Bayesian Networks

Doug Downey EECS 349 Machine Learning

Answering Queries: Summing Out

		Intellig	ence = i ¹	Intelligence= <i>i</i> ²			
		Time=t ¹	Time= t^2	Time=t ¹	Time= t^2		
	gl	0.05	0.02	0.15	0.03		
Grade	g ²	0.14	0.14	0.05	0.0		
	g ³	0.10	0.25	0.01	0.02		

 $P(Grade | Time = t^{1})?$ $\sum_{v \in Val(Intelligence)} P(Grade, Intelligence = v | Time = t^{1})$

Answering Queries: Solved?

- Given the joint distribution, we can answer any query by summing
- ...but, joint distribut
 2^500 I paramete
- For non-trivial pro using the joint dist
 - Way too much con

Boolean variables has)^150)

boolean r.v.s or more), uires

compute the sum

- Way too many **observations** to learn the parameters
- Way too much **space** to store the joint distribution

- A general framework for modeling probability distributions
 - Expresses conditional independencies
- Begin with a graph
 - **Nodes**: Random variables (e.g. attributes, classes)
 - Directed Edges: Causal relationships

What does this wacky thing do?

- BNs represent the joint distribution compactly
- You can obtain the BN's probabilities for an event by multiplying the relevant values from each CPT:

$$P(i^{1}, d^{0}, g^{2}, s^{1}, l^{0}) = \cdots$$

	0	l^0 a.6 0	l ¹ .4	P(i ¹ , d	x^{0}, g^{2}	² , s ¹	, l ⁰))?	$ \underbrace{i^0}_{0.7} $	i^1 0.3	
Difficulty Intelligence												
		- 1	- 2	_ 3	1					4		
	i^{0}, d^{0}	g^{1} 0.3	g^2 0.4	<i>g</i> ³ 0.3	$\left \right\rangle$	Grade		\langle	S	AT	>	
	i^{0}, d^{1}	0.05	0.25	0.7		V		Г		0		
	$\frac{i^{1},d^{0}}{i^{1},d^{1}}$	0.9	0.08	0.02		Letter	>		<i>i</i> ⁰	<i>s</i> ^o 0.95	S^1 0.05	
I					, ,	10			i^1	0.2	0.8	
					g	0.1	l^1 0.9					
					g	2 0.4	0.6					
					g^2	² 0.99	0.01					

What does this wacky thing do?

- BNs represent the joint distribution compactly
- You can obtain the BN's probabilities for an event by multiplying the relevant values from each CPT:

$$P(i^{1}, d^{0}, g^{2}, s^{1}, l^{0})$$

= $P(i^{1})P(d^{0})P(g^{2}|i^{1}, d^{0})P(s^{1}|i^{1})P(l^{0}|g^{2})$
= $0.3 \cdot 0.6 \cdot 0.08 \cdot 0.8 \cdot 0.4 = 0.004608$

Create a node for each attribute or class variable

Connect nodes with causal edges

How? Domain knowledge
 (or learn from data – more on this in 395/495 PGMs course)

Obtain CPTs

How? Use data, or write from domain knowledge

Bayes Net Advantages

Compactness

- Our "student" network has 15 independent parameters
- Vs. how many for a full joint distribution table?

Ease of inference

(more on this later)

How does training time and testing time complexity compare between decision trees and nearest-neighbor? Think/Pair/Share

What's an upper-bound on the number of parameters in a Bayes Net?

| End Think/Pair/Share

What's an upper-bound on the number of parameters in a Bayes Net?

Pair Start

| End Think/Pair/Share

What's an upper-bound on the number of parameters in a Bayes Net?

Share

From Graphs to Independencies

The Bayes Net encodes independencies

Independencies are what allow BN compactness

• Question:

Which independencies are encoded in a given BN graph?

Global Semantics

Þ

$$P(X_1, X_2, ..., X_n) = \prod_{i=1}^n P(X_i | Pa(X_i))$$

 Each node is conditionally independent of its nondescendants given its parents.

Theorem:
 Local Independences <>>> Global Semantics

What does the graph look like...

- No independence?
- All variables independent?
- Common Cause? Common Effect?
 - Correlation != causation
 - "Explaining away"

- Two nodes in G are d-separated unless there is an active trail between them
- An Active Trail between nodes X and Y given evidence nodes E is any path between X and Y such that
 - For any v-structure (A => C <= B) on the path, either C or one of its descendents is in E</p>
 - No other nodes on the path are in **E**

(Gas \perp Radio)? (Radio \perp Ignition)? (Radio \perp Ignition | Battery)? (Gas \perp Radio | Moves)?

Share