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Events

 Event space Ω
 E.g. for dice, Ω = {1, 2, 3, 4, 5, 6}

 Set of measurable events S ⊆ 2Ω

 E.g.,
α = event we roll an even number = {2, 4, 6} ∈ S

 S must:
 Contain the empty event ∅ and the trivial event Ω
 Be closed under union & complement

α, β ∈ S → α ∪ β ∈ S and     α ∈ S → Ω - α ∈ S



Probability Distributions

 A probability distribution P over (Ω, S) is a mapping 
from S to real values such that:
1. P(α) ≥ 0  ∀α∈S 
2. P(Ω) = 1
3. α, β ∈ S  ∧ α ∩ β = ∅ → P(α ∪ β ) = P(α) + P(β )

α β

Ω

Sidenote – 1st and 3rd axioms 
ensure P is a measure



Probability Distributions

Can visualize probability as fraction of area

α β

Ω



Probability: Interpretations & Motivation

 Interpretations: Frequentist vs. Bayesian 

 Why use probability for subjective beliefs?
 Beliefs that violate the axioms can lead to bad decisions 

regardless of the outcome [de Finetti, 1931]

 Example: P(A) = 0.6, P(not A) = 0.8 ?
 Example: P(A) > P(B) and P(B) > P(A) ?



Random Variables

 A random variable is a function from Ω to a value
 A partition of the event space Ω
 A short-hand for referring to attributes of events

 Examples
 Ω = {1, 2, 3, 4, 5, 6}

DieRollEven ∈ {true, false} 
 Ω = {all possible hmwk/exam grade combinations}

FinalGrade ∈ {a, b, c}

= Val(DieRollEven)



Joint Distributions
Grade Interest Course load P(G, I, C)

a high full-time 0.10

a high part-time 0.08

a low full-time 0.03

a low part-time 0.04

b high full-time 0.07

b high part-time 0.02

b low full-time 0.12

b low part-time 0.16

c high full-time 0.01

c high part-time 0.02

c low full-time 0.20

c low part-time 0.15



Conditioning!
Grade Interest Course load P(G, I, C)

a high full-time 0.10

a high part-time 0.08

a low full-time 0.03

a low part-time 0.04

b high full-time 0.07

b high part-time 0.02

b low full-time 0.12

b low part-time 0.16

c high full-time 0.01

c high part-time 0.02

c low full-time 0.20

c low part-time 0.15



Conditioning!
Grade Interest Course load P(G, I, C)

a high full-time 0.10

a low full-time 0.03

b high full-time 0.07

b low full-time 0.12

c high full-time 0.01

c low full-time 0.20

0.53

/ 0.53

/ 0.53

/ 0.53

/ 0.53

/ 0.53

/ 0.53



Conditioning!
Grade Interest Course load

a high full-time

a low full-time

b high full-time

b low full-time

c high full-time

c low full-time

1.0

P(G, I|C=f)

0.19

0.06

0.13

0.23

0.02

0.38



Conditional Probability

 P(Grade = A | Interest = High) = 0.6 
 the probability of getting an A given only Interest = High, and 

nothing else.
 If we know Motivation = High or OtherInterests = Many, the probability 

of an A changes even given high Interest

 Formal Definition: 
 P(α | β ) = P(α , β ) / P(β )

 When P(β ) > 0



Conditional Probability

 Also:
 P(A | B, C) = P(A, B, C) / P(B, C)

 More generally:
 P(A | B) = P(A, B) / P(B)
 (Boldface indicates vectors of variables)

 P(Grade = A | Grade = A, Interest = high) ?



Marginalization
Grade Interest Course load P(G, I, C)

a high full-time 0.10

a high part-time 0.08

a low full-time 0.03

a low part-time 0.04

b high full-time 0.07

b high part-time 0.02

b low full-time 0.12

b low part-time 0.16

c high full-time 0.01

c high part-time 0.02

c low full-time 0.20

c low part-time 0.15



Marginalization
Grade Interest Course load P(G, I, C)

a high * 0.10

a high * 0.08

a low * 0.03

a low * 0.04

b high * 0.07

b high * 0.02

b low * 0.12

b low * 0.16

c high * 0.01

c high * 0.02

c low * 0.20

c low * 0.15



Marginalization
Grade Interest Course load P(G, I)

a high * 0.18

a low * 0.07

b high * 0.09

b low * 0.28

c high * 0.03

c low * 0.35



Marginalization
Grade Interest P(G, I)

a high 0.18

a low 0.07

b high 0.09

b low 0.28

c high 0.03

c low 0.35

1.0



Marginalization

𝑃𝑃 𝑋𝑋 = �
𝑦𝑦∈𝑉𝑉𝑉𝑉𝑉𝑉(𝑌𝑌)

𝑃𝑃(𝑋𝑋,𝑌𝑌 = 𝑦𝑦)



Continuous Random Variables

 For continuous r.v. X, specify a density p(x), such that:

E.g., ( ) ( )∫
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Gaussian Density
 p(x) = 



