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Learning Types

• Supervised learning:
– (Input, output) pairs of the function to be learned can 

be perceived or are given.

Back-propagation in Neural Nets

• Unsupervised Learning:
– No information about desired outcomes given

K-means clustering

• Reinforcement learning:
– Reward or punishment for actions

Q-Learning



Reinforcement Learning

• Task
– Learn how to behave to achieve a goal

– Learn through experience from trial and error

• Examples
– Game playing: The agent knows when it wins, but 

doesn’t know the appropriate action in each state 
along the way

– Control: a robot can measure whether it put a dish 
away without breaking it, but which action(s) 
cause success or failure?



Basic RL Model

1. Observe state, st

2. Decide on an action, at

3. Perform action

4. Observe new state, st+1

5. Observe reward, rt+1

6. Learn from experience

7. Repeat

•Goal: Find a control policy that will maximize the 
observed rewards over the lifetime of the agent
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World



An Example: Gridworld

• Canonical RL domain
States are grid cells

4 actions: N, S, E, W

Reward for entering top right cell

-0.01 for every other move

+1



Mathematics of RL

• Before we talk about RL, we need to cover 

some background material

– Simple decision theory

– Markov Decision Processes

– Value functions

– Dynamic programming



Making Single Decisions

• Single decision to be made

– Multiple discrete actions

– Each action has a reward associated  with it

• Goal is to maximize reward

– Not hard: just pick the action with the largest reward

• State 0 has a value of 2

– Sum of rewards from taking the best action from the 

state
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Markov Decision Processes

• We can generalize the previous example 

to multiple sequential decisions

– Each decision affects subsequent decisions

• This is formally modeled by a Markov 

Decision Process (MDP)
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Markov Decision Processes

• Formally, a MDP is

– A set of states, S = {s1, s2, ... , sn}

– A set of actions, A = {a1, a2, ... , am}

– A reward function, R: SAS→

– A transition function, 

• Sometimes T: SA→S

• We want to learn a policy, p: S →A

– Maximize sum of rewards we see over our 

lifetime
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Policies

• A policy p(s) returns what action to take 

in state s.

• There are 3 policies for this MDP

Policy 1:   0 →1 →3 →5 

Policy 2:   0 →1 →4 →5

Policy 3:   0 →2 →4 →5
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Comparing Policies

• Which policy is best?

• Order them by how much reward they see

Policy 1:   0 →1 →3 →5 = 1 + 1 + 1 = 3

Policy 2:   0 →1 →4 →5 = 1 + 1 + 10 = 12

Policy 3:   0 →2 →4 →5 = 2 – 1000 + 10 = -988
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Value Functions

• We can associate a value with each state

– For a fixed policy

– How good is it to run policy p from that state s

– This is the state value function, V
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Problems with Our Function

• Consider this MDP

– Number of steps is now unlimited because of loops

– Value of states 1 and 2 is infinite for some policies

• This is bad

– All policies with a non-

zero reward cycle have                                        

infinite value
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Adding up the rewards

• We had said:

– The reward for a policy (called the return) is 

just the sum of the rewards you get at every 

time step:

𝑅 = 𝑟1 + 𝑟2 + 𝑟3 +⋯

– And then look for a policy that maximizes the 

expected value of this sum

• But we don’t do that

– Infinities



Discount factor

• The pure sum is infinite and in any case 
model errors (e.g. the agent dying) usually 
mean our estimates of rewards get less 
accurate the farther we look in the future

• So we weight future returns less by a factor 𝛾
(the discount rate):

𝑅 = 𝑟1 + 𝛾𝑟2 + 𝛾
2𝑟3 +⋯

• And then our goal is to find a policy that 
maximizes expected time-discounted 
reward



What to do??

• A (now randomized) policy
𝜋: 𝒮 ×𝒜 → 0,1

gives the probability of 𝜋 running a given 
action in a given state

– A deterministic policy 𝜋: 𝒮 → 𝒜 is a policy 
that in state 𝑠 runs action 𝜋 𝑠 always

• We want to pick a policy that will 
maximize expected reward

• First: how do we even compute the 
expected reward for a given policy?



