Probabilistic Reasoning

Doug Downey, Northwestern EECS 348
Spring 2010

Limitations of logic-based agents

- Qualification Problem
 - Action's preconditions can be complex
 - Action(Grab, t) => Holding(t)
 unless gold is slippery or nailed down or too heavy or our hands are full or...
- Brittleness
 - One contradiction in KB => KB entails everything

Limitations of logic-based agents

Qualification Problem

Action's preconditions can be

$$P(success) = 0.97$$

Action(Grab, t) => Holding(t)
unless gold is slippery or nailed down or too heavy or our hands are full or...

Brittleness

One contradiction in KB => KB entails everything

Instead of
$$a \land \neg a$$
,
 $P(a) + P(\neg a) = 1$

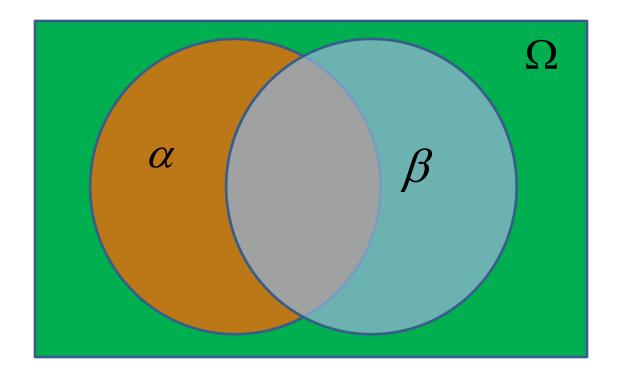
Events

- Event space Ω
 - E.g. for dice, $\Omega = \{1, 2, 3, 4, 5, 6\}$

- α = event we roll an even number = {2, 4, 6} ∈ S
- S must:
 - Contain the empty event \varnothing and the trivial event Ω
 - Be closed under union & complement

$$-\alpha$$
, $\beta \in S \rightarrow \alpha \cup \beta \in S$ and $\alpha \in S \rightarrow \Omega - \alpha \in S$

Probability Distributions



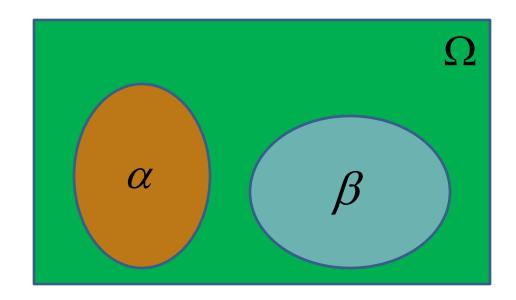
Can visualize probability as fraction of area

Probability Distributions

• A probability distribution P over (Ω, S) is a mapping from S to real values such that:

$$P(\alpha) \ge 0$$

 $P(\Omega) = 1$
 $\alpha, \beta \in S \land \alpha \cap \beta = \emptyset \rightarrow P(\alpha \cup \beta) = P(\alpha) + P(\beta)$



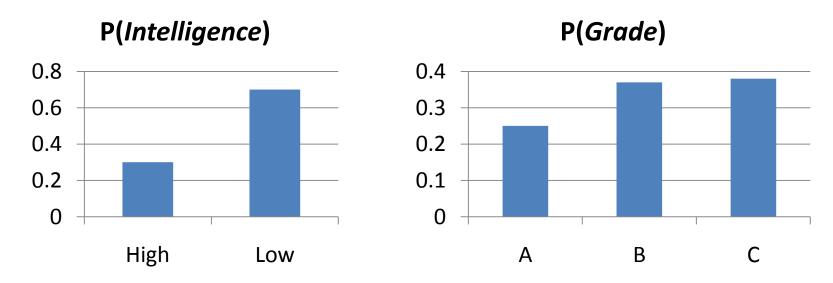
Probability: Interpretations & Motivation

- Interpretations
 - Frequentist
 - Bayesian/subjective
- Why use probability for subjective beliefs?
 - Beliefs that violate the axioms can lead to bad decisions regardless of the outcome [de Finetti, 1931]
 - Example: P(A) = 0.6, P(not A) = 0.8?
 - Example: P(A) > P(B) and P(B) > P(A)?

