes (Mminimum spanning tree).

— Cost(MST) <= Cost(Best Tour — 1 edge) < Cost(Best Tour)

A B




Combining Heuristics

« Say we have two heuristics, hl and h2, and
neither dominates the other.

— What can we do?

* h3(n) = max(h1(n), h2(n))
— h3 dominates h1, h2



Pattern Databases

%* 2 4 1 2
* * 3 4 *
%* 3 1 * %* *

Start State Goal State

* h(n) = cost to get {1,2,3,4} in right place
— Compute once for all possible configurations and store

« Can use multiple sub-problems (e.g., {5,6,7,8}) and
combine with max
— Or, ignore * moves and add disjoint subproblems



Summary of A* Search

Expands node n with minimum f(n) = g(n) + h(n)
= path cost so far + heuristic estimate

Optimal for admissible heuristic h(n)
— l.e. h that underestimates true path cost

Designing good heuristics is crucial for performance
— One method: Relaxed problems

Combining heuristics
— Take max or add “disjoint” heursitics
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Local search algorithms

In many optimization problems, the path to the
goal is irrelevant

— the goal state itself is the solution

State space = set of "complete" configurations

Find configuration satisfying constraints, e.g., n-
gueens

In such cases, we can use local search
algorithms

keep a single "current" state, try to improve it



Example: n-queens

Put n queens on an n x n board with no
two gqueens on the same row, column, or
diagonal

TN
A

_
. .




Hill-climbing search

 "Like climbing Everest in thick fog with
amnesia"

function HiLL-CLIMBING( problem) returns a state that is a local maximum
inputs: problem, a problem
local variables: current, a node
neighbor, a node

current +— MAKE-NODE(INITIAL-STATE[ problem])

loop do
neighbor+— a highest-valued successor of current
if VALUE[neighbor] < VALUE[current] then return STATE[current]
current <— neighbor




Hill-climbing search

* Problem: depending on initial state, can
get stuck in local maxima
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Hill-climbing search: 8-queens problem

13.14 13.14
16 15.14.15
14.13 15.14

14 w 16 16
w 17 w 16
W8] 1o (8T W (11 W
18 ‘w 15 ‘ﬂ'
14 17 . 14 . 18

h = number of pairs of queens that are attacking each other, either directly
or indirectly

h = 17 for the above state




Hill-climbing search: 8-queens problem

e Alocal mnimumwithh=1



Simulated annealing search

ldea: escape local maxima by allowing some "bad"
moves but gradually decrease their frequency

function SIMULATED-ANNEALING( problem, schedule) returns a solution state
inputs: problem, a problem
schedule, a mapping from time to “temperature”

local variables: current, a node
next, a node
T, a "temperature” controlling prob. of downward steps

current ¢ MAKE-NODE(INITIAL-STATE[problem])
for t+ 1to oc do
T + schedule[{]
if T'= 0 then return current
next+— a randomly selected successor of current
AE <+ VALUE[nezt] - VALUE[ current]
if AE > 0 then current + next

else current + next only with probability e® #/7




Properties of simulated
annealing search

* One can prove: If T decreases slowly enough,
then simulated annealing search will find a
global optimum with probability approaching 1

* Widely used in VLSI layout, airline scheduling,
etc



L ocal beam search

Keep track of k states rather than just one
Start with k randomly generated states

At each iteration, all the successors of all k
states are generated

If any one Is a goal state, stop; else select the k
best successors from the complete list and
repeat.



Genetic algorithms

A successor state is generated by combining two parent
states

Start with k randomly generated states (population)

A state Is represented as a string over a finite alphabet
(often a string of Os and 15s)

Evaluation function (fithess function). Higher values for
better states.

Produce the next generation of states by selection,
crossover, and mutation
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Genetic algorithms

* Genetic algorithm is “stochastic beam search”
— Key difference: combine multiple parents

For which problems is this helpful?



Continuous Optimization

Many Al problems require optimizing a function f(x),
which takes continuous values for input vector x

Huge research area

Examples:

— Machine Learning

— Signal/lmage Processing
— Computational biology
— Finance

— Weather forecasting

— Etc., etc.



Gradient Ascent

* ldea: move in direction P
of steepest ascent '
(gradient)

* Xk= X1 + n Vf(X k-l) :i | ::k& O




Types of Optimization

Linear vs. non-linear
Analytic vs. Empirical Gradient
Convex vSs. non-convex

Constrained vs. unconstrained



Continuous Optimization In
Practice

 Lots of previous work on this

« Use packages



