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Bayes’ Rule

» P(A| B) =P(B|A) P(A) / P(B)

» Example:
P(symptom| disease) = 0.95, P(symptom| —disease) = 0.05
P(disease) = 0.0001

P(disease | symptom)
= P(symptom | disease)*P(disease)
P(symptom)

= 0.95*0.0001 = 0.002
0.95*0.0001+0.05*0.9999




Bayes’ Rule

» PA| B)=P(B|A) P(A) / P(B)
» Also:
PAA|B,C)=PB|ACPA|C)/PB]|C)

» More generally:
P(A|B)=P(B|A)P(A)/P(B)

(Boldface indicates vectors of variables)



Bayes’ Rule

» Why is Bayes’ Rule so important!
Often, we want to deduce P(Hidden state | Data)
E.g., Hidden state = disease, Data = symptoms

and the simplest way to express that is in terms of “causes” of
the model: P(Data | Model)

E.g., how common is a symptom, with or without a given disease

times a prior belief about the model, P(Model)
E.g., probability of a disease



Terms for Bayes

» P(Model | Data) = P(Data | Model) P(Model) / P(Data)
» P(Model) : Prior

» P(Data | Model) : Likelihood

» P(Model | Data) : Posterior



Probabilistic Models

* Joint Distribution can answer queries

* P(symptoms, disease) can be used to predict whether
person has disease based on symptoms

* But:
* Where do the probabilities come from (learning)?

* How do we represent a joint compactly using conditional
independencies! (representation — graphical models)



Learning Probabilities:Classical Approach

Simplest case: Flipping a thumbtack

heads tails

& J/ True probability @ is unknown

Given: flips generated independently with the same 6,
(a.k.a. Independent and identically distributed data - iid),
Estimate: 8




Estimating Probabilities

» Three Methods:
Maximum Likelihood Estimation (ML)
Bayesian Estimation
Maximum A posteriori Estimation (MAP)



Maximum Likelihood Principle

Choose the parameters that maximize
the probabillity of the observed data
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If Data={h heads and t tails}, what
parameter 6 maximizes the probability
of Data?

Think
Start End
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If Data={h heads and t tails}, what
parameter 6 maximizes the probability
of Data?

Pair
Start End
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If Data={h heads and t tails}, what
parameter 6 maximizes the probability
of Data?

Share



Maximum Likelihood Estimation

p(heads |0) = €
p(talls [#)= (1-6)
p(hhth.. ttth|9)=6""(1-9)"

(Number of heads is binomial distribution)



Computing the ML Estimate

» Use log-likelihood
» Differentiate with respect to parameter(s)
» Equate to zero and solve

» Solution:

~ #h
#h + #t

0



Sufficient Statistics

o(hhth.. ttth|9) = 67" (1 - 6)"

(#h,#t) are sufficient statistics



Bayesian Estimation

heads tails

L

True probability @ is unknown

Bayesian probability density for o)

p(®)

Y



Use of Bayes’ Theorem

prior Jikelihood
posterior /

p(6 \Eads) — p(6) p(heads | 0)
j p(0")p(heads | ') d&’

« p(0)p(heads |6)



Example: Observation of “Heads"

p(6)

prior

p(heads|d)= 6

1

likelihood

0

0

p(A4heads)

1

posterior

0



Probability of Heads on Next Toss

p(n +1thtossish|d) = [p(Xy., =h|6)p&|d)do
= [0 p@|d) do
= Ep90)(0)




MAP Estimation

» Approximation:
Instead of averaging over all parameter values

Consider only the most probable value
(i.e., value with highest posterior probability)

» Usually a very good approximation,
and much simpler

» MAP value # Expected value

» MAP — ML for infinite data
(as long as prior # 0 everywhere)



Prior Distributions for 0

» Direct assessment

» Parametric distributions

Conjugate distributions
(for convenience)



Conjugate Family of Distributions

Beta distribution:

p(¢) = Beta(a,, ;) « 0~ 1(1— ﬁ)at -

o, >0

Resulting posterior distribution:

#h+a, -1 #t+a, -1

p(@ | h heads,t tails) o« 6 (1-0)



Estimates Compared

» Prior prediction: E(9) = D
a, ta,
» Bayesian posterior E(9) = #h+a,
prediction #h+a, +#t+0,
» MAP estimate: — #h+a, -1
#h+a, -1+#t+0,-1
#h

» ML estimate: O

T #h+ #t



Intuition

» The hyperparameters o, and o, can be thought of as
imaginary counts from our prior experience, starting
from "pure ignorance”

» Equivalent sample size = o, + o,

(“equivalent” in terms of effect on Bayesian estimate)

» The larger the equivalent sample size, the more confident
we are about the true probability



Beta Distributions

_J




Assessment of a Beta Distribution

Method 1: Equivalent sample
- assess a, and o
- assess a,ta, and o /(o, o)

Method 2: Imagined future samples

p(heads) = 0.2 and p(heads |3 heads) =05= a, =1,a, = 4

check: O.2=L 0.5 L+3

1+4° T 113+4




Generalization to m Outcomes
(Multinomial Distribution)

Dirichlet distribution:

p(@l,... ’Hm) = Dl“Chlet( Ayy... ,Clm) oC H Hiai -1
=1

m

Properties: a,

m
Z“i
=1

p(O|N,,....,N Yo [T o5 N

|
=1

E(‘gi):

3



Other Distributions

Likelihoods from the exponential family
» Binomial

» Multinomial

» Poisson

» Gamma

» Normal



Learning a Real-Valued Function

A

y




Consider any real-valued target function f
Training examples (x;, d;), where d; is noisy training value
o d; = f(zi) + e

e ¢; is random variable (noise) drawn independently for
each z; according to some Gaussian distribution with
mean=0

Then the maximum likelihood hypothesis hjps7, is the one
that minimizes the sum of squared errors:

hasz, = arg min > " (di — h(z:))?
=1



Maximum likelihood hypothesis:

argmax p(D|h) = argmaXHp(d |h)
heH heH

harr

d; —h(z;
e %( a( ))2

= argmax
§EH H\/27ra

7—=1



Maximize natural log of this instead ...

1 1
hyro = argmalen — —