Random Variables

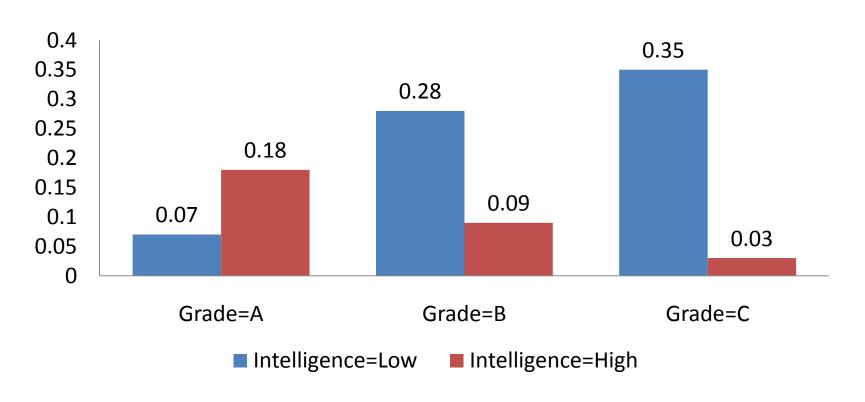
- A random variable is a function from Ω to a value
 - A short-hand for referring to attributes of events.
- E.g., your grade in this course
 - Let Ω = set of possible scores on hmwks and test
 - Cumbersome to have separate events GradeA,
 GradeB, GradeC
 - So instead define a random variable Grade
 - Deterministic function from Ω to {A, B, C}

Distributions



 Called "marginal" because they apply to only one r.v.

P(Intelligence, Grade)



		Intelligence			
		Low High			
Grade	Α	0.07	0.18		
	В	0.28	0.09		
	С	0.35	0.03		

Joint Distribution specified with 2*3 - 1 = 5 values

		Intelligence			
		Low High			
Grade	Α	0.07	0.18		
	В	0.28	0.09		
	С	0.35	0.03		

P(Grade = A, Intelligence = Low)? 0.07

		Intelligence		
		Low	High	
Grade	Α	0.07	0.18	
	В	0.28	0.09	
	С	0.35	0.03	

P(Grade = A)? 0.07 + 0.18 = 0.25

		Intelligence		
		Low	High	
Grade	Α	0.07	0.18	
	В	0.28	0.09	
	С	0.35	0.03	

P(Grade = A
$$\vee$$
 Intelligence = High)?
0.07 + 0.18 + 0.09 + 0.03 = 0.37

=> Given the joint distribution, we can compute probabilities for any proposition by summing events.

- P(Grade = A | Intelligence = High) = 0.6
 - the probability of getting an A given only Intelligence =
 High, and nothing else.
 - If we know *Motivation* = High or *OtherInterests* = Many, the probability of an A changes even given high *Intelligence*
- Formal Definition:

$$-P(\alpha \mid \beta) = P(\alpha, \beta) / P(\beta)$$

• When $P(\beta) > 0$

		Intelligence			
		Low High			
Grade	Α	0.07	0.18		
	В	0.28	0.09		
	С	0.35	0.03		

```
P(Grade = A \mid Intelligence = High)?

P(Grade = A, Intelligence = High) = 0.18

P(Intelligence = High) = 0.18+0.09+0.03 = 0.30

P(Grade = A \mid Intelligence = High) = 0.18/0.30 = 0.6
```

		Intelligence		
		Low	High	
Grade	Α	0.07	0.18	
	В	0.28	0.09	
	С	0.35	0.03	

P(Intelligence | Grade = A)?

Intelligence				
Low High				
0.28	0.72			

		Intelligence		
		Low	High	
Grade	Α	0.28	0.72	
	В	0.76	0.24	
	С	0.92	0.08	

P(Intelligence | Grade)?

