Informed search algorithms

(Based on slides by Oren Etzioni, Stuart Russell)
Outline

• Greedy best-first search
• A* search
• Heuristics
• Local search algorithms
• Hill-climbing search
• Simulated annealing search
• Local beam search
• Genetic algorithms
Best-first search

- A search strategy is defined by picking the order of node expansion
- Idea: use an evaluation function $f(n)$ for each node
  - estimate of "desirability"

  → Expand most desirable unexpanded node

- Implementation:
  Order the nodes in fringe in decreasing order of desirability

- Special cases:
  - greedy best-first search
  - A* search
Romania with step costs in km

<table>
<thead>
<tr>
<th>City</th>
<th>Cost (km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bucharest</td>
<td>0</td>
</tr>
<tr>
<td>Craiova</td>
<td>160</td>
</tr>
<tr>
<td>Dobrota</td>
<td>242</td>
</tr>
<tr>
<td>Eforie</td>
<td>161</td>
</tr>
<tr>
<td>Fagaras</td>
<td>178</td>
</tr>
<tr>
<td>Giurgiu</td>
<td>77</td>
</tr>
<tr>
<td>Hirsova</td>
<td>151</td>
</tr>
<tr>
<td>Iasi</td>
<td>226</td>
</tr>
<tr>
<td>Lugoj</td>
<td>244</td>
</tr>
<tr>
<td>Mehadia</td>
<td>241</td>
</tr>
<tr>
<td>Neamt</td>
<td>234</td>
</tr>
<tr>
<td>Oradea</td>
<td>380</td>
</tr>
<tr>
<td>Pitesti</td>
<td>98</td>
</tr>
<tr>
<td>Rîmnicu Vâlcea</td>
<td>193</td>
</tr>
<tr>
<td>Sibiu</td>
<td>253</td>
</tr>
<tr>
<td>Timisoara</td>
<td>329</td>
</tr>
<tr>
<td>Urziceni</td>
<td>80</td>
</tr>
<tr>
<td>Vaslui</td>
<td>199</td>
</tr>
<tr>
<td>Zerind</td>
<td>374</td>
</tr>
</tbody>
</table>
Greedy best-first search

- Evaluation function $f(n) = h(n)$ (heuristic) = estimate of cost from $n$ to goal

- e.g., $h_{SLD}(n) = \text{straight-line distance from } n \text{ to Bucharest}$

- Greedy best-first search expands the node that appears to be closest to goal
Properties of greedy best-first search

- **Complete?**
  - No – can get stuck in loops, e.g., Iasi → Neamt → Iasi → Neamt →

- **Time?**
  - $O(b^m)$, but a good heuristic can give dramatic improvement

- **Space?**
  - $O(b^m)$ -- keeps all nodes in memory

- **Optimal?**
  - No
Romania with step costs in km

Straight-line distance to Bucharest

- Arad: 366
- Bucharest: 0
- Craiova: 160
- Dobrogea: 242
- Eforie: 161
- Fagaras: 178
- Giurgiu: 77
- Hirsova: 151
- Iasi: 226
- Lugoj: 244
- Mehadia: 241
- Neamț: 234
- Oradea: 380
- Pitesti: 98
- Rimnicu Vâlcea: 193
- Sibiu: 253
- Timisoara: 329
- Urziceni: 80
- Vaslui: 199
- Zerind: 374
A* search

- Idea: avoid expanding paths that are already expensive
- Evaluation function $f(n) = g(n) + h(n)$
  - $g(n)$ = cost so far to reach $n$
  - $h(n)$ = estimated cost from $n$ to goal
  - $f(n)$ = estimated total cost of path through $n$ to goal
A* search example

A\textsuperscript{\textregistered}d

366=0+366
A* search example
Admissible heuristics

• A heuristic \( h(n) \) is admissible if for every node \( n \),
  \( h(n) \leq h^*(n) \), where \( h^*(n) \) is the true cost to reach the goal state from \( n \).

