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Instances

 E.g. Four Days, in terms of weather:

Sky Temp Humid Wind Forecast

sunny warm normal strong same

sunny warm high strong same

rainy cold high strong change

sunny warm high strong change



Functions
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 “Days on which Anne agrees to get lunch with me”

Sky Temp Humid Wind Forecast f(x)

sunny warm normal strong same 1

sunny warm high strong same 1

rainy cold high strong change 0

sunny warm high strong change 1

INPUT
OUTPUT



Inductive Learning!
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 Predict the output for a new instance (generalize!)

Sky Temp Humid Wind Forecast f(x)

sunny warm normal strong same 1

sunny warm high strong same 1

rainy cold high strong change 0

sunny warm high strong change 1

rainy warm high strong change ?

INPUT
OUTPUT



General Inductive Learning Task

DEFINE:
 Set X of Instances (of n-tuples x = <x1, ..., xn>)

 E.g., days decribed by attributes (or features):

Sky, Temp, Humidity, Wind, Forecast

 Target function f : X  Y, e.g.:
 GoesToLunch X Y = {0,1}

 ResponseToLunch X  Y = {”No,” ”Yes,” ”How about tomorrow?”}

 ProbabililityOfLunch X Y = [0, 1]

GIVEN:
 Training examples D

 examples of the target function: <x , f(x)>

FIND:
 A hypothesis h such that h(x) approximates f(x).



?

Learn function from x = (x1, …, xd) to f (x) {0, 1}

given labeled examples (x, f (x))

x1

x2

Example w/ continuous attributes



Hypothesis Spaces

 Hypothesis space H is a subset of all f : X Y e.g.:
 Linear separators

 Conjunctions of constraints on attributes (humidity must be 
low, and outlook != rain)

 Etc.

 In machine learning, we restrict ourselves to H



Examples

 Credit Risk Analysis

 X: Properties of customer and proposed purchase

 f (x): Approve (1) or Disapprove (0)

 Disease Diagnosis

 X: Properties of patient (symptoms, lab tests)

 f (x): Disease (if any)

 Face Recognition

 X: Bitmap image

 f (x):Name of person

 Automatic Steering

 X: Bitmap picture of road surface in front of car

 f (x): Degrees to turn the steering wheel



Inductive Learning tasks

 Defined in terms of inputs and outputs:

 Predicting outcomes of sporting events

 Input:  A game (two opponents, a date)

 Output: which team will win (classification)

 On the other hand, these are not tasks:

 “Studying the relationship between weather and sports game 

outcomes.”

 “Applying neural networks to natural language processing.”



When to use?

 Inductive Learning is appropriate for building a face 

recognizer

 It is not appropriate for building a calculator

 You’d just write a calculator program

 Question:

What general characteristics make a problem suitable for 

inductive learning?



Think/Pair/Share
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Think
Start

What general characteristics make a problem 

suitable for inductive learning?

End
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Pair
Start End

What general characteristics make a problem 

suitable for inductive learning?



Think/Pair/Share
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Share

What general characteristics make a problem 

suitable for inductive learning?



Appropriate applications

 Situations in which:

 There is no human expert

 Humans can perform the task but can’t describe how

 The desired function changes frequently

 Each user needs a customized f
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Why Decision Trees?

 Simple inductive learning approach

 Training procedure is easy to understand

 Models are easy to understand

 Popular

 The most popular learning method, according to surveys 
[Domingos, 2016]



Task: Will I wait for a table?
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A Decision Tree for “Will I Wait”



Expressiveness of D-Trees
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 Decision Trees can represent any Boolean function

 E.g., for two binary attributes {A,B}, the tree for binary function 

f(A, B) = A xor B:



Inductive Learning with Decision Trees

 In inductive learning, our goal is to learn a decision tree 

from a data set, such that it can generalize to new 

examples.

 What tree might you learn from the following three

examples?

f(A, B)



Think/Pair/Share
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Think
Start

What tree might you learn from the 

following three examples?