Joint Distribution

Interest
low high

Grade
a 0.07 0.18

b 0.28 0.09

c 0.35 0.03

Joint Distribution specified with 2*3 – 1 = 5 values



Conditional Probability

Interest
low high

Grade
a 0.07 0.18

b 0.28 0.09

c 0.35 0.03

P(Grade = a | Interest = high) ?
P(Grade = a, Interest = high) = 0.18
P(Interest = high) = 0.18+0.09+0.03 = 0.30
=> P(Grade = a | Interest = high) = 0.18/0.30 = 0.6



Conditional Probability

Interest
low high

Grade
a 0.07 0.18

b 0.28 0.09

c 0.35 0.03

P(Interest | Grade = a)? Interest
low high

0.28 0.72



Interest
low high

Grade
a 0.07 0.18

b 0.28 0.09

c 0.35 0.03

Interest
low high

Grade
a 0.28 0.72

b 0.76 0.24

c 0.92 0.08

Conditional Probability

P(Interest | Grade)?

Actually three separate distributions, one for 
each Grade value 
(has three independent parameters total)



Chain Rule

 E.g., P(Grade=b, Int. = high) 
= P(Grade=b | Int.= high)P(Int. = high)

 Can be used for distributions…
 P(A, B) = P(A | B)P(B)



Handy Rules for Cond. Probability (1 of 2)

 P(A | B = b) is a single distribution, like P(A)

 P(A | B) is not a single distribution
 a set of |Val(B)| distributions



Handy Rules for Cond. Probability (2 of 2)

 Any statement true for arbitrary distributions is also true 
if you condition on a new r.v.
 P(A , B) = P(A | B)P(B)?   (chain rule)

Then also P(A, B | C) = P(A | B, C) P(B | C)

 Likewise, any statement true for arbitrary distributions is 
also true if you replace an r.v. with two/more new r.v.s
 P(A | B) = P(A, B) / P(B) ? (def. of cond. Prob)
 P(A | C, D) = P(A, C, D) / P(C, D) or P(A | B) = P(A, B) / P(B)



Independence

 P(Rain | Cloudy) ≠ P(Rain)
 But:  P(FairDie=6 | PreviousRoll=6) = P(FairDie=6)

 We say A and B are independent iff

P(A | B) = P(A)

 Logically equivalent to P(A, B) = P(A)*P(B)
 Denoted A ⊥ B



Conditional Independence (1 of 2)

 A and B are conditionally independent given C iff
P(A | B, C) = P(A | C)

 Equivalent to P(A, B | C) = P(A | C) P (B | C)

 Denoted (A ⊥ B | C)



Conditional Independence (2 of 2)

 Example: university admissions
 Val(GetIntoX) = {yes, no, wait}
 Val(Application) = {good, bad}

P(GetIntoNU | GetIntoUIUC, GetIntoStanford, Application)
=

P(GetIntoNU | Application)

3*3*2*2= 36 Parameters

2*2= 4 Parameters



Properties of Conditional Independence

 Decomposition
 (X ⊥ Y, W | Z) => (X ⊥ Y| Z)

 Weak Union
 (X ⊥ Y, W | Z) => (X ⊥ Y| Z, W)

 Contraction
 (X ⊥ W | Z, Y) & (X ⊥ Y| Z) => (X ⊥ Y, W | Z)



Expectation

 Discrete

𝑬𝑬𝑷𝑷 𝑿𝑿 = �
𝒙𝒙

𝒙𝒙 𝑷𝑷(𝒙𝒙)

 Continuous

𝑬𝑬𝑷𝑷 𝑿𝑿 = ∫ 𝒙𝒙 𝒑𝒑 𝒙𝒙 𝒅𝒅𝒅𝒅

 E.g., E[FairDie]=3.5



Expectation is Linear

𝑬𝑬𝑷𝑷 𝑿𝑿 + 𝒀𝒀 = �
𝒙𝒙,𝒚𝒚

𝒙𝒙 + 𝒚𝒚 𝑷𝑷 𝒙𝒙,𝒚𝒚

= �
𝒙𝒙,𝒚𝒚

𝒙𝒙 𝑷𝑷 𝒙𝒙,𝒚𝒚 + �
𝒙𝒙,𝒚𝒚

𝒚𝒚 𝑷𝑷 𝒙𝒙,𝒚𝒚

= �
𝒙𝒙

𝒙𝒙�
𝒚𝒚

𝑷𝑷 𝒙𝒙,𝒚𝒚 + �
𝒚𝒚

𝒚𝒚�
𝒙𝒙

𝑷𝑷 𝒙𝒙,𝒚𝒚

= �
𝒙𝒙

𝒙𝒙 𝑷𝑷 𝒙𝒙 + �
𝒚𝒚

𝒚𝒚 𝑷𝑷 𝒚𝒚 = 𝑬𝑬𝑷𝑷[𝑿𝑿] + 𝑬𝑬𝑷𝑷[𝒀𝒀]



What have we learned?
 Probability – a calculus for dealing with uncertainty
 Built from small set of axioms (ignore at your peril)

 Joint Distribution P(A, B, C, …)
 Specifies probability of all combinations of r.v.s

 Conditional Probability P(A | B)
 Specifies probability of A=a given B=b

 Conditional Independence
 Can radically reduce number of model parameters

 Expectation
 Next time: Bayes’ Rule, Statistical Estimation
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