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Machine Learning

Greedy Local Search



ML in a Nutshell

• Every machine learning algorithm has three 
components:

– Representation

• E.g., Decision trees, instances

– Evaluation

• E.g., accuracy on test set

– Optimization

• How do you find the best hypothesis?
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Greedy local search needs

• A “successor” function

Says what states I can reach from the current one.

Often implicitly a distance measure.

• An objective (error) function

Tells me how good a state is

• Enough memory to hold 

The best state found so far

The current state

The state it’s considering moving to



Hill-climbing search

• "Like climbing Everest in thick fog with 
amnesia"



Hill-climbing (greedy local search) 
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"Like climbing Everest in thick fog with 
amnesia“



Hill-climbing (greedy local search) 
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It is easy to get stuck in local maxima



Example: n-queens

• Put n queens on an n × n board with no 

two queens on the same row, column, or 
diagonal

•



Greedy local search needs

• A “successor” (distance?) function

Any board position that is reachable by moving one 
queen in her column.

• An optimality (error?) measure

How many queen pairs can attack each other?



Hill-climbing search: 8-queens problem

• h = number of pairs of queens that are 
attacking each other, either directly or indirectly 

h =17



Hill-climbing search: 8-queens problem

• A local minimum with h = 1



Simulated annealing search

• Idea: escape local maxima by allowing some 
"bad" moves but gradually decrease their 
frequency



Properties of simulated annealing

• One can prove: If T decreases slowly enough, 
then simulated annealing search will find a 
global optimum with probability approaching 1

• Widely used in VLSI layout, airline scheduling, 
etc



Let’s look at a demo



Results on 8-queens

Random Sim Anneal Greedy

600+ 173 4

15 119 4

154 114 5

Average 256+ 135 4

• Note: on other problems, your mileage may vary



Continuous Optimization 

• Many AI problems require optimizing a function f (x), 
which takes continuous values for input vector x

• Huge research area

• Examples:
– Machine Learning
– Signal/Image Processing
– Computational biology
– Finance
– Weather forecasting
– Etc., etc.



Local beam search

• Keep track of k states rather than just one

• Start with k randomly generated states

• At each iteration, all the successors of all k
states are generated

• If any one is a goal state, stop; else select the k
best successors from the complete list and 
repeat.



Gradient Ascent

• Idea: move in direction 
of steepest ascent 
(gradient)

• xk = xk-1 +  f(xk-1)
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x f(x) gradient xnew

5.000 9.000 6.000 4.000

4.000 4.000 4.000 3.333

3.333 1.778 2.667 2.889

2.889 0.790 1.778 2.593

2.593 0.351 1.185 2.395
2.395 0.156 0.790 2.263
2.263 0.069 0.527 2.176

2.176 0.031 0.351 2.117

2.117 0.014 0.234 2.078

2.078 0.006 0.156 2.052

2.052 0.003 0.104 2.035
2.035 0.001 0.069 2.023

2.023 0.001 0.046 2.015
2.015 0.000 0.031 2.010



Types of Optimization

• Linear vs. non-linear

• Analytic vs. Empirical Gradient

• Convex vs. non-convex

• Constrained vs. unconstrained



Continuous Optimization in Practice

• Lots of previous work on this

• Use packages



Rules of Thumb: Gradient Descent

• Stochastic vs. Batch

– Try stochastic first

• Analytic Gradients are hard to debug

– Use packages with gradients built in (e.g. 
Tensorflow)

– Do gradient checking



Final example: weights in NN
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Reading

• Gradient Descent

– See e.g. the python example midway down 
the page

• Previous:

– Nearest neighbor (Elements of Statistical 
Learning 2.3, 13.3)

https://en.wikipedia.org/wiki/Gradient_descent
https://web.stanford.edu/~hastie/ElemStatLearn/

