
Search

EECS 395/495

Intro to Artificial Intelligence
Doug Downey

(slides from Oren Etzioni, based on Stuart Russell,
Dan Weld, Henry Kautz, and others)

2

What is Search?

Search is a class of techniques for
systematically finding or constructing
solutions to problems.

Example technique: generate-and-test.

Example problem: Combination lock.

1. Generate a possible solution.

2. Test the solution.

3. If solution found THEN done ELSE return
to step 1.

3

Search thru a

• Set of states

• Operators [and costs]

• Start state

• Goal state [test]

• Path: start a state satisfying goal test

• [May require shortest path]

Input:

Output:

Problem Space / State Space

4

Why is search interesting?

Many (all?) AI problems can be formulated as
search problems!

Examples:

• Path planning

• Games

• Natural Language Processing

• Machine learning

• Genetic algorithms

5

Example: The 8-puzzle

states?

actions?

goal test?

path cost?

6

Example: The 8-puzzle

states? locations of tiles
actions? move blank left, right, up, down
goal test? = goal state (given)
path cost? 1 per move

[Note: optimal solution of n-Puzzle family is NP-hard]

7

Search Tree Example:
Fragment of 8-Puzzle Problem Space

8

Example: robotic assembly

states?: real-valued coordinates of robot joint angles
parts of the object to be assembled

actions?: continuous motions of robot joints
goal test?: complete assembly
path cost?: time to execute

9

Example: Romania

On holiday in Romania; currently in Arad.

Flight leaves tomorrow from Bucharest

Formulate goal:

• be in Bucharest

•

Formulate problem:

• states: various cities

• actions: drive between cities

•

Find solution:

• sequence of cities, e.g., Arad, Sibiu, Fagaras,
Bucharest

10

Example: N Queens

Input:

• Set of states

• Operators [and costs]

• Start state

• Goal state (test)

Output

Q

Q

Q

Q

11

Implementation: states vs. nodes

A state is a (representation of) a physical configuration
A node is a data structure constituting part of a search

tree includes state, parent node, action, path cost
g(x), depth

The Expand function creates new nodes, filling in the
various fields and using the SuccessorFn of the
problem to create the corresponding states.

12

Tree Search

Fringe = root node

Repeat while fringe non-empty

Take n from Fringe

If n is a goal

break (we’re done)

Else

add n’s successors to Fringe

If n is a goal, return path to n

Otherwise return failure

13

Search strategies

A search strategy is defined by picking the order of node
expansion

Strategies are evaluated along the following dimensions:

• completeness: does it always find a solution if one
exists?

• time complexity: number of nodes generated

• space complexity: maximum number of nodes in
memory

• optimality: does it always find a least-cost solution?

• systematicity: does it visit each state at most once?

Time and space complexity are measured in terms of

• b: maximum branching factor of the search tree

• d: depth of the least-cost solution

• m: maximum depth of the state space (may be ∞)

14

Uninformed search strategies

Uninformed search strategies use only the
information available in the problem definition

Breadth-first search

Depth-first search

Depth-limited search

Iterative deepening search

15

Repeated states

Failure to detect repeated states can turn a
linear problem into an exponential one!

16

Depth First Search

a

b

c d

e

f g h

Maintain stack of nodes to visit

Evaluation

• Complete?

• Time Complexity?

• Space Complexity?

Not for infinite spaces

O(b^m)

O(m)
(though vanilla alg.
in book has no backtracking, so O(mb))

17

Breadth First Search

a

b c

d e f g h

Maintain queue of nodes to visit

Evaluation

• Complete?

• Time Complexity?

• Space Complexity?

Yes (assume b finite)

O(b^(d+1))

O(b^(d+1))

18

BFS: Memory Limitation

Suppose:
2 GHz CPU

1 GB main memory

100 cycles / expansion

5 bytes / node

200,000 expansions / sec

Memory filled in 100 sec … < 2 minutes

19

Iterative deepening search

20

Iterative deepening search l =0

21

Iterative deepening search l =1

22

Iterative deepening search l =2

23

Iterative deepening search l =3

24

Iterative deepening search

Number of nodes generated in a depth-limited search to depth d
with branching factor b:

NDLS = b0 + b1 + b2 + … + bd-2 + bd-1 + bd

Number of nodes generated in an iterative deepening search to
depth d with branching factor b:

NIDS = (d+1)b0 + d b^1 + (d-1)b^2 + … + 3bd-2 +2bd-1 + 1bd

For b = 10, d = 5,
• NDLS = 1 + 10 + 100 + 1,000 + 10,000 + 100,000 = 111,111
• NIDS = 6 + 50 + 400 + 3,000 + 20,000 + 100,000 = 123,456

Overhead = (123,456 - 111,111)/111,111 = 11%

25

Cost of Iterative Deepening

b ratio ID to DFS

2 3

3 2

5 1.5

10 1.2

25 1.08

100 1.02

26

iterative deepening search

Complete? Yes

Time?

• (d+1)b0 + d b1 + (d-1)b2 + … + bd =
O(bd)

Space?

• O(d)

Optimal?

• Yes, if step cost = 1

Systematic?

• No, but okay

27

Repeated states (Part II)

Failure to detect repeated states can turn a
linear problem into an exponential one!

28

Repeated states (Part II)

More realistic case:

A B

E F

C

G

D

H

I J

M N

K

O

L

P

29

Repeated states (Part II)

Can save states but…then iterative deepening
with DFS no longer takes O(m) space!

What space is required?

30

Forwards vs. Backwards

31

vs. Bidirectional

32

Recap: Tree Search

Fringe = root node

Repeat while fringe non-empty

Take n from Fringe

If n is a goal

break (we’re done)

Else

Expand n: add n’s successors to Fringe

If n is a goal, return path to n

Otherwise return failure

33

Summary

Search problems

Search strategies

DFS, BFS, Iterative Deepening w/depth-
limited search

Issue: All these methods are slow (blind)

Solution add guidance (“heurstic estimate”)

 “informed search”

