Bayes Net Learning and Logistic Regression

EECS 349 Spring 2015

Learning in Bayes Nets – the upshot

- Where does the structure come from?
 - Write it down (BNs most useful in this case), or
 - Learn it automatically from data
 - (take 395/495 PGMs course to learn more)

Learning parameters in Bayes Nets

Just statistical estimation for each CPT

Training Data				
Α	B			
I I	I			
I	0			
I	0			
0	I			
I	I			
0	I			
I	I			

 $P_{ML}(A) = 0.714$ $P_{ML}(B | A=1) = 0.6$

Discriminative vs. Generative training

- Say our graph G has variables X, Y
- Standard BN learning learns P(X, Y)
- But often, the only inferences we care about are of form
 P(Y | X)
 - P(Disease | Symptoms = e)
 - P(StockMarketCrash | RecentPriceActivity = e)

Discriminative vs. Generative training

- Learning P(X, Y): generative training
 - Learned model can "generate" the full data X, Y
- Learning only P(Y | X): discriminative training
 - Model can't assign probs. to X only Y given X
- Idea: Only model what we care about
 - Don't "waste data" on params irrelevant to task
 - Side-step false independence assumptions in training (example to follow)

Generative Model Example

- Naïve Bayes model
 - Y binary {I=spam, 0=not spam}
 X an *n*-vector: message has word (I) or not (0)
 - Re-write P(Y | X) using Bayes Rule, apply Naïve Bayes assumption
 - > 2n + 1 parameters, for *n* observed variables

Generative => Discriminative (1 of 3)

• But $P(Y \mid X)$ can be written more compactly $P(Y \mid X) = \frac{1}{1 + \exp(w_0 + w_1 x_1 + ... + w_n x_n)}$

• Total of n + 1 parameters w_i

Generative => Discriminative (2 of 3)

• One way to do conversion (vars binary):

$$\exp(w_0) = \frac{P(Y=0) P(X_1=0|Y=0) P(X_2=0|Y=0)...}{P(Y=1) P(X_1=0|Y=1) P(X_2=0|Y=1)...}$$

for
$$i > 0$$
:

$$exp(w_i) = \frac{P(X_i=0|Y=1) P(X_i=1|Y=0)}{P(X_i=0|Y=0) P(X_i=1|Y=1)}$$

Generative => Discriminative (3 of 3)

• We reduced 2n + 1 parameters to n + 1

- This must be better, right?
- Not exactly. If we construct P(Y | X) to be equivalent to Naïve Bayes (as before)
 - then it's...equivalent to Naïve Bayes
- Idea: optimize the n + I parameters directly, using training data

Discriminative Training

- In our example: $P(Y \mid X) = \frac{1}{1 + \exp(w_0 + w_1 x_1 + \dots + w_n x_n)}$
- Goal: find w_i that maximize likelihood of training data Ys given training data Xs
 - Known as "logistic regression"
 - Solved with gradient ascent techniques
 - A convex optimization problem

Naïve Bayes "trusts its assumptions" in training

Logistic Regression doesn't – recovers better when assumptions violated

NB vs. LR: Example

Training Data					
SPAM	Lottery	Winner	Lunch	Noon	
1	I	I	0	0	
1	I	I	I	I	
0	0	0	1	I	
0	I	T	0	1	

- Naïve Bayes will classify the last example incorrectly, even after training on it!
- Whereas Logistic Regression is perfect with e.g., $w_0 = 0.1 \quad w_{\text{lottery}} = w_{\text{winner}} = w_{\text{lunch}} = -0.2 \quad w_{\text{noon}} = 0.4$

Logistic Regression in practice

- Can be employed for any numeric variables X_i
 - or for other variable types, by converting to numeric (e.g. indicator) functions
- "Regularization" plays the role of priors in Naïve Bayes
- Optimization tractable, but (way) more expensive than counting (as in Naïve Bayes)

Naïve Bayes vs. Logistic Regression one illustrative case

Applicable more broadly, whenever queries P(Y | X) known a priori