Actually three separate distributions, one for each *Grade* value (has three independent parameters total)

Chain Rule

$$P(X_1 = x_1, \dots, X_n = x_n) = \prod_{i=1}^n P(X_i = x_i \mid X_{i-1} = x_{i-1}, \dots, X_1 = x_1)$$

- E.g., P(Grade=B, Int. = High)
 = P(Grade=B | Int. = High)P(Int. = High)
- Can be used for distributions...

$$-P(A, B) = P(A \mid B)P(B)$$

Queries

- Given subsets of random variables Y and E, and assignments e to E
 - Find $P(Y \mid E = e)$
- Answering queries = inference
 - The whole point of probabilistic models, more or less
 - P(Disease | Symptoms)
 - P(StockMarketCrash | RecentPriceActivity)
 - P(CodingRegion | DNASequence)
 - P(PlayTennis | Weather)
 - ...(the other key task is learning)

Answering Queries: Summing Out

		Intellige	nce = Low	Intelligence=High	
		Time=Lots	Time=Little	Time=Lots	Time=Little
	Α	0.05	0.02	0.15	0.03
Grade	В	0.14	0.14	0.05	0.0
	С	0.10	0.25	0.01	0.02

P(Grade | Time = Lots)?

$$\sum_{v \in Val(Intelligence)} P(Grade, Intelligence = v \mid Time = Lots)$$

Answering Queries: Solved?

- Given the joint distribution, we can answer any query by summing
- ...but, joint distribution of 500 Boolean variables has 2^500 -1 parameters (about 10^150)
- For non-trivial problems (~25 boolean r.v.s or more), using the joint distribution requires
 - Way too much computation to compute the sum
 - Way too many observations to learn the parameters
 - Way too much space to store the joint distribution

Conditional Independence (1 of 3)

- Independence
 - -P(A, B) = P(A)*P(B), denoted $A \perp B$
 - E.g. consecutive dice rolls
 - Gambler's fallacy
 - Rare in (real) applications

Note: Book calls this "marginal independence" when applied to r.v.s, but just "independence" when applied to events

Conditional Independence (2 of 3)

- Conditional Independence
 - $P(A, B \mid C) = P(A \mid C) P(B \mid C)$, denoted $(A \perp B \mid C)$
 - Much more common
 - E.g., (GetIntoNU \perp GetIntoStanford | Application), but **NOT** (GetIntoNU \perp GetIntoStanford)

Conditional Independence (3 of 3)

How does Conditional Independence save the day?

```
P(NU, Stanford, App) =
P(NU|Stanford, App)*P(Stanford | App)*P(App)

Now, (A \perp B \mid C) means P(A \mid B, C) = P(A \mid C)

So since (NU \perp Stanford \mid App), we have
P(NU, Stanford, App) =
P(NU \mid App)*P(Stanford \mid App)*P(App)

Say App \in \{Good, Bad\} and School \in \{Yes, No, Wait\}

All we need is 4+4+1=9 numbers
(vs. 3*3*2-1=17 for the full joint)
```

Full joint has size exponential in # of r.v.s
 Conditional independence eliminates this!

Bayes' Rule

- $P(A \mid B) = P(B \mid A) P(A) / P(B)$
- Example:

```
P(symptom | disease) = 0.95, P(symptom | \negdisease) = 0.05
P(disease = 0.0001)
P(disease | symptom)
    = P(symptom | disease)*P(disease)
           P(symptom)
           0.95*0.0001
                                   0.002
```

$$= 0.95*0.0001 = 0.002$$
$$0.95*0.0001 + 0.05*0.9999$$

What have we learned?

- Probability a calculus for dealing with uncertainty
 - Built from small set of axioms (ignore at your peril)
- Joint Distribution P(A, B, C, ...)
 - Specifies probability of all combinations of r.v.s
 - Intractable to compute exhaustively for non-trivial problems
- Conditional Probability P(A | B)
 - Specifies probability of A given B
- Conditional Independence
 - Can radically reduce number of variable combinations we must assign unique probabilities to.
- Bayes' Rule