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Events 

 Event space   

 E.g. for dice,  = {1, 2, 3, 4, 5, 6} 

 Set of measurable events S  2 

 E.g., 

 = event we roll an even number = {2, 4, 6}  S 

 S must: 

 Contain the empty event  and the trivial event  

 Be closed under union & complement 

,   S      S     and       S    -   S 



Probability Distributions 

 A probability distribution P over (, S) is a mapping 

from S to real values such that: 

1. P()  0  S  

2. P() = 1 

3. ,   S       =     P(   ) = P() + P( ) 

 

 

 

  

  

  

 

   

 

Sidenote – 1st and 3rd axioms 

ensure P is a measure 



Probability Distributions 

 

 

 

 

 

 

  

 

Can visualize probability as fraction of area 

 

  

  

  

 

   

 



Probability: Interpretations & Motivation 

 

 Interpretations: Frequentist vs. Bayesian  

 

 Why use probability for subjective beliefs? 

 Beliefs that violate the axioms can lead to bad decisions 

regardless of the outcome [de Finetti, 1931] 

 Example: P(A) = 0.6, P(not A) = 0.8 ? 

 Example: P(A) > P(B) and P(B) > P(A) ? 



Random Variables 

 

 A random variable is a function from  to a value 

 A partition of the event space  

 A short-hand for referring to attributes of events 

 Examples 

  = {1, 2, 3, 4, 5, 6} 

DieRollEven  {true, false}  

  = {all possible hmwk/exam grade combinations} 

FinalGrade  {a, b, c} 

= Val(DieRollEven) 



Joint Distributions 

 

 

Grade Interest Course load P(G, I, C) 

a high full-time 0.10 

a high part-time 0.08 

a low full-time 0.03 

a low part-time 0.04 

b high full-time 0.07 

b high part-time 0.02 

b low full-time 0.12 

b low part-time 0.16 

c high full-time 0.01 

c high part-time 0.02 

c low full-time 0.20 

c low part-time 0.15 



Conditioning! 

 

 

Grade Interest Course load P(G, I, C) 

a high full-time 0.10 

a high part-time 0.08 

a low full-time 0.03 

a low part-time 0.04 

b high full-time 0.07 

b high part-time 0.02 

b low full-time 0.12 

b low part-time 0.16 

c high full-time 0.01 

c high part-time 0.02 

c low full-time 0.20 

c low part-time 0.15 



Conditioning! 

 

 

Grade Interest Course load P(G, I, C) 

a high full-time 0.10 

a low full-time 0.03 

b high full-time 0.07 

b low full-time 0.12 

c high full-time 0.01 

c low full-time 0.20 

0.53 

/ 0.53 

/ 0.53 

/ 0.53 

/ 0.53 

/ 0.53 

/ 0.53 



Conditioning! 

Grade Interest Course load 

a high full-time 

a low full-time 

b high full-time 

b low full-time 

c high full-time 

c low full-time 

1.0 

P(G, I|C=f) 

0.21 

0.09 

0.14 

0.09 

0.26 

0.21 



Conditional Probability 

 P(Grade = A | Interest = High) = 0.6  

 the probability of getting an A given only Interest = High, and 

nothing else. 

 If we know Motivation = High or OtherInterests = Many, the probability 

of an A changes even given high Interest 

 Formal Definition:  

 P(  |  ) = P( ,  ) / P( ) 

 When P( ) > 0 



Conditional Probability 

 Also: 

 P(A | B, C) = P(A, B, C) / P(B, C) 

 

 More generally: 

 P(A | B) = P(A, B) / P(B) 

 (Boldface indicates vectors of variables) 

 

 P(Grade = A | Grade = A, Interest = high) ? 



Marginalization 

Grade Interest Course load P(G, I, C) 

a high full-time 0.10 

a high part-time 0.08 

a low full-time 0.03 

a low part-time 0.04 

b high full-time 0.07 

b high part-time 0.02 

b low full-time 0.12 

b low part-time 0.16 

c high full-time 0.01 

c high part-time 0.02 

c low full-time 0.20 

c low part-time 0.15 



Marginalization 

Grade Interest Course load P(G, I, C) 

a high * 0.10 

a high * 0.08 

a low * 0.03 

a low * 0.04 

b high * 0.07 

b high * 0.02 

b low * 0.12 

b low * 0.16 

c high * 0.01 

c high * 0.02 

c low * 0.20 

c low * 0.15 



Marginalization 

 Grade Interest Course load P(G, I) 

a high * 0.18 

a low * 0.07 

b high * 0.09 

b low * 0.28 

c high * 0.03 

c low * 0.35 



Marginalization 

 Grade Interest P(G, I) 

a high 0.18 

a low 0.07 

b high 0.09 

b low 0.28 

c high 0.03 

c low 0.35 

1.0 



Marginalization 

 

 

𝑃 𝑋 =  𝑃(𝑋, 𝑌 = 𝑦)

𝑦∈𝑉𝑎𝑙(𝑌)

 



Continuous Random Variables 

 For continuous r.v. X, specify a density p(x), such that: 

 

 

E.g.,    
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Uniform Continuous Density 

 










otherwise0

1
axb

abxp



Gaussian Density 

 p(x) =  



Joint Distribution 

 

 Interest 

low high 

Grade 

a 0.07 0.18 

b 0.28 0.09 

c 0.35 0.03 

Joint Distribution specified with 2*3 – 1 = 5 values 



Conditional Probability 

 

 Interest 

low high 

Grade 

a 0.07 0.18 

b 0.28 0.09 

c 0.35 0.03 

P(Grade = a | Interest = high) ? 

