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Events 

 Event space   

 E.g. for dice,  = {1, 2, 3, 4, 5, 6} 

 Set of measurable events S  2 

 E.g., 

 = event we roll an even number = {2, 4, 6}  S 

 S must: 

 Contain the empty event  and the trivial event  

 Be closed under union & complement 

,   S      S     and       S    -   S 



Probability Distributions 

 A probability distribution P over (, S) is a mapping 

from S to real values such that: 

1. P()  0  S  

2. P() = 1 

3. ,   S       =     P(   ) = P() + P( ) 

 

 

 

  

  

  

 

   

 

Sidenote – 1st and 3rd axioms 

ensure P is a measure 



Probability Distributions 

 

 

 

 

 

 

  

 

Can visualize probability as fraction of area 

 

  

  

  

 

   

 



Probability: Interpretations & Motivation 

 

 Interpretations: Frequentist vs. Bayesian  

 

 Why use probability for subjective beliefs? 

 Beliefs that violate the axioms can lead to bad decisions 

regardless of the outcome [de Finetti, 1931] 

 Example: P(A) = 0.6, P(not A) = 0.8 ? 

 Example: P(A) > P(B) and P(B) > P(A) ? 



Random Variables 

 

 A random variable is a function from  to a value 

 A partition of the event space  

 A short-hand for referring to attributes of events 

 Examples 

  = {1, 2, 3, 4, 5, 6} 

DieRollEven  {true, false}  

  = {all possible hmwk/exam grade combinations} 

FinalGrade  {a, b, c} 

= Val(DieRollEven) 



Joint Distributions 

 

 

Grade Interest Course load P(G, I, C) 

a high full-time 0.10 

a high part-time 0.08 

a low full-time 0.03 

a low part-time 0.04 

b high full-time 0.07 

b high part-time 0.02 

b low full-time 0.12 

b low part-time 0.16 

c high full-time 0.01 

c high part-time 0.02 

c low full-time 0.20 

c low part-time 0.15 



Conditioning! 

 

 

Grade Interest Course load P(G, I, C) 

a high full-time 0.10 

a high part-time 0.08 

a low full-time 0.03 

a low part-time 0.04 

b high full-time 0.07 

b high part-time 0.02 

b low full-time 0.12 

b low part-time 0.16 

c high full-time 0.01 

c high part-time 0.02 

c low full-time 0.20 

c low part-time 0.15 



Conditioning! 

 

 

Grade Interest Course load P(G, I, C) 

a high full-time 0.10 

a low full-time 0.03 

b high full-time 0.07 

b low full-time 0.12 

c high full-time 0.01 

c low full-time 0.20 

0.53 

/ 0.53 

/ 0.53 

/ 0.53 

/ 0.53 

/ 0.53 

/ 0.53 



Conditioning! 

Grade Interest Course load 

a high full-time 

a low full-time 

b high full-time 

b low full-time 

c high full-time 

c low full-time 

1.0 

P(G, I|C=f) 

0.21 

0.09 

0.14 

0.09 

0.26 

0.21 



Conditional Probability 

 P(Grade = A | Interest = High) = 0.6  

 the probability of getting an A given only Interest = High, and 

nothing else. 

 If we know Motivation = High or OtherInterests = Many, the probability 

of an A changes even given high Interest 

 Formal Definition:  

 P(  |  ) = P( ,  ) / P( ) 

 When P( ) > 0 



Conditional Probability 

 Also: 

 P(A | B, C) = P(A, B, C) / P(B, C) 

 

 More generally: 

 P(A | B) = P(A, B) / P(B) 

 (Boldface indicates vectors of variables) 

 

 P(Grade = A | Grade = A, Interest = high) ? 



Marginalization 

Grade Interest Course load P(G, I, C) 

a high full-time 0.10 

a high part-time 0.08 

a low full-time 0.03 

a low part-time 0.04 

b high full-time 0.07 

b high part-time 0.02 

b low full-time 0.12 

b low part-time 0.16 

c high full-time 0.01 

c high part-time 0.02 

c low full-time 0.20 

c low part-time 0.15 



Marginalization 

Grade Interest Course load P(G, I, C) 

a high * 0.10 

a high * 0.08 

a low * 0.03 

a low * 0.04 

b high * 0.07 

b high * 0.02 

b low * 0.12 

b low * 0.16 

c high * 0.01 

c high * 0.02 

c low * 0.20 

c low * 0.15 



Marginalization 

 Grade Interest Course load P(G, I) 

a high * 0.18 

a low * 0.07 

b high * 0.09 

b low * 0.28 

c high * 0.03 

c low * 0.35 



Marginalization 

 Grade Interest P(G, I) 

a high 0.18 

a low 0.07 

b high 0.09 

b low 0.28 

c high 0.03 

c low 0.35 

1.0 



Marginalization 

 

 

𝑃 𝑋 =  𝑃(𝑋, 𝑌 = 𝑦)

𝑦∈𝑉𝑎𝑙(𝑌)

 



Continuous Random Variables 

 For continuous r.v. X, specify a density p(x), such that: 

 

 

E.g.,    




s

rx

dxxpsXrP

 




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Uniform Continuous Density 

 










otherwise0

1
axb

abxp



Gaussian Density 

 p(x) =  



Joint Distribution 

 

 Interest 

low high 

Grade 

a 0.07 0.18 

b 0.28 0.09 

c 0.35 0.03 

Joint Distribution specified with 2*3 – 1 = 5 values 



Conditional Probability 

 

 Interest 

low high 

Grade 

a 0.07 0.18 

b 0.28 0.09 

c 0.35 0.03 

P(Grade = a | Interest = high) ? 