• An admissible heuristic never overestimates the cost to reach the goal, i.e., it is optimistic

• Example: \( h_{SLD}(n) \) (never overestimates the actual road distance)

• Theorem: If \( h(n) \) is admissible, \( A^* \) using \textsc{Tree-Search} is optimal
Properties of A*

• Complete? Yes (unless there are infinitely many nodes with $f \leq f(G)$)

• Time? Exponential

• Space? Keeps all nodes in memory

• Optimal? Yes
Why optimal? By contradiction

Suppose some suboptimal goal $G_2$ has been generated and is in the queue. Let $n$ be an unexpanded node on a shortest path to an optimal goal $G_1$.

\[
\begin{align*}
  f(G_2) &= g(G_2) & \text{since } h(G_2) = 0 \\
  &> g(G_1) & \text{since } G_2 \text{ is suboptimal} \\
  &\geq f(n) & \text{since } h \text{ is admissible}
\end{align*}
\]

Since $f(G_2) > f(n)$, A* will never select $G_2$ for expansion.
A* is “optimally efficient”

- With an admissible heuristic,
  - A* expands all nodes with $f(n) < C$
  - A* expands some nodes with $f(n) = C$
  - A* expands no nodes with $f(n) > C$

- So, except for the variable (usually small) number of nodes with $f(n) = C$,
  - No optimal algorithm using $h$ expands fewer nodes than A*
Admissible heuristics

E.g., for the 8-puzzle:

- \( h_1(n) \) = number of misplaced tiles
- \( h_2(n) \) = total Manhattan distance (i.e., no. of squares from desired location of each tile)

\[ h_1(S) = ? \]
\[ h_2(S) = ? \]
Admissible heuristics

E.g., for the 8-puzzle:

- $h_1(n) = \text{number of misplaced tiles}$
- $h_2(n) = \text{total Manhattan distance}$
  (i.e., no. of squares from desired location of each tile)

- $h_1(S) = ? \ 8$
- $h_2(S) = ? \ 3+1+2+2+2+3+3+2 = 18$
Dominance

• If $h_2(n) \geq h_1(n)$ for all $n$ (both admissible) then $h_2$ dominates $h_1$

• $h_2$ is at least as good as $h_1$ for search, and likely better
  – Why?

• Typical search costs (average number of nodes expanded):
  – $d=12$  
    IDS = 3,644,035 nodes
    $A^*(h_1) = 227$ nodes
    $A^*(h_2) = 73$ nodes
  – $d=24$  
    IDS = too many nodes
    $A^*(h_1) = 39,135$ nodes
    $A^*(h_2) = 1,641$ nodes
Relaxed problems

• A problem with fewer restrictions on the actions is called a relaxed problem

• The cost of an optimal solution to a relaxed problem is an admissible heuristic for the original problem

• If the rules of the 8-puzzle are relaxed so that a tile can move anywhere, then $h_1(n)$ gives the shortest solution

• If the rules are relaxed so that a tile can move to any adjacent square, then $h_2(n)$ gives the shortest solution
Traveling Salesman Problem

• Goal: find the least-cost cycle in the graph that visits each node exactly once
TSP Relaxed Problem Heuristic

- Relaxed problem: find least-cost *tree* that connects all nodes (minimum spanning tree).
  - $\text{Cost}(\text{MST}) \leq \text{Cost}(\text{Best Tour} - \text{1 edge}) < \text{Cost}(\text{Best Tour})$

![Diagram](https://via.placeholder.com/150)
Combining Heuristics

• Say we have two heuristics, $h_1$ and $h_2$, and neither dominates the other.
  – What can we do?

• $h_3(n) = \max(h_1(n), h_2(n))$
  – $h_3$ dominates $h_1, h_2$
Pattern Databases

- $h(n) = \text{cost to get } \{1,2,3,4\} \text{ in right place}$
  - Compute once for all possible configurations and store

- Can use multiple sub-problems (e.g., $\{5,6,7,8\}$) and combine with max
  - Or, ignore * moves and add disjoint subproblems
Summary of A* Search

- Expands node \( n \) with minimum \( f(n) = g(n) + h(n) \)
  = path cost so far + heuristic estimate

- Optimal for *admissible* heuristic \( h(n) \)
  - i.e. \( h \) that underestimates true path cost

- Designing good heuristics is crucial for performance
  - One method: Relaxed problems

- Combining heuristics
  - Take max or add “disjoint” heuristics