EECS 349
Machine Learning

Instructor: Doug Downey
(some slides from Pedro Domingos, University of Washington)




» Logistics
» ML Overview



» Instructor: Doug Downey

Email: ddowney@eecs.northwestern.edu

Office hours: Mondays 4:00-5:00
(or by appt),Mudd 3111

» TAs: Dave Demeter, Zheng Yuan, 4 ugrad peer
mentors

» Web: (linked from prof. homepage)

Also: Canvas, Piazza


http://www.cs.northwestern.edu/%7Edowney/courses/349_Spring2015/

Assgnment Points

Homework | |5

Homework 2 5

Project Proposal 5+5 (peer mentoring)
Exam | 10

Homework 3 10

Project Status Report 5+5 (peer mentoring)
Homework 4 |0

Exam 2 |10

Project Website 20

100

3+ 92-90 89-87 86-83 8280 79-77 76-73 72-70
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» Four homeworks (40 pts)

Submitted via Canvas according to hmwk instructions
Late penalty 10% per day — must be within | week of original deadline
Significant programming, some exercises
Programming assignments in groups of two (or one)
» Exams (20 pts)
Monday of Week 4, Friday of Week 9

» Project (30 pts + 10 peer review)

Teams of k

Define a task, create/acquire data for the task, train ML
algorithm(s), evaluate & report



» Grades

» Academic Integrity

You are expected to do your own work

More details in syllabus linked from course home page

Suspected violations of integrity policy will be referred to the
administration

» Slides may not make sense if you don’t come to class



» Significant Programming Experience
EECS 214, 325 or the equivalent

Example: implement decision trees
(covered starting Monday)

Python is the language we’ll use

You’ll have skeleton code to help you

(also, | barely know Python)
» Basics of probability

E.g.independence



» Papers & Web pages

» Reading for next week:
Required:
Decision trees (see the Decision Tree notes when they’re posted)

Optional:

(machine learning at peak hype as of 2016)


http://www.gartner.com/newsroom/id/3412017

» Think/Pair/Share (next)
» Peer Review
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Why study Machine Learning?

Think
Start End
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Why study Machine Learning?

Pair
Start End
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Why study Machine Learning?

Share



» “The study of computer programs that improve
automatically with experience”
T. Mitchell Machine Learning

» Automating automation

» Getting computers to program themselves
» Writing software is the bottleneck

» Let the data do the work instead!
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Traditional Programming

Input

Program

Machine Learning

Input
Program

Output



No, more like gardening

> = Algorithms
» Nutrients = Data
» Gardener =You

» Plants = Programs
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Search Fllghts Find cheap flights and free airfare predictiocns

@ Round Trip
* Pleaze entera To city

From:

) One Way

© Multi-City

To:

Chicago, IL (CHI) - All airports

Seattle, WA (SEA) - Seattle/Tacoma

[ Include Nearby Airports
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[ Include Nearby

7-Day Low Fare Prediction

@ Tip: Buy

Fares Rising $42
Confidence: 66%

: Applies 1o
Details ORD=SEA only

Daily Low Fare History

%380
5305
£220
5115

69 Days Ago Mo




Sample Applications

Google y w ZLillow

WAYMO

amazon @
N IBM Watson
Input
¥ Program
Output




» Statistics
» Analytics / Data Science
» Artificial Intelligence
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“A breakthrough in machine learning would be worth
ten Microsofts” (Bill Gates)

“Machine learning is the next Internet”
(Tony Tether, former Director, DARPA)

These gquotes are ~10 years old
(e.g. Gates is from the NYT, 2004)

More recent:

“Artificial intelligence is one of the great opportunities for
iImproving the world today,” (Reid Hoffman, co-founder of $1B
deep learning research center)
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Why study Machine Learning? (2 of 4)

If the Digital

The Digital Universe were
Universe is Huge ' represented by the
4 . 4 —And Growing 44 memeoery in a stack

7B ‘ Exponentially l 7H of tablets, in 2013
it would have
' . stretched
g ? 2020 - two-thirds the
: way to the Moon™

By 2020, there
would be 6.6 stacks
from the Earth to

Be: IDC, 2014 the Moon*
| P 0.25" thick 128 GB



http://www.emc.com/leadership/digital-universe/2014iview/executive-summary.htm

Why study Machine Learning? (3 of 4)

J
[

INTERNET
OF FINGS

*« !t o

» 23 http://www.gartner.com/newsroom/id/3598917



The Content Created World
2015 - 2025 °

m Classically Created mloT Relevant mloT Actionable

Growth From
2020 - 2025

2013 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025

Source: The internet of Things: Getting Ready to Embrace Its Impact on the Digital Economy {IDC SDRI016_G54_VT) Evemonx
B CMacDi



Hospitals possessing (Certified EHR) or adopting (Basic EHR) electronic
medical records. What will we be able to learn from these?

—— —® 96%

® Certified EHR 85.2%" _~Tyqe  96.9%"
75.5%*

83.8%*

71.9%
® Basic EHR

9.4%

2008 2009 2010 2011 2012 2013 2014 2015

25 https://dashboard.healthit.gov/evaluations/data-briefs/non-federal-acute-care-
hospital-ehr-adoption-2008-2015.php



» How do ML algorithms work!?

Learn by implementing, using
» When should | use ML!

» For a real problem, how do |:
Express my problem as an ML task
Choose the right ML algorithm

Evaluate the results
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» Tens of thousands of machine learning algorithms
» Hundreds new every year

» Every machine learning algorithm has three components:
Representation
Evaluation
Optimization
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» How do we represent the function from input to output?
Decision trees
Sets of rules / Logic programs
Instances
Graphical models (Bayes/Markov nets)
Neural networks
Support vector machines
Model ensembles
Etc.
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» Given some data, how can we tell if a function is
“good”?
Accuracy
Precision and recall
Squared error
Likelihood
Posterior probability
Cost / Utility
Margin
Entropy
K-L divergence
Etc.
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» Given some data, how do we find the “best” function?
Combinatorial optimization
E.g.: Greedy search
Convex optimization
E.g.: Gradient descent
Constrained optimization

E.g.: Linear programming
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» Given examples of a function (X, f(x))
» Predict function f(x) for new instances x

Discrete f(x): Classification
Continuous f(x): Regression
f(x) = Probability(x): Probability estimation

» Example:
x = <Flight=United 102, FlightDate=May 26, Today=May 7>
f(x) = +1 if flight price will increase in the next week, or

-l otherwise
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» Inductive learning
Decision tree induction
Instance-based learning
Neural networks
Bayesian Learning
Logistic Regression
Support vector machines
Learning theory

Reinforcement Learning

» Unsupervised learning
Clustering

Dimensionality reduction
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» Logistics
4 homeworks, 2 exams, course project. No final.
Take a look at the course Web page for more.

» ML Overview
Like gardening
data = rich source of fuel for ML

More soon...
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