Linear Regression

EECS 349

slides from Bryan Pardo, Mark Cartwright;
(also contains ideas and a few images from wikipedia and books by

Alpaydin, Duda/Hart/ Stork, and Bishop.)




Outline

» Announcements
Homework #2 assigned Wednesday (due Wednesday)

» Linear regression



Regression Learning

There is a set of possible examples X = {Xl ’ ...Xn}

Each example is a vector of k real valued attributes
X, =< X, X >
There is a target function that maps X onto some real value Y

fX—>Y

The DATA is a set of tuples <example, response value>

{<X,,y,>,...<X_,y >}
Find a hypothesis h such that...

VX, h(x) = f(X)



Why Linear Regression?

» Easily understood/interpretable
» Well-studied

» Computationally Efficient



Linear Regression Assumption

» Response is a linear function of input, plus Gaussian Noise

Observed response y — f(X) + E
Where & MY N(O, 0-2)



Hypothesis Space

» Each hypothesis characterized by a weight vector w
h(X)=w, +w, X, + W, x, +..w, X,

» Goal: Find a good w

(One that minimizes some error criterion)



One-dimensional LR

e X has 1 attribute a (predictor variable)
e Hypothesis function is a line:

Example: 57 =h(x)= W, + W, X
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Minimize RSS (sum of squared residuals)

number of training examples

) RSS = ()G o h(X;))z
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Multivariate Linear Regression

h(X)=w,+wx, +w,x, +..w.x,

r




Create a new 0 dimension with 1 and append it to the
beginning of every example vector X.

This placeholder corresponds to the offset W,,
X, =<L,x, |, x;5..,x, >

Format the data as a matrix of examples x and a vector of
response values V...

One training example




Closed-form solution

Our goal is to find the weights of a function....

h(X)=w,+w,x, +w,x, +..w,Xx,
...that minimizes the sum of squared residuals:
n
_ 2
RSS = Z(y;' o h(X,f ))
[

It turns out that there is a close-form solution to this problem!

w=(X"X)"X"y



RSS(W)= (v, —h(x,))’

1 k 2
— zizl(yi — W _ijlx!jwj)

=(y— XW)T (y—Xw)



RSS(w)=(y—Xw) (y—Xw)
ORSS

W =-2X" (y— Xw)

0=-2X"(y—Xw)
0=X"(y—Xw)
0=X"y—-X'Xw
X'Xw=X"y
w=X'X)"X"y



You're familiar with linear regression where the
input has k dimensions.

h(X)=w,

W, X,

WrX,

WX,

We can use this same machinery to make

h(x)=w, + WX +w,x" +..w.Xx

k



h(X)=w, +w,z+w,z -
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Parameter estimation (analytically minimizing sum
of squared residuals):

One training example

1 k
1z ... g Y,

1z, .. 2 Y,
X: - - y: B

1 Zi Zi yn

(Note, there is only 1 attribute z for each training example.
Those superscripts are powers, since we re doing polynomial regression)

w=(X"X)"X"y



Tuning Model Complexity: Example

What is your hypothesis for f(z)?
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Tuning Model Complexity: Example

What is your hypothesis for f(z)?
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Tuning Model Complexity: Example

What is your hypothesis for f(z)?
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Tuning Model Complexity: Example

What is your hypothesis for f(z)?

kth order
polynomial
regression
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Tuning Model Complexity: Example

What is your hypothesis for f(z)?
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Tuning Model Complexity: Example

What is your hypothesis for f(z)?

1 k=9
kth order
polynomial &
regression Q
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Tuning Model Complexity: Example

What happens if we fit to more data?

kth order
polynomial
regression
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Tuning Model Complexity: Example

What happens if we fit to more data?

kth order
polynomial
regression
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Bias and Variance of an Estimator

e Let X be a sample from a population specified by
a true parameter ¢

¢ Let d=d(X) be an estimator for 0

E[(d - 0)°] = E[(d - E[d])*] + (E[d] - 6)°

mean square error variance bias?
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Bias and Variance

e o - vanance

1 : 3 1 B
Order of a polynomial fit to some data

As we increase complexity, bias decreases (a better fit
to data) and variance increases (fit varies more with data)
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Reading

» Chapter 3 from Elements of Statistical Learning


https://web.stanford.edu/~hastie/ElemStatLearn/