P(Grade = a, Interest = high) = 0.18 

P(Interest = high) = 0.18+0.09+0.03 = 0.30 

=> P(Grade = a | Interest = high) = 0.18/0.30 = 0.6 



Conditional Probability 

 

 Interest 

low high 

Grade 

a 0.07 0.18 

b 0.28 0.09 

c 0.35 0.03 

P(Interest | Grade = a)? Interest 

low high 

0.28 0.72 



Interest 

low high 

Grade 

a 0.28 0.72 

b 0.76 0.24 

c 0.92 0.08 

Conditional Probability 

 

 Interest 

low high 

Grade 

a 0.07 0.18 

b 0.28 0.09 

c 0.35 0.03 

P(Interest | Grade)? 

Actually three separate distributions, one for 

each Grade value  

(has three independent parameters total) 



Chain Rule 

 

 

 

 

 

 E.g., P(Grade=b, Int. = high)  

 = P(Grade=b | Int.= high)P(Int. = high) 

 Can be used for distributions… 

 P(A, B) = P(A | B)P(B) 



Handy Rules for Cond. Probability (1 of 2) 

 

 P(A | B = b) is a single distribution, like P(A) 

 

 P(A | B) is not a single distribution 

 a set of |Val(B)| distributions 



Handy Rules for Cond. Probability (2 of 2) 

 

 Any statement true for arbitrary distributions is also true 

if you condition on a new r.v. 

 P(A , B) = P(A | B)P(B)?   (chain rule) 

Then also P(A, B | C) = P(A | B, C) P(B | C) 

 

 Likewise, any statement true for arbitrary distributions is 

also true if you replace an r.v. with two/more new r.v.s 

 P(A | B) = P(A, B) / P(B) ? (def. of cond. Prob) 

 P(A | C, D) = P(A, C, D) / P(C, D) or P(A | B) = P(A, B) / P(B) 



Independence 

 

 P(Rain | Cloudy) ≠ P(Rain) 

 But:  P(FairDie=6 | PreviousRoll=6) = P(FairDie=6) 

 

 We say A and B are independent iff 

 

    P(A | B) = P(A) 

 

 Logically equivalent to P(A, B) = P(A)*P(B) 

 Denoted A  B 

 



Conditional Independence (1 of 2) 

 

 A and B are conditionally independent given C iff  

   P(A | B, C) = P(A | C) 

 

 Equivalent to P(A, B | C) = P(A | C) P (B | C) 

 

 Denoted (A  B | C) 



Conditional Independence (2 of 2) 

 Example: university admissions 

 Val(GetIntoX) = {yes, no, wait} 

 Val(Application) = {good, bad} 

 

 

P(GetIntoNU | GetIntoUIUC, GetIntoStanford, Application) 

= 

P(GetIntoNU | Application) 

 

3*3*2*2= 36 Parameters 

2*2= 4 Parameters 



Properties of Conditional Independence 

 Decomposition 

 (X  Y, W | Z) => (X  Y| Z) 

 Weak Union 

 (X  Y, W | Z) => (X  Y| Z, W) 

 Contraction 

 (X  W | Z, Y) & (X  Y| Z) => (X  Y, W | Z) 

 

 

 

 



Expectation 

 Discrete 

𝑬𝑷 𝑿 = 𝒙 𝑷(𝒙)

𝒙

 

 Continuous 
 

𝑬𝑷 𝑿 = ∫ 𝒙 𝒑 𝒙  𝒅𝒙 

 

 E.g., E[FairDie]=3.5 



Expectation is Linear 

𝑬𝑷 𝑿+ 𝒀 = 𝒙+ 𝒚 𝑷 𝒙, 𝒚

𝒙,𝒚

= 𝒙 𝑷 𝒙, 𝒚

𝒙,𝒚

+ 𝒚 𝑷 𝒙, 𝒚

𝒙,𝒚

= 𝒙 𝑷 𝒙, 𝒚

𝒚𝒙

+ 𝒚 𝑷 𝒙, 𝒚

𝒙𝒚

= 𝒙 𝑷 𝒙

𝒙

+ 𝒚 𝑷 𝒚

𝒚

= 𝑬𝑷[𝑿] + 𝑬𝑷[𝒀] 



What have we learned? 

 Probability – a calculus for dealing with uncertainty 

 Built from small set of axioms (ignore at your peril) 

 Joint Distribution P(A, B, C, …) 

 Specifies probability of all combinations of r.v.s 

 Conditional Probability P(A | B) 

 Specifies probability of A=a given B=b 

 Conditional Independence 

 Can radically reduce number of model parameters 

 Expectation 

 Next time: Bayes’ Rule, Statistical Estimation 