End

f(A, B)
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Pair
Start End

What tree might you learn from the 

following three examples?

f(A, B)



Think/Pair/Share
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What tree might you learn from the 

following three examples?

Share

f(A, B)



Inductive Bias
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 To learn, we must prefer some functions to 
others
 Selection bias

 use a restricted hypothesis space, e.g.:
 linear separators
depth-2 decision trees

 Preference bias
 use the whole function space, but state a 

preference over functions, e.g.:
 Lowest-degree polynomial that separates the data
 shortest decision tree that fits the data



A learned decision tree
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Summary

 Inductive Learning

 Given examples of a target function f

 example = instance (a vector of attributes)

and its corresponding target function value

 Learn a hypothesis that approximates the function

 Decision Trees

 One way of representing a hypothesis

 Can represent any Boolean function

 Inductive Bias

 Bias in favor of some functions over others

 Necessary for learning



Outline

 Decision Tree Learning (ID3)



Decision Tree Learning (ID3*)
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Goal: Find a (small) tree consistent with examples

Function ID3(examples, default) returns a tree

if examples is empty

return tree(default)

else if all examples have same classification or no non-trivial splits are possible:

return tree(MODE(examples)))

else:

best  CHOOSE-ATTRIBUTE(examples)

t  new tree with root test best

for each valuei of best:

examplesi  {elements of examples with best = valuei}

subtree  ID3(examplesi, MODE(examples)}

add branch to t with label valuei and subtree subtree

return t

Returns most frequent 

class label in examples

* Our algorithm’s termination conditions differ in 

small ways from the original published ID3



Choosing an attribute
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Think/Pair/Share
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Think
Start

How should we choose which attribute to 

split on next?

End



Think/Pair/Share
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Pair
Start End

How should we choose which attribute to 

split on next?



Think/Pair/Share
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Share

How should we choose which attribute to 

split on next?



Information
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 Brief sojourn into information theory

 (on board)



Entropy
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H
(X

)

P(X=0)

The entropy H(X) of a Boolean random variable X  as the probability

of  X = 0 varies from 0 to 1



Using Information
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 Say we have n attributes 𝐴1, 𝐴2, …𝐴𝑛
 The key question: how much information, on average, will 

I gain about the class y = f(x) by doing the split?

 Choose attribute 𝐴𝑖 that maximizes this expected value

 𝐼𝑛𝑓𝑜𝐺𝑎𝑖𝑛 𝐴𝑖 = 𝐻𝑝𝑟𝑖𝑜𝑟 −  𝑣𝑃(𝐴𝑖 = 𝑣)𝐻(𝑦|𝐴𝑖 = 𝑣)

 Since 𝐻𝑝𝑟𝑖𝑜𝑟 is constant w.r.t. 𝐴𝑖 , we can just choose 

attribute with minimum  𝑣𝑃(𝐴𝑖 = 𝑣)𝐻(𝑦|𝐴𝑖 = 𝑣)



Evaluating Decision Trees

 Accuracy of a tree

 Fraction of examples where tree output matches the output in 
the data set

 What is the accuracy of a tree on the examples used to 
train it?

 Assuming the “noiseless” case where the same attribute vector 
x always maps to the same output f(x).

 …100%

 If I deployed a tree and used it to classify new examples, 
would I expect it to be 100% accurate?

 No.

 How to estimate accuracy of tree on new examples?



Measuring Performance
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Overfitting



Overfitting is due to “noise”

 Sources of noise:

 Erroneous training data

 concept variable incorrect (annotator error)

 Attributes mis-measured

 More significant:

 Irrelevant attributes

 Target function not realizable in attributes



Irrelevant attributes

 If many attributes are noisy, information gains can be 

spurious, e.g.:

 20 noisy attributes 

 10 training examples

 Expected # of different depth-3 trees that split the 

training data perfectly using only noisy attributes: 13.4



Not realizable

 In general:

 We can rarely measure well enough for perfect prediction

 => Target function is not uniquely determined by attribute 

values

 Target outputs appear to be “noisy”

 Same attribute vector may yield distinct output values



Not realizable: Example

Humidity f(x)

0.90 0

0.87 1

0.80 0

0.75 0

0.70 1

0.69 1

0.65 1

0.63 1

Decent hypothesis:

Humidity > 0.70  No

Otherwise Yes

Overfit hypothesis:

Humidity > 0.89  No

Humidity > 0.80 

^ Humidity <= 0.89 Yes

Humidity > 0.70 

^ Humidity <= 0.80  No

Humidity <= 0.70 Yes





Avoiding Overfitting

 Approaches

 Stop splitting when information gain is low or when split is not 

statistically significant.

 Grow full tree and then prune it when done
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Effect of Reduced Error Pruning
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C4.5 Algorithm
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 Builds a decision tree from labeled training data

 Generalizes simple “ID3” tree by

 Prunes tree after building to improve generality

 Allows missing attributes in examples

 Allowing continuous-valued attributes



Rule post pruning
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 Used in C4.5

 Steps

1. Build the decision tree

2. Convert it to a set of logical rules

3. Prune each rule independently

4. Sort rules into desired sequence for use







Other Odds and Ends

• Unknown Attribute Values?





Odds and Ends

• Unknown Attribute Values?

• Continuous Attributes?



Decision Tree Boundaries
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Decision Trees Bias

 How to solve 2-bit parity:

 Split on pairs of attributes at once

 For k-bit parity, why not split on k attribute values 

at once?

=>Parity functions are among the “victims” of the decision 

tree’s inductive bias.



Now we have choices

 Re-split continuous attributes?

 Handling unknown variables?

 Prune or not?

 Stopping criteria?

 Split selection criteria?

 Use look-ahead?

 In homework #1: one choice for each

 In practice, how to decide?  An instance of Model Selection

 In general, we could also select an H other than decision trees



Think/Pair/Share
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Think
Start

We can do model selection using a 70% train, 30%

validation split of our data.  But can we do better?

End



Think/Pair/Share
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Pair
Start End

We can do model selection using a 70% train, 30%

validation split of our data.  But can we do better?



Think/Pair/Share
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Share

We can do model selection using a 70% train, 30%

validation split of our data.  But can we do better?



10-fold Cross-Validation

 On board



Take away about decision trees
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 Used as classifiers

 Supervised learning algorithms (ID3, C4.5)

 Good for situations where

 Inputs, outputs are discrete

 Interpretability is important

 “We think the true function is a small tree”



Readings

 Decision Trees:

 Induction of decision trees, Ross Quinlan (1986) (covers ID3)

 https://link.springer.com/article/10.1007%2FBF00116251

(may need to be on campus to access)

 C4.5: Programs for Machine Learning (2014) (covers C4.5)
https://books.google.com/books?hl=en&lr=&id=b3ujBQAAQBAJ&oi=fnd&pg=PP1&dq

=c4.5&ots=sPanSTEtC4&sig=c2Np0fBu37b-Ie-

dVUyhulPJsv4#v=onepage&q=c4.5&f=false

 Overfitting in Decision Trees
 http://cse-wiki.unl.edu/wiki/index.php/Decision_Trees,_Overfitting,_and_Occam's_Razor

 Cross-Validation

 https://en.wikipedia.org/wiki/Cross-validation_(statistics)

https://link.springer.com/article/10.1007/BF00116251
https://books.google.com/books?hl=en&lr=&id=b3ujBQAAQBAJ&oi=fnd&pg=PP1&dq=c4.5&ots=sPanSTEtC4&sig=c2Np0fBu37b-Ie-dVUyhulPJsv4#v=onepage&q=c4.5&f=false
http://cse-wiki.unl.edu/wiki/index.php/Decision_Trees,_Overfitting,_and_Occam's_Razor
https://en.wikipedia.org/wiki/Cross-validation_(statistics)