Value functions

• One you decide on a given policy, 𝜋, you can compute the expected 

return for the policy

• We express that in terms of the state value function for the policy

– 𝑉𝜋 𝑠 is the expected return when starting from state 𝑠 and running the 

policy 𝜋

𝑉𝜋 𝑠 = 

𝑎

𝜋 𝑠, 𝑎  

𝑠′

𝒫𝑠𝑠′
𝑎 ℛ𝑠𝑠′

𝑎 + 𝛾𝑉𝜋(𝑠′)

• This averages over

– All possible actions 𝜋 could take from state 𝑠

– All possible successor states 𝑠′ those actions could land us in

– All possible rewards we could get from it

• And sums for each of them

– The reward ℛ𝑠𝑠′
𝑎 you get with

– The expected return 𝑉𝜋 𝑠′ for running the policy from the resulting 

state 𝑠′, subject to the discount rate 𝛾



Computing 𝑉𝜋 (aka policy evaluation)

• The naïve thing to do is 

just to evaluate the 

definition directly:

𝑉𝜋 𝑠 = 

𝑎

𝜋 𝑠, 𝑎  

𝑠′

𝒫𝑠𝑠′
𝑎 ℛ𝑠𝑠′

𝑎 + 𝛾𝑉𝜋(𝑠′)

• That is, we interpret it as 

a function definition

• Of course, this code won’t 

work

• Why?

V(𝜋, s) {

sum = 0;

foreach a {

foreach s’ {

r = R[a,s,s’]+ 𝛾*V(𝜋, s’);

sum += 𝜋(s, a)*P[a,s,s’]*r;

}

}

return sum;

}



Computing 𝑉𝜋 (aka policy evaluation)

• It’s an infinite 

recursion

V(𝜋, s) {

sum = 0;

foreach a {

foreach s’ {

r = R[a,s,s’]+ 𝛾*V(𝜋, s’);

sum += 𝜋(s, a)*P[a,s,s’]*r;

}

}

return sum;

}



Computing 𝑉𝜋 (aka policy evaluation)

• But we can fix it by 

only recursing a 

certain number of 

times

• This raises the a 

question of whether 

this will give us the 

right answer

– We’ll get to that later

V(𝜋, s, k) {

if (k == 0) return 0;

sum = 0;

foreach a {

foreach s’ {

r = R[a,s,s’]+ 𝛾*V(𝜋, s’, k-1);

sum += 𝜋(s, a)*P[a,s,s’]*r;

}

}

return sum;

}



Computing 𝑉𝜋 (aka policy evaluation)

• But even this still has a 
massive problem

• Can you see what it is?

V(𝜋, s, k) {

if (k == 0) return 0;

sum = 0;

foreach a {

foreach s’ {

r = R[a,s,s’]+ 𝛾*V(𝜋, s’, k-1);

sum += 𝜋(s, a)*P[a,s,s’]*r;

}

}

return sum;

}



Computing 𝑉𝜋 (aka policy evaluation)

It’s massively inefficient

• V(𝜋, s’, k-1) gets 
recomputed once for each 
value of a
– (each iteration of the outer 

loop)

• Worse, the recursive calls 
that those calls make get 
repeated too

• So if there are 𝑛 different 
actions, then V(𝜋, s’, k-𝑖) 
gets computed 𝒏𝒊 times

• How do we fix this?

V(𝜋, s, k) {

if (k == 0) return 0;

sum = 0;

foreach a {

foreach s’ {

r = R[a,s,s’]+ 𝛾*V(𝜋, s’, k-1);

sum += 𝜋(s, a)*P[a,s,s’]*r;

}

}

return sum;

}



Dynamic programming

• Compute each value of 
V(𝜋, s’, k) once only

• Stash it in a table

• Use the value in the table 
for subsequent calls

• This is known as top-
down dynamic 
programming or 
memoization
– C.f. 214, 336, and some 

versions of 111

V(𝜋, s, k) {

if (k == 0) return 0;

if (table[s,k] filled in)

return table[s,k]

sum = 0;

foreach a {

foreach s’ {

r = R[a,s,s’]+ 𝛾*V(𝜋, s’, k-1);

sum += 𝜋(s, a)*P[a,s,s’]*r;

}

}

table[s,k] = sum;

return sum;

}



Dynamic programming

• However, since we know 
we’ll end up computing all 
the entries in table[s,k] 
anyway, why bother with 
the annoying recursion?
– Just compute all the entries for 

table[s,0]

– Then compute all the entries 
for table[s,1]

– Then compute all the entries 
for table[s, 2]

– Etc.

V(𝜋, s, k) {

if (k == 0) return 0;

if (table[s,k] filled in)

return table[s,k]

sum = 0;

foreach a {

foreach s’ {

r = R[a,s,s’]+ 𝛾*V(𝜋, s’, k-1);

sum += 𝜋(s, a)*P[a,s,s’]*r;

}

}

table[s,k] = sum;

return sum;

}



Dynamic programming

• Here’s the code

• Just call this, and then the 
estimated values of V are all 
in table[s, k]

• This is known as bottom-up 
dynamic programming

FillTable() {

foreach s

table[s,0]=0

for i=1 to k

foreach s {

sum = 0;

foreach a {

foreach s’ {

r = R[a,s,s’]+ 𝛾*V(𝜋, s’, k-1);

sum += 𝜋(s, a)*P[a,s,s’]*r;

}

table[s,k] = sum;

}

}



Dynamic programming

• Dynamic programming 

was originally invented by 

Bellman for solving MDPs

• It was called dynamic 

programming because

– Programming in those days 

meant optimization

– He solved an optimization 

involving time

– He thought the word 

dynamic made it sound 

more impressive (no, 

really!)

