Machine Learning

Greedy Local Search

With slides from Bryan Pardo, Stuart Russell

ML 1n a Nutshell

e Every machine learning algorithm has three
components:

— Representation
e E.g., Decision trees, instances

— Evaluation
e E.g., accuracy on test set

— Optimization
e How do you find the best hypothesis?

Hill-climbing (greedy local search)

find x__ =arg max (f(x))

Xe X

(x)

Greedy local search needs

e A “successor” function
Says what states I can reach from the current one.
Often implicitly a distance measure.

e An objective (error) function
Tells me how good a state is

e Enough memory to hold

The best state found so far

The current state

The state it's considering moving to

Hill-climbing search

e "Like climbing Everest in thick fog with
amnesia”

function HILL-CLIMBING(problem) returns a state that is a local maximum
inputs: problem, a problem
local variables: current, a node
neighbor, a node

current +— MAKE-NODE(INITIAL-STATE[problem])

loop do
neighbor+— a highest-valued successor of current
if VALUE[neighbor] < VALUE[current] then return STATE[current]
current +— neighbor

Hill-climbing (greedy local search)

"Like climbing Everest in thick fog with
amnesia"

(x)

Hill-climbing (greedy local search)

It is easy to get stuck in local maxima

(x)

Example: n-queens

e Put 7 queens on an 17 x nboard with no
two queens on the same row, column, or
diagonal

et
ll':>
“H

—

Greedy local search needs

e A “successor” (distance?) function

Any board position that is reachable by moving one
gueen in her column.

e An optimality (error?) measure
How many queen pairs can attack each other?

Hill-climbing search: 8-queens problem

18 |12 | 14 13 |42 14
16 15 |2 | 14 |42 | 16
14 8| 18 15 2| 14
N =17 — 14 w 16 16
w 17 w 16
L v)
18 ‘w 15 ‘ﬂ'
14 17 |42 | 14 (42| 18

e /1= number of pairs of queens that are
attacking each other, either directly or indirectly

Hill-climbing search: 8-queens problem

e A local minimum with A = 1

Simulated annealing search

e Idea: escape local maxima by allowing some
"bad" moves but gradually decrease their

frequency

function SIMULATED-ANNEALING(problem, schedule) returns a solution state
inputs: problem, a problem
schedule, a mapping from time to “temperature”

local variables: current, a node
next, a node
T, a “temperature” controlling prob. of downward steps

current < MAKE-NODE(INITIAL-STATE|[problem])
for t+ 1toocdo
T+ schedule[{]
if 7= 0 then return current
nert+— a randomly selected successor of current
AE+ VALUE[nezl] — VALUE[current]
if AE > 0 then current + next

else current + next only with probability ed EIT

Properties of simulated annealing

e One can prove: If 7 decreases slowly enough,
then simulated annealing search will find a
global optimum with probability approaching 1

o Widely used in VLSI layout, airline scheduling,
etc

L ocal beam search

Keep track of & states rather than just one
Start with A randomly generated states

At each iteration, all the successors of all &
states are generated

If any one is a goal state, stop; else select the &
best successors from the complete list and
repeat.

Let’s look at a demo

Results on 8-queens

600+ 173 4
15 119 4
154 114 5
Average 256+ 135 4

e Note: on other problems, your mileage may vary

Continuous Optimization

e Many Al problems require optimizing a function £ (x),
which takes continuous values for input vector x

e Huge research area

e Examples:
— Machine Learning
— Signal/Image Processing
— Computational biology
— Finance
— Weather forecasting
— Etc., etc.

Gradient Ascent

e Idea: move in direction
of steepest ascent
(gradient)

® X; =X + 1 VI(X 1)

Types of Optimization

Linear vs. non-linear
Analytic vs. Empirical Gradient
Convex vS. hon-convex

Constrained vs. unconstrained

Continuous Optimization In Practice

e [ots of previous work on this

e Use packages

Final example: weights in NN

d(%,¥) =0 =Y) + (%= ¥,)" d(x,y)=(x,-y,)%+(3x, - 3y,)’

Bryan Pardo Fall 2007 Machine Learning EECS 349

