EECS 349 Machine Learning

Instructor: Doug Downey

(some slides from Pedro Domingos, University of Washington)

1

Today

Logistics

ML Overview

Logistics

Instructor: Doug Downey

- Email: ddowney@eecs.northwestern.edu
- Office hours: Mondays 4:00-5:00 (or by appt), Mudd 3111
- TAs: Dave Demeter, Zheng Yuan, 4 ugrad peer mentors

Web: (linked from prof. homepage) <u>http://www.cs.northwestern.edu/~downey/courses/349_Fall20</u> <u>18/</u>

Also: Canvas, Piazza

Grading and Assignments (1 of 2)

Assignment	Points
Homework I	15
Homework 2	5
Project Proposal	5+5 (peer mentoring)
Exam I	10
Homework 3	10
Project Status Report	5+5 (peer mentoring)
Homework 4	10
Exam 2	10
Project Website	20
	100

Α	A-	B+	В	B-	C+	С	C -	Etc
93+	92-90	89-87	86-83	82-80	79-77	76-73	72-70	69

Grading and Assignments (2 of 2)

- Four homeworks (40 pts)
 - Submitted via Canvas according to hmwk instructions
 - Late penalty 10% per day must be within 1 week of original deadline
 - Significant programming, some exercises
 - Programming assignments in groups of two (or one)
- Exams (20 pts)
 - Monday of Week 4, Friday of Week 9
- Project (30 pts + 10 peer review)
 - Teams of k
 - Define a task, create/acquire data for the task, train ML algorithm(s), evaluate & report

Expectations

Grades

Academic Integrity

- You are expected to do your own work
 - More details in syllabus linked from course home page
- Suspected violations of integrity policy will be referred to the administration

Slides may not make sense if you don't come to class

Prerequisites

Significant Programming Experience

- EECS 214, 325 or the equivalent
- Example: implement decision trees (covered starting Monday)
- Python is the language we'll use
 - You'll have skeleton code to help you
 - (also, I barely know Python)
- Basics of probability
 - E.g. independence

Source Materials

- Papers & Web pages
- Reading for next week:
 - Required:
 - Decision trees (see the Decision Tree notes when they're posted)
 - Optional:
 - Gartner 2016 Hype Cycle

(machine learning at peak hype as of 2016)

Participation

- Think/Pair/Share (next)
- Peer Review

Today

Logistics

ML Overview

Think/Pair/Share

Why study Machine Learning?

Think Start

Think/Pair/Share

Why study Machine Learning?

Think Start

Think/Pair/Share

Why study Machine Learning?

|Pair Start

| End

13

Why study Machine Learning?

Share

What is Machine Learning?

 "The study of computer programs that improve automatically with experience"
 T. Mitchell Machine Learning

- Automating automation
- Getting computers to program themselves
- Writing software is the bottleneck
- Let the data do the work instead!

Magic?

No, more like gardening

- Seeds = Algorithms
- Nutrients = Data
- Gardener = You
- Plants = Programs

Example: Farecast

Sample Applications

Relationship of Machine Learning to...

- Statistics
- Analytics / Data Science
- Artificial Intelligence

Why study Machine Learning? (1 of 4)

- "A breakthrough in machine learning would be worth ten Microsofts" (Bill Gates)
- "Machine learning is the next Internet" (Tony Tether, former Director, DARPA)
- These quotes are ~10 years old (e.g. Gates is from the NYT, 2004)

More recent:

"Artificial intelligence is one of the great opportunities for improving the world today," (Reid Hoffman, co-founder of \$1B deep learning research center)

Why study Machine Learning? (2 of 4)

If the Digital Universe were represented by the memory in a stack of tablets, in **2013** it would have stretched two-thirds the way to the Moon*

By **2020**, there would be 6.6 stacks from the Earth to the Moon*

http://www.emc.com/leadership/digital-universe/2014iview/executive-summary.htm

Why study Machine Learning? (3 of 4)

The Content Created World 2015 – 2025 *

Classically Created

IoT Relevant

IoT Actionable

Source: The Internet of Things: Getting Ready to Embrace Its Impact on the Digital Economy (IDC #DR2016_GS4_VT)

@Vernonxt @CMadDC

DIDC Visit us at IDC.com and follow us on Twitter: @IDC

Why study Machine Learning? (4 of 4)

Hospitals possessing (Certified EHR) or adopting (Basic EHR) electronic medical records. What will we be able to learn from these?

https://dashboard.healthit.gov/evaluations/data-briefs/non-federal-acute-carehospital-ehr-adoption-2008-2015.php

What You'll Learn in this Class

- How do ML algorithms work?
 - Learn by implementing, using
- When should I use ML?
- For a **real** problem, how do I:
 - Express my problem as an ML task
 - Choose the right ML algorithm
 - Evaluate the results

ML in a Nutshell

- Tens of thousands of machine learning algorithms
- Hundreds new every year
- Every machine learning algorithm has three components:
 - Representation
 - Evaluation
 - Optimization

Representation

• How do we represent the function from input to output?

- Decision trees
- Sets of rules / Logic programs
- Instances
- Graphical models (Bayes/Markov nets)
- Neural networks
- Support vector machines
- Model ensembles
- Etc.

Evaluation

Given some data, how can we tell if a function is "good"?

- Accuracy
- Precision and recall
- Squared error
- Likelihood
- Posterior probability
- Cost / Utility
- Margin
- Entropy
- K-L divergence
- Etc.

Optimization

• Given some data, how do we **find** the "best" function?

- Combinatorial optimization
 - E.g.: Greedy search
- Convex optimization
 - E.g.: Gradient descent
- Constrained optimization
 - E.g.: Linear programming

Inductive Learning

- ▶ **Given** examples of a function (**x**, *f*(**x**))
- Predict function f(x) for new instances x
 - Discrete f(x): Classification
 - Continuous f(x): Regression
 - f(x) = Probability(x): Probability estimation
- Example:
 - x = <Flight=United 102, FlightDate=May 26, Today=May 7>
 - f(x) = +1 if flight price will increase in the next week, or
 -1 otherwise

What We'll Cover

Inductive learning

- Decision tree induction
- Instance-based learning
- Neural networks
- Bayesian Learning
- Logistic Regression
- Support vector machines
- Learning theory
- Reinforcement Learning

Unsupervised learning

- Clustering
- Dimensionality reduction

Today

Logistics

- ▶ 4 homeworks, 2 exams, course project. No final.
- Take a look at the course Web page for more.

ML Overview

- Like gardening
- data = rich source of fuel for ML
- More soon...