
With slides from Bryan Pardo, Stuart Russell

Machine Learning

Greedy Local Search

ML in a Nutshell

• Every machine learning algorithm has three
components:

– Representation

• E.g., Decision trees, instances

– Evaluation

• E.g., accuracy on test set

– Optimization

• How do you find the best hypothesis?

2

Hill-climbing (greedy local search)

f(
x
)

))((maxarg find max xfx
Xx



x

Greedy local search needs

• A “successor” function

Says what states I can reach from the current one.

Often implicitly a distance measure.

• An objective (error) function

Tells me how good a state is

• Enough memory to hold

The best state found so far

The current state

The state it’s considering moving to

Hill-climbing search

• "Like climbing Everest in thick fog with
amnesia"

Hill-climbing (greedy local search)

f(
x
)

x

"Like climbing Everest in thick fog with
amnesia“

Hill-climbing (greedy local search)

f(
x
)

x

It is easy to get stuck in local maxima

Example: n-queens

• Put n queens on an n × n board with no

two queens on the same row, column, or
diagonal

•

Greedy local search needs

• A “successor” (distance?) function

Any board position that is reachable by moving one
queen in her column.

• An optimality (error?) measure

How many queen pairs can attack each other?

Hill-climbing search: 8-queens problem

• h = number of pairs of queens that are
attacking each other, either directly or indirectly

h =17

Hill-climbing search: 8-queens problem

• A local minimum with h = 1

Simulated annealing search

• Idea: escape local maxima by allowing some
"bad" moves but gradually decrease their
frequency

Properties of simulated annealing

• One can prove: If T decreases slowly enough,
then simulated annealing search will find a
global optimum with probability approaching 1

• Widely used in VLSI layout, airline scheduling,
etc

Let’s look at a demo

Results on 8-queens

Random Sim Anneal Greedy

600+ 173 4

15 119 4

154 114 5

Average 256+ 135 4

• Note: on other problems, your mileage may vary

Continuous Optimization

• Many AI problems require optimizing a function f (x),
which takes continuous values for input vector x

• Huge research area

• Examples:
– Machine Learning
– Signal/Image Processing
– Computational biology
– Finance
– Weather forecasting
– Etc., etc.

Local beam search

• Keep track of k states rather than just one

• Start with k randomly generated states

• At each iteration, all the successors of all k
states are generated

• If any one is a goal state, stop; else select the k
best successors from the complete list and
repeat.

Gradient Ascent

• Idea: move in direction
of steepest ascent
(gradient)

• xk = xk-1 +  f(xk-1)

Bryan Pardo Fall 2007 Machine Learning EECS 349

x f(x) gradient xnew

5.000 9.000 6.000 4.000

4.000 4.000 4.000 3.333

3.333 1.778 2.667 2.889

2.889 0.790 1.778 2.593

2.593 0.351 1.185 2.395
2.395 0.156 0.790 2.263
2.263 0.069 0.527 2.176

2.176 0.031 0.351 2.117

2.117 0.014 0.234 2.078

2.078 0.006 0.156 2.052

2.052 0.003 0.104 2.035
2.035 0.001 0.069 2.023

2.023 0.001 0.046 2.015
2.015 0.000 0.031 2.010

Types of Optimization

• Linear vs. non-linear

• Analytic vs. Empirical Gradient

• Convex vs. non-convex

• Constrained vs. unconstrained

Continuous Optimization in Practice

• Lots of previous work on this

• Use packages

Rules of Thumb: Gradient Descent

• Stochastic vs. Batch

– Try stochastic first

• Analytic Gradients are hard to debug

– Use packages with gradients built in (e.g.
Tensorflow)

– Do gradient checking

Final example: weights in NN

Bryan Pardo Fall 2007 Machine Learning EECS 349

2

22

2

11)()(),(yxyxyxd  2

22

2

11)33()(),(yxyxyxd 

Reading

• Gradient Descent

– See e.g. the python example midway down
the page

• Previous:

– Nearest neighbor (Elements of Statistical
Learning 2.3, 13.3)

https://en.wikipedia.org/wiki/Gradient_descent
https://web.stanford.edu/~hastie/ElemStatLearn/