FillTable() {

foreach s

table[s,0]=0

for i=1 to k

foreach s {

sum = 0;

foreach a {

foreach s’ {

r = R[a,s,s’]+ 𝛾*V(𝜋, s’, k-1);

sum += 𝜋(s, a)*P[a,s,s’]*r;

}

table[s,k] = sum;

}

}



Getting back to the equations…

• We’re trying to compute

𝑉𝜋 𝑠 = 

𝑎

𝜋 𝑠, 𝑎  

𝑠′

𝒫𝑠𝑠′
𝑎 ℛ𝑠𝑠′

𝑎 + 𝛾𝑉𝜋(𝑠′)

• And we basically said we could compute it by 
computing

𝑉𝑘
𝜋 𝑠 = 

𝑎

𝜋 𝑠, 𝑎  

𝑠′

𝒫𝑠𝑠′
𝑎 ℛ𝑠𝑠′

𝑎 + 𝛾𝑉𝑘−1
𝜋 (𝑠′)

• For large values of k

• This was Bellman’s original formulation



Finding the optimal policy

• The optimal state value function would be the one that does 
whatever the best policies do in any given state:

𝑉∗ 𝑠 = max
𝜋
𝑉𝜋(𝑠)

• If we knew what 𝑉∗ was, we could compute an optimal 
action-state value function for it:

𝑄∗ 𝑠, 𝑎 = 𝑄𝜋
∗
𝑠, 𝑎 = 

𝑠′

𝒫𝑠𝑠′
𝑎 ℛ𝑠𝑠′

𝑎 + 𝛾𝑉∗(𝑠′)

• And back-solve the optimal policy from that:

𝜋∗ 𝑠, 𝑎 =  
1, 𝑎 = max

𝑎′
𝑄∗(𝑠, 𝑎′)

0, otherwise



Bellman’s optimality criteria

• Bellman showed that the optimal value 

function is one that does what the 

optimal policy does for any given state:

𝑉∗ 𝑠 = max
𝑎
𝑄𝜋
∗
(𝑠, 𝑎)

= max
𝑎
 

𝑠′

𝒫𝑠𝑠′
𝑎 ℛ𝑠𝑠′

𝑎 + 𝛾𝑉∗(𝑠′)



Value iteration

• So we can approximate 𝑽∗ using the 

same dynamic programming trick used for 

policy evaluation:

𝑉∗ 𝑠 = lim
𝑘→∞
𝑉𝑘(𝑠)

𝑉𝑘(𝑠) = max
𝑎
 

𝑠′

𝒫𝑠𝑠′
𝑎 ℛ𝑠𝑠′

𝑎 + 𝛾𝑉𝑘−1(𝑠
′)



Value iteration

a 



Conclusion

• Value iteration gives us a greedy policy 

provided we have a perfect model of the 

world

– In the form of 𝑃𝑠𝑠′
𝑎 and 𝑅𝑠𝑠′

𝑎

• Next we’ll look at learning policies from 

experience without assuming a prior 

model



Recall

• Optimal “value function” :

𝑉∗ 𝑠 = lim
𝑘→∞
𝑉𝑘(𝑠)

𝑉𝑘(𝑠) = max
𝑎
 

𝑠′

𝒫𝑠𝑠′
𝑎 ℛ𝑠𝑠′

𝑎 + 𝛾𝑉𝑘−1(𝑠
′)



Learning from Experience

• We need

– Model of the world

– Reward model

• How do we get them?

– One option, we write them down

• Design reward function, physical model, etc.

– What about uncertain environments? => 

LEARN

ℛ𝑠𝑠′
𝑎
𝒫𝑠𝑠′
𝑎



Gee, it’s easy

• Collect experience by moving through the world

– s0, a0, r1, s1, a1, r2, s2, a2, r3, s3, a3, r4, s4, a4, r5, s5, ...

• Use these to estimate world, reward 

models

• Solve for the optimal value function

• Compute the optimal policy from it



Example

From Russell and Norvig





What’s wrong with that?

• Intractable for all but the simplest 

problems

• Spends a ton of time in low-value states



Let’s start with tractability

• Do we really have to learn          ?

