Machine Learning

Neural Networks

(slides from Domingos, Pardo, others)

Human Brain

Neurons

Input-Output Transformation

Dendrites
Input ,/\ '
Spikes . Axon hillock Myelinated axan
N v _
' —_—
\’ Output
O \ Spike
} /#
Spike (= a brief pulse
g A A pike (pulse)
N
| I | N
Groded EPSP Trigger: Conducted ali-or-none spike

(conduction of spike to next cell)

Excitatory Post-Synaptic Potential) 9ll-or-none
(Y ynap) spike iniliated

Human Learning

e Number of neurons: ~ 1011

e Connections per neuron: ~ 103 to 10°

e Neuron switching time: ~ 0.001 second
e Scene recognition time: ~ 0.1 second

100 inference steps doesn’t seem much

Machine Learning Abstraction

Artificial Neural Networks

e Typically, machine learning ANNs are very
artificial, ignoring:
— Time
— Space
— Biological learning processes
e More realistic neural models exist

— Hodgkin & Huxley (1952) won a Nobel prize
for theirs (in 1963)

e Nonetheless, very artificial ANNs have
been useful in many ML applications

Perceptrons

e The “first wave” in neural networks

e Big in the 1960's

— McCulloch & Pitts (1943), Woodrow & Hoff
(1960), Rosenblatt (1962)

Perceptrons

e Problem def:
— Let /be a target function from
X= <Xy, X, ..> where x; {0, 1}
to
y {0, 1}
— Given training data {(X}, »1), (X, V5)...}
e Learn /7 (X), an approximation of 7(X)

A single perceptron

@ Bias (X, =1,always)

-

1if anwixi >0
1=0

Logical Operators

AND

L _JLif iZ:O:Wixi >0
0 else

o _)Lif iZ:():WiXi >0
0 else

L _JLif iZ:O:Wixi >0
0 else

Learning Weights

e Perceptron Training Rule
e Gradient Descent
o (other approaches: Genetic Algorithms)

Perceptron Training Rule

o Weights maodified for each training example
e Update Rule:

W, <— W, + AW
where

AW, =n(t—0)X

[N

learning target perceptron input
rate value output value

Perception Training for NOT

S _JLif iZzolwixi >0
0 else

W, <— W, + AW,
AW, =n(t—0)X

Work

Bryan Pardo, Machine Learning: EECS 349 Fall 2009

14

What weights make XOR?

_JL1if anwixi >0
- i=0

0 else

e No combination of weights works

e Perceptrons can only represent linearly
separable functions

Linear Separability

Linear Separability

Linear Separability

Perceptron Training Rule

e Converges to the correct classification IF

— Cases are linearly separable

— Learning rate i1saslow enough
— Proved by MinsKy and Papert in 1969

Killed widespread interest in perceptrons till the 80’s

XOR

o _)Lif iZ:():WiXi >0
0 else

; XOR
L _JLif iz—o:WiXi >0

0 else

o _)Lif iZ:():WiXi >0
0 else

What’s wrong with perceptrons?

e You can always plug multiple perceptrons
together to calculate any function.
e BUT...who decides what the weights are?

— Assignment of error to parental inputs
becomes a problem....

Perceptrons use a step function

 Perceptron Threshold
Step function

_JL1if anwixi >0
- i=0

0 else
?

e Small changes in inputs -> either no
change or large change in output.

Solution: Differentiable Function

4+ Simple linear function

—

e Varying any input a little creates a
perceptible change in the output

e \We can now characterize how error
changes w; even in multi-layer case

Measuring error for linear units

e Qutput Function

—

o(X)=wW-X
e Error Measure:

. 1
daté target linear unit
value output

Gradient Descent

Elw]

" Training rule:

Gradient: AW = —V E[i]
(0L OF oL
[5?5(]’ w;’ 8w”J Aw; = —n

ow;

Gradient Descent Rule

OW, OW. 2§70
— Z(td _Od)(_xl d)
deD
Update Rule:

W, < W, "‘772(td _Od)xi,d
deD

Gradient Descent for Multiple Layers

We can compute:

E

J

Gradient Descent vs. Perceptrons

e Perceptron Rule & Threshold Units

— Learner converges on an answer ONLY IF
data is linearly separable

— Can't assign proper error to parent nodes

e Gradient Descent

— (locally) Minimizes error even if examples are
not linearly separable
— Works for multi-layer networks

e But...linear units only make linear decision surfaces
(can’t learn XOR even with many layers)

— And the step function isn‘t differentiable...

A compromise function

e Perceptron -

outpUt = - 1 if