Machine Learning

Instance-based learning

(with slides/ideas from Bryan Pardo, Pedro Domingos, and Andrew Moore)
Nearest Neighbor Classifier

- Example of instance-based (a.k.a case-based) learning

- The basic idea:
 1. Get some example set of cases with known outputs e.g diagnoses of infectious diseases by experts
 2. When you see a new case, assign its output to be the same as the most similar known case.
 Your symptoms most resemble Mr X.
 Mr X had the flu.
 Ergo you have the flu.
General Learning Task

There is a set of possible examples $X = \{x_i\}$

Each example is an n-tuple of attribute values

$\vec{x}_1 = <a_1, \ldots, a_k>$

There is a target function that maps X onto some set Y

$f : X \rightarrow Y$

The DATA is a set of duples <example, target function values>

$D = \{<\vec{x}_1, f(\vec{x}_1)>, \ldots, <\vec{x}_m, f(\vec{x}_m)>)\}$

Find a hypothesis h such that...

$\forall \vec{x}, h(\vec{x}) \approx f(\vec{x})$
Nearest neighbor!

Task: Given some set of training data...

\[D = \{ < \vec{x}_1, f(\vec{x}_1) >, \ldots < \vec{x}_m, f(\vec{x}_m) > \} \]

...and query point \(\vec{x}_q \), predict \(f(\vec{x}_q) \)

1. Find the nearest member of data set to the query

\[\vec{x}_{nn} = \text{arg min}_{x \in D} (d(\vec{x}, \vec{x}_q)) \]

2. Assign the nearest neighbor’s output to the query

\[h(\vec{x}_q) = f(\vec{x}_{nn}) \]

Our hypothesis
A Single-attribute Example

- Find closest point: \(\tilde{x}_{nn} = \arg \min_{x \in D} d(\tilde{x}, \tilde{x}_q) \)
- Give query its value: \(f(\tilde{x}_q) = f(\tilde{x}_{nn}) \)
Voronoi Diagram

\[S: \text{Training set} \]

**Voronoi cell of } x \in S: \]
All points closer to } x \text{ than to any other instance in } S \]

**Region of class } C: \]
Union of Voronoi cells of instances of } C \text{ in } S \]
What makes an instance-based learner?

- A distance measure

 Nearest neighbor: typically Euclidean

- Number of neighbors to consider

 Nearest neighbor: One

- A weighting function (optional)

 Nearest neighbor: unused (equal weights)

- How to fit with the neighbors

 Nearest neighbor: Same output as nearest neighbor
K-nearest neighbor

- A distance measure
 Typically Euclidean
- Number of neighbors to consider
 \(K\)
- A weighting function (optional)
 Unused (i.e. equal weights)
- How to fit with the neighbors
 Vote using \(K\) nearest neighbors (or take average, for regression)
Examples of KNN where K=9

Reasonable job
Did smooth noise

Screws up on the ends

OK, but problem on the ends again.
Pros and Cons

• Advantages
 – Fast training (a “lazy” method)
 – Learn complex functions easily
 – Don’t lose information

• Disadvantages
 – Slow at query time
 – Lots of storage
 – Easily fooled by irrelevant attributes
Irrelevant Attributes

• The Curse of Dimensionality
 – Nearest Neighbor easily misled when X high-dim
 – Low-dimensional intuitions don’t extend to high dim

• Example:
 – Uniform distribution on hypercube
 – Sphere approximation of cube
 • Exercise: prove that the maximal intersection of hypersphere of volume 1 and hypercube of volume 1 goes to zero as dim increases
 – (if it’s true)
Feature Selection

• Pre-selection
 – Identify a good set of R features
 – By e.g. information gain (as in decision trees)

• Wrapping
 – Starting with zero features, iterate:
 • greedily add a new feature based on NN performance
Weighting dimensions

- Suppose data points are two-dimensional
- Different dimensional weightings affect region shapes

\[d(x, y) = (x_1 - y_1)^2 + (x_2 - y_2)^2 \]

\[d(x, y) = (x_1 - y_1)^2 + (3x_2 - 3y_2)^2 \]
Computational Cost?

• Optimized distance computations
 – Use cheap approximation to weed out most instances
 – Compute expensive measure on remainder

• Edited k-NN
 – For each \(x \)
 • If \(x \) correctly classified by \(D - \{x\} \), remove \(x \) from \(D \)

• Form prototypes
 – \textit{Merge} instances where no accuracy impact
Avoiding overfitting

- Choose k in k-nearest neighbor by
 - Cross validation

- Form prototypes

- Remove noisy instances
Kernel Regression

- A distance measure: *Scaled Euclidean*
- Number of neighbors to consider: *All of them*
- A weighting function (optional)

\[w_i = \exp \left(-\frac{d(x_i, x_q)^2}{K_w^2} \right) \]

Nearby points to the query are weighted strongly, far points weakly. The \(K_w \) parameter is the Kernel Width.

- How to fit with the neighbors

\[h(x_q) = \frac{\sum_i w_i \cdot f(x_i)}{\sum_i w_i} \]

A weighted average
Kernel-weighted Regression

Kernel Weight = 1/32 of X-axis width

A better fit than KNN?

Kernel Weight = 1/32 of X-axis width

Definitely better than KNN! Catch: Had to play with kernel width to get This result

Kernel Weight = 1/16 of X-axis width

Nice and smooth, but are the bumps justified, or is this overfitting?

Bryan Pardo, Machine Learning: EECS 349 Fall 2009