EECS 349 Machine Learning

Instructor: Doug Downey

(some slides from Pedro Domingos, University of Washington)

1

Logistics

Instructor: Doug Downey

- Email: ddowney@eecs.northwestern.edu
- Office hours: Mondays 2:00-3:00 (or by appt), Ford 3-345
- TAs: Mohammed Alam (Rony), Yanran Wang (Joyce), Zack Witten

Web: (linked from prof. homepage) <u>http://www.cs.northwestern.edu/~downey/courses/349_Spring</u> 2015/

Grading and Assignments (1 of 2)

Assignment			Due Date			Points		
Homework I			14-Apr-15			10		
Homework 2			TBD			15		
Project Proposal			9-Apr-15			5+5		
Homewo	ork 3		TBD			5		
Project S	tatus Rep	ort	TBD			5+5		
Homewo	ork 4		TBD			10		
Project V	ídeo		5-Jun-15			10		
Project V	Vebsite		5-Jun-15			20+5		
Quizzes			Every Wednesday			8		
			TOTAL POINTS			103		
Α	A-	B+	B	B-	C+	C	C-	Etc
93+	92-90	89-87	86-83	82-80	79-77	76-73	72-70	69

Grading and Assignments (2 of 2)

- Four homeworks (40 pts)
 - Submitted via e-mail according to hmwk instructions
 - Late penalty 5% per day must be within I week of original deadline
 - Significant programming, some exercises
 - Any programming language
- Quizzes (8 pts) Each Wednesday weeks 2-9
 - Bring a device to access Canvas. *Practice* quiz this week
- Project (40 pts + 15 peer review)
 - Teams of k
 - Define a task, create/acquire data for the task, train ML algorithm(s), evaluate & report

Prerequisites

Significant Programming Experience

- EECS 214, 325 or the equivalent
- Example: implement decision trees (covered starting Wednesday)
- Basics of probability
 - E.g. independence
- Basics of logic
 - E.g. DeMorgan's laws

Look at Winter 2014 EECS 349 Homework #2 today

Source Materials

- T. Mitchell, *Machine Learning*, McGraw-Hill
- E.Alpaydin, *Introduction to Machine* Learning, MIT
 Press
- (both "required")
- Papers & Web pages

Think/Pair/Share

Why study Machine Learning?

Think Start

Think/Pair/Share

Why study Machine Learning?

Think Start

Think/Pair/Share

Why study Machine Learning?

|Pair Start

| End

10

Why study Machine Learning?

Share

What is Machine Learning?

 "The study of computer programs that improve automatically with experience"
 T. Mitchell Machine Learning

- Automating automation
- Getting computers to program themselves
- Writing software is the bottleneck
- Let the data do the work instead!

Magic?

No, more like gardening

- Seeds = Algorithms
- Nutrients = Data
- Gardener = You
- Plants = Programs

Case Study: Farecast

Sample Applications

- Web search
- Computational biology
- Finance
- E-commerce
- Space exploration

- Robotics
- Information extraction
- Social networks
- Finance
- Debugging
- [Your favorite area]

Relationship of Machine Learning to...

- Statistics
- Analytics
- Data Mining
- Artificial Intelligence

Why study Machine Learning? (1 of 3)

- "A breakthrough in machine learning would be worth ten Microsofts" (Bill Gates, Chairman, Microsoft)
- "Machine learning is the next Internet" (Tony Tether, former Director, DARPA)
- "Machine learning is the hot new thing" (John Hennessy, President, Stanford)
- "Web rankings today are mostly a matter of machine learning" (Prabhakar Raghavan, Dir. Research, Yahoo)
- "Machine learning is going to result in a real revolution" (Greg Papadopoulos, CTO, Sun)
- "Machine learning is today's discontinuity" (Jerry Yang, CEO, Yahoo)

Why study Machine Learning? (2 of 3)

If the Digital Universe were represented by the memory in a stack of tablets, in **2013** it would have stretched two-thirds the way to the Moon*

By **2020**, there would be 6.6 stacks from the Earth to the Moon*

http://www.emc.com/leadership/digital-universe/2014iview/executive-summary.htm

Why study Machine Learning? (3 of 3)

• One example, proportion of physicians using EMRs

- **2001:18**%
- **2011:57%**
- **2013:78**%

...what will be able to learn from these?

ML in Practice

- Understanding domain, prior knowledge, and goals
- Data integration, selection, cleaning, pre-processing, etc.
- Learning models
- Interpreting results
- Consolidating and deploying discovered knowledge
- Loop

What You'll Learn in this Class

How do ML algorithms work?

Learn by implementing, using

For a **real** problem, how do I:

- Express my problem as an ML task
- Choose the right ML algorithm
- Evaluate the results

ML in a Nutshell

- Tens of thousands of machine learning algorithms
- Hundreds new every year
- Every machine learning algorithm has three components:
 - Representation
 - Evaluation
 - Optimization

Representation

How do we represent the function from input to output?

- Decision trees
- Sets of rules / Logic programs
- Instances
- Graphical models (Bayes/Markov nets)
- Neural networks
- Support vector machines
- Model ensembles
- Etc.

Evaluation

Given some data, how can we tell if a function is "good"?

- Accuracy
- Precision and recall
- Squared error
- Likelihood
- Posterior probability
- Cost / Utility
- Margin
- Entropy
- K-L divergence
- Etc.

Optimization

• Given some data, how do we **find** the "best" function?

- Combinatorial optimization
 - E.g.: Greedy search
- Convex optimization
 - E.g.: Gradient descent
- Constrained optimization
 - E.g.: Linear programming

Types of Learning

Supervised (inductive) learning

Training data includes desired outputs

Unsupervised learning

Training data does not include desired outputs

Semi-supervised learning

Training data includes a few desired outputs

Reinforcement learning

Rewards from sequence of actions

Inductive Learning

- ▶ **Given** examples of a function (**x**, *f*(**x**))
- Predict function f(x) for new instances x
 - Discrete f(x): Classification
 - Continuous f(x): Regression
 - f(x) = Probability(x): Probability estimation
- Example:
 - x = <Flight=United 102, FlightDate=May 26, Today=May 7>
 - f(x) = +1 if flight price will increase in the next week, or
 -1 otherwise

What We'll Cover

Inductive learning

- Decision tree induction
- Instance-based learning
- Linear Regression and Classification
- Neural networks
- Genetic Algorithms
- Support vector machines
- Bayesian Learning
- Learning theory
- Reinforcement Learning

Unsupervised learning

- Clustering
- Dimensionality reduction

Parting Notes

- Bring a device to access Canvas for quiz on Wednesday
- Take a look at Homework #2 from EECS 349 Winter 2014 (see my Web page)
- Reading:
 - Skim: Forbes article

(linked on course Web page)

- Recommended:
 - Mitchell, Chapters 1 & 2
 - Alpaydin, Ch I & 2