P(Grade = a, Interest = high) = 0.18 

P(Interest = high) = 0.18+0.09+0.03 = 0.30 

=> P(Grade = a | Interest = high) = 0.18/0.30 = 0.6 



Conditional Probability 

 

 Interest 

low high 

Grade 

a 0.07 0.18 

b 0.28 0.09 

c 0.35 0.03 

P(Interest | Grade = a)? Interest 

low high 

0.28 0.72 



Interest 

low high 

Grade 

a 0.28 0.72 

b 0.76 0.24 

c 0.92 0.08 

Conditional Probability 

 

 Interest 

low high 

Grade 

a 0.07 0.18 

b 0.28 0.09 

c 0.35 0.03 

P(Interest | Grade)? 

Actually three separate distributions, one for 

each Grade value  

(has three independent parameters total) 



Chain Rule 

 

 

 

 

 

 E.g., P(Grade=b, Int. = high)  

 = P(Grade=b | Int.= high)P(Int. = high) 

 Can be used for distributions… 

 P(A, B) = P(A | B)P(B) 



Handy Rules for Cond. Probability (1 of 2) 

 

 P(A | B = b) is a single distribution, like P(A) 

 

 P(A | B) is not a single distribution 

 a set of |Val(B)| distributions 



Handy Rules for Cond. Probability (2 of 2) 

 

 Any statement true for arbitrary distributions is also true 

if you condition on a new r.v. 

 P(A , B) = P(A | B)P(B)?   (chain rule) 

Then also P(A, B | C) = P(A | B, C) P(B | C) 

 

 Likewise, any statement true for arbitrary distributions is 

also true if you replace an r.v. with two/more new r.v.s 

 P(A | B) = P(A, B) / P(B) ? (def. of cond. Prob) 

 P(A | C, D) = P(A, C, D) / P(C, D) or P(A | B) = P(A, B) / P(B) 



Independence 

 

 P(Rain | Cloudy) ≠ P(Rain) 

 But:  P(FairDie=6 | PreviousRoll=6) = P(FairDie=6) 

 

 We say A and B are independent iff 

 

    P(A | B) = P(A) 

 

 Logically equivalent to P(A, B) = P(A)*P(B) 

 Denoted A  B 

 



Conditional Independence (1 of 2) 

 

 A and B are conditionally independent given C iff  

   P(A | B, C) = P(A | C) 

 

 Equivalent to P(A, B | C) = P(A | C) P (B | C) 

 

 Denoted (A  B | C) 



Conditional Independence (2 of 2) 

 Example: university admissions 

 Val(GetIntoX) = {yes, no, wait} 

 Val(Application) = {good, bad} 

 

 

P(GetIntoNU | GetIntoUIUC, GetIntoStanford, Application) 

= 

P(GetIntoNU | Application) 

 

3*3*2*2= 36 Parameters 

2*2= 4 Parameters 



Properties of Conditional Independence 

 Decomposition 

 (X  Y, W | Z) => (X  Y| Z) 

 Weak Union 

 (X  Y, W | Z) => (X  Y| Z, W) 

 Contraction 

 (X  W | Z, Y) & (X  Y| Z) => (X  Y, W | Z) 

 

 

 

 



Expectation 

 Discrete 

𝑬𝑷 𝑿 = 𝒙 𝑷(𝒙)

𝒙

 

 Continuous 
 

𝑬𝑷 𝑿 = ∫ 𝒙 𝒑 𝒙  𝒅𝒙 

 

 E.g., E[FairDie]=3.5 



Expectation is Linear 

𝑬𝑷 𝑿+ 𝒀 = 𝒙+ 𝒚 𝑷 𝒙, 𝒚

𝒙,𝒚

= 𝒙 𝑷 𝒙, 𝒚

𝒙,𝒚

+ 𝒚 𝑷 𝒙, 𝒚

𝒙,𝒚

= 𝒙 𝑷 𝒙, 𝒚

𝒚𝒙

+ 𝒚 𝑷 𝒙, 𝒚

𝒙𝒚

= 𝒙 𝑷 𝒙

𝒙

+ 𝒚 𝑷 𝒚

𝒚

= 𝑬𝑷[𝑿] + 𝑬𝑷[𝒀] 



What have we learned? 

 Probability – a calculus for dealing with uncertainty 

 Built from small set of axioms (ignore at your peril) 

 Joint Distribution P(A, B, C, …) 

 Specifies probability of all combinations of r.v.s 

 Conditional Probability P(A | B) 

 Specifies probability of A=a given B=b 

 Conditional Independence 

 Can radically reduce number of model parameters 

 Expectation 

 Next time: Bayes’ Rule, Statistical Estimation 