• Related question – you may be able to 
play Pac-Man.  Does that mean you’ve 
computed the stochastic model underlying 
Pac-Man?

– No.

• Idea: learn what to do next, without world 
model

𝒫𝑠𝑠′
𝑎



TD(0)-Learning Algorithm

• Input – a fixed policy p to evaluate

• Initialize Vp(s) to 0

• For each ‘episode’ (episode = series of actions)

– Repeat until out of actions:

1. Observe state s

2. Perform action according to the policy p(s)

3. V(s) ← (1-aV(s) +a[r + gV(s’)]

4. s ← s’

r = reward

a= learning rate

g= discount factorNote: this formulation is from Sutton & 

Barto’s “Reinforcement Learning”



TD(0)-Learning

• TD(0)’s V(s) estimate will converge to Vp(s)
– After an infinite number of experiences

– If we decay the learning rate s.t.:

– …so
will work

• =>We can get Vp(s) more tractably… but 
V*(s)? 
– And we’re still spending lots of time in low-val states

a


0t

t
a



0t

2

t

tc

c
t


a



Exploration vs. Exploitation

• We want to pick good actions most of the time, 

but also do some exploration

• Exploring means we can learn better policies

• But, we want to balance known good actions 

with exploratory ones

• This is called the exploration/exploitation

problem



Let’s Explore!  And exploit

• On-policy algorithms

– Final policy is influenced by the exploration policy

– Generally, the exploration policy needs to be “close” 

to the final policy

– Can get stuck in local maxima

• Off-policy algorithms

– Final policy is independent of exploration policy

– Can use arbitrary exploration policies

– Will not get stuck in local maxima



r(state, action)
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We’ll learn Q

• Rather than V*(s), we’ll learn:

– Q(s, a) = the expected utility of taking a 

particular action a in state s



Picking Actions

e-greedy

– Pick best (greedy) action with probability e

– Otherwise, pick a random action

• Boltzmann (Soft-Max)

– Pick an action based on its Q-value

…where t is the “temperature”






















a'

)a' Q(s,

a) Q(s,

e

e
  s) | P(a

t

t



Two methods

• SARSA (on-policy)

• Q-learning (off-policy)



SARSA

• SARSA iteratively approximates the state-action 

value function, Q

– SARSA learns the policy and the value function 

simultaneously

• Keep an estimate of Q(s, a) in a table

– Update these estimates based on experiences

– Estimates depend on the exploration policy

– SARSA is an on-policy method

– Policy is derived from current value estimates



SARSA Algorithm

1. Initialize Q(s, a) to small random values, s, a

2. Observe state, s

3. a ← p(s)   
(policy derived from Q, e.g. e-greedy)

4. Observe next state, s’, and reward, r

5. Q(s, a) ← (1-a)Q(s, a) + a(r + gQ(s’, p(s’)))

6. Go to 2

• 0 ≤ a ≤ 1 is the learning rate
– We should decay this, just like TD



Q-Learning

• Q-learning iteratively approximates the state-

action value function, Q

– Like SARSA, we won’t estimate a world model

– Learns the value function and policy simultaneously

• Keep an estimate of Q(s, a) in a table

– Update these estimates as we gather more 

experience

– Estimates do not depend on exploration policy

– Q-learning is an off-policy method

[Watkins & Dayan, 92]



Q-Learning Algorithm

1. Initialize Q(s, a) to small random values, s, a
(what if you make them 0? What if they are big?)

2. Observe state, s

3. Pick action a using policy derived from Q

4. Observe next state, s’, and reward, r

5. Q(s, a) ← (1 - a)Q(s, a) + a(r + gmaxa’Q(s’, a’))

6. s ←s’

7. Go to 2

0 ≤ a ≤ 1 is the learning rate & we should decay a, just like in TD
This formulation is from Sutton & Barto’s “Reinforcement Learning”



Q-learning vs. SARSA

• SARSA:
– Q(s, a) ← (1-a)Q(s, a) + a(r + gQ(s’, p(s’)))

• Q-learning:
– Q(s, a) ← (1 - a)Q(s, a) + a(r + gmaxa’Q(s’, a’))

• In both algorithms, actions chosen according 
to the Q being learned (exploit while 
exploring)…
– So why is Q-learning “off-policy” ?





Reinforcement Learning for Robotics?

• Challenges
– Actions have physical consequences

– State-action space is continuous/high-dim
• Sparse!  And, how to get maxa’()?

– Bottom line: RL not feasible in robots w/out 
modifications

• Good news
– Good framework to start with

– Parallel to human/animal learning 
• (vs. input/output pairs in supervised learning)

– Modifications have been developed to port RL to 
robots


