Machine Learning

Measuring Distance

several slides from Bryan Pardo

Why measure distance?

• Nearest neighbor requires a distance measure

• Also:

- Local search methods require a measure of "locality" (later)
- Clustering requires a distance measure (later)
- Search engines require a measure of similarity, etc.

Euclidean Distance

• What people intuitively think of as "distance"

Dimension 1

Dimension 2

Generalized Euclidean Distance

L^p norms

• L^p norms are all special cases of this:

$$d(\vec{x}, \vec{y}) = \left[\sum_{i=1}^{n} |x_i - y_i|^p\right]^{1/p} \qquad p \ge 1$$

$$\|\mathbf{x}\|_1 = \mathbf{L}^1 \text{ norm} = \text{Manhattan Distance} : p = 1$$

$$\|\mathbf{x}\|_2 = \mathbf{L}^2 \text{ norm} = \text{Euclidean Distance} : p = 2$$

Hamming Distance: p = 1 and $x_i, y_i \in \{0,1\}$

Weighting Dimensions

- Put point in cluster with the closest center of gravity?
- Which cluster <u>should</u> the red point go in?
- How do I measure distance in a way that gives the "right" answer for both situations?

Weighted Norms

• You can compensate by weighting your dimensions....

$$d(\vec{x}, \vec{y}) = \left[\sum_{i=1}^{n} w_i | x_i - y_i |^p\right]^{1/p}$$

This lets you turn your circle of equal-distance into an elipse with axes parallel to the dimensions of the vectors.

Mahalanobis distance

- The region of constant Mahalanobis distance around the mean of a distribution forms an ellipsoid.
- The axes of this ellipsiod don't have to be parallel to the dimensions describing the vector

Images from: http://www.aiaccess.net/English/Glossaries/GlosMod/e_gm_mahalanobis.htm

Calculating Mahalanobis

$$d(\vec{x}, \vec{y}) = \sqrt{(\vec{x} - \vec{y})^T S^{-1} (\vec{x} - \vec{y})}$$

• This matrix *S* is called the "covariance" matrix and is calculated from the data distribution

Take-away on Mahalanobis

• A metric has these four qualities.

$$d(x, y) = 0 \quad \text{iff} \quad x = y \qquad (\text{reflexivity})$$

$$d(x, y) \ge 0 \qquad (\text{non-negative})$$

$$d(x, y) = d(y, x) \qquad (\text{symmetry})$$

$$d(x, y) + d(y, z) \ge d(x, z) \qquad (\text{triangle inequality})$$

• ...otherwise, call it a "measure"

Metric, or not?

• Driving distance with 1-way streets

- Categorical Stuff :
 - Is distance (Jazz to Blues to Rock) no less than distance (Jazz to Rock)?

Categorical Variables

- Consider feature vectors for genre & vocals:
 - Genre: {Blues, Jazz, Rock, Hip Hop}
 - Vocals: {vocals,no vocals}
- $s1 = \{rock, vocals\}$
- s2 = {jazz, no vocals}
- s3 = { rock, no vocals}
- Which two songs are more similar?

One Solution:Hamming distance

Blues	Jazz	Rock	Нір Нор	Vocals	No Voca	als
0	0	1	0	1	0	s1 = {rock, vocals}
0	1	0	0	0	1	s2 = {jazz, no_vocals}
0	0	1	0	0	1	s3 = { rock, no_vocals}

Hamming Distance = number of different bits in two binary vectors

Hamming Distance

$$d(\vec{x}, \vec{y}) = \sum_{i=1}^{n} |x_i - y_i|$$

where
$$\vec{x} = \langle x_1, x_2, ..., x_n \rangle$$
,

$$\vec{y} = \langle y_1, y_2, ..., y_n \rangle$$

and $\forall i(x_i, y_i \in \{0, 1\})$

Defining your own distance (an example)

How often does artist *x* quote artist *y*?

Quote Frequency

	Beethoven	Beatles	Liz Phair
Beethoven	7	0	0
Beatles	4	5	0
Liz Phair	?	1	2

Let's build a distance measure!

Defining your own distance (an example)

	Beethoven	Beatles	Liz Phair
Beethoven	7	0	0
Beatles	4	5	0
Liz Phair	?	1	2

Quote frequency $Q_f(x, y)$ = value in table

Distance
$$d(x, y) = 1 - \frac{Q_f(x, y)}{\sum_{z \in Artists}}$$

Missing data

- What if, for some category, on some examples, there is no value given?
- Approaches:
 - Discard all examples missing the category
 - Fill in the blanks with the mean value
 - Only use a category in the distance measure if both examples give a value

Dealing with missing data

$$w_i = \begin{cases} 1, \text{ if both } x_i \text{ and } y_i \text{ are defined} \\ 0, \text{otherwise} \end{cases}$$

$$d(\vec{x}, \vec{y}) = \frac{n}{\sum_{i=1}^{n} w_i} \left[\sum_{i=1}^{n} w_i \phi(x_i, y_i) \right]$$

Edit Distance

- Query = string from finite alphabet
- Target = string from finite alphabet
- Cost of Edits = Distance

Semantic Relatedness

d(Portland, Hippies)

d(Portland, Monster trucks)

Semantic Relatedness

- Several measures have been proposed
- One that works well: "Milne-Witten"

 $SR_{MW}(x, y) \propto$ fraction of Wikipedia in-links to either x or y that link to both

Country music

Country music

Category:Grammy Award winners

From Wikipedia, the free encyclopedia

One more distance measure

- Kullback–Leibler divergence
 - Related to entropy & information gain
 - not a metric, since it is not symmetric
 - Take EECS 428:Information Theory to find out more