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Expectation Maximization

» Learning parameters in Bayes Nets is easy if data is
complete

Just counting
» But what about missing data?

We could use our standard “missing data” techniques (use
mean, median, etc.)

But when lots of data is missing, we want to infer missing data
and parameters simultaneously

We can use Expectation Maximization



Gaussian Mixtures

» K classes, each class o, produces Gaussian observations
with mean . with variance ¢?|

» Assume o2l given (for now), and we have lots of
observations

» Task: estimate p,

» But, none of the data points are labeled...

Most slides from
http://www.autonlab.org/tutorials/



Gaussian Mixtures

» Know
K
Data

f
ol
P(o; )

» Don’t know
Data label

» Obijective
Estimate the L,

Auton’s icE |-'i-l|]

= [

neE T

nE T

L I

nE T

0.2 0.4 0.6 [N ] 1

Most slides from

http://www.autonlab.org/tutorials/



The GMM assumption

There are k components. The
'th component is called o,

Component @;has an
associated mean vector ; , Mo
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The GMM assumption

e There are k components. The

'th component is called o,

« Component ®,has an
associated mean vector y;

 Each component generates data f/
from a Gaussian with mean g; \
N

and covariance matrix oI

Assume that each datapoint is

generated according to the

following recipe:

Most slides from
http://www.autonlab.org/tutorials/



The GMM assumption

e There are k components. The
I'th component is called o,

L T
 Component @, has an /
associated mean vector g; :’ , M
\
« Each component generates data ‘x\

from a Gaussian with mean y; ~—
and covariance matrix o?I

Assume that each datapoint is
generated according to the
following recipe:

1. Pick a component at random.
Choose component i with
probability P(w,).
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The GMM assumption

e There are k components. The
I'th component is called o,

e Component o,has an / N
associated mean vector :’ , Mo
\
 Each component generates data ‘\ .
from a Gaussian with mean y; S~

and covariance matrix oI

Assume that each datapoint is
generated according to the
following recipe:

1. Pick a component at random.
Choose component i with
probability Plw,).

2. Datapoint ~ N(y;, o°I')
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The data generated
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Computing the likelihood

Remember:
We have unlabeled data x; x, ... xq

We know there are k classes
We know P(w,) P(w,) P(ws) ... P(w,)
We don’t know g, M, .. B,

We can write P( data | p;.... 1)
= bl )

ﬁp( x|yt )

Most slides from
http://www.autonlab.org/tutorials/



EM for GMMs

c

For Max likelthood we know P log Pr Db(data‘pl L ): 0
O,

Some wild' n'crazy algebra turns this into : "For Max likelihood, for each j,

ZP(‘H X, )
ZP(1I.JJ.|xF.:,pl...pk)
i=1

Thisis n nonlinear equations in p;'s.”

H;
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EM for GMMs

=
For Max likelthood we know % log Pr ﬂb(cla’[a‘pl L ): 0
OLL.

i

Some wild' n'crazy algebra turns this into : "For Max likelihood, for each j,
I
Z P(“'If
i=l
K
ZP(1I.JJ.|x”pl...pk)
i=l
Thisis n nonlinear equations in py's.”
If, for each x, we knew that for each W; the prob that H; was in class w; is
P(w;|x;H;...) Then... we would easily compute p.

Cf we knew each p; then we could easily compute P(w|x;1;...1;) for eac@
and x,.

xr.,pl...pk)xi.
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EM for GMMs

pi(t)is shorthand

Iterate. On the fth iteration let our estimates be for estimate of
\ P(o,)on t'th
Je = { 1), 1At) ... ) } korason
E-step Just evaluate
Compute "expected” classes of all datapoints for each class iGﬂUﬁE‘” at
k
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Compute Max. like g given our data’s class membership distributions
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(Gaussian
Mixture
Example:
Start

Advance apologies: in Black
and White this example will be
incomprehensible

Most slides from
http://www.autonlab.org/tutorials/



After first
iteration
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After 2nd
iteration
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After 3rd
iteration
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After 4th
iteration
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After 6th @ e®.
iteration (@ 0.
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After 20th
iteration
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EM at the 10,000 foot level

» Guess some parameters, then

Use your parameters to get a distribution over hidden
variables

Re-estimate the parameters as if your distribution over hidden
variables is correct

» Seems magical. When/why does this work!?



Underlying EM: The basic idea

» EM: Given a guess @, for 6, improve it

» ldea: construct lower bound that equals the true log
likelihood at @,
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For exponential family

» E step:

Use 6, to estimate expected sufficient statistics over
complete data

» M step

Set 8,,, = ML parameters given sufficient statistics
(Or MAP parameters)



EM in practice

» Local maxima
Random re-starts, simulated annealing...

» Variants
Hard EM: set Z to most likely value (e.g. k-means)

Generalized EM: increase (not nec. maximize) lower bound in
each step

Approximate E-step (e.g. sampling)
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Seeking Life’s Bare (Genetic) Necessities

COLD SPRING HARBOR, NEW YORK—
How many cenes does an organism need to
survive! Last week at the genome meeting
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mate of the minimum modern and ancient genomes.

Simple intuition: Documents exhibit multiple topics.

From David Blei’s 2012 ICML tutorial



Topics

gene 0.84
dna 0.82
genetic 0.81

Topic proportions and
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e Each topic is a distribution over words

e Each document is a mixture of corpus-wide topics

e Each word is drawn from one of those topics
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Topics Documents
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e In reality, we only observe the documents

e The other structure are hidden variables
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LDA: Math Version

» For each topic t
Choose distribution ¢, ~ Dirichlet(3)

» For each doc
Choose 0 ~ Dirichlet(a)
For each token i
choose topic z;, ~ Mult(0)
choose word w; ~ Mult(cbzi)

» Exact inference is intractable

We will use a collapsed sampler that integrates out ¢ and 6
[Griffiths and Steyvers, 2007]
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Inference

» Variational and sampling-based methods exist

» Simple collapsed Gibbs sampling approach:
Initialize all topic variables z; randomly to one of K topics

For each sampling pass
For each token i
Sample a new value for z; given all other topic variable assignments
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Sampling Distribution

n¢+a n¥+pB
n+aK nW+pv

» P(topic z | word w, doc d) X

4 Tlg — number of times topic t assigned in doc d

) ng" = number of times topic t assighed for word w

» K = number of topics
» V = number of unique words

» a, [ : Dirichlet prior hyperparameters
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Example Inference

human
genome
dna
genetic
genes
sequence
gene
molecular
sequencing
map
information
genetics
mapping
project
sequences
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evolution
evolutionary
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parasite
parasites
united
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computer
models
information
data
computers
system
network
systems
model
parallel
methods
networks
software
new
simulations
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From David Blei’s 2012 ICML tutorial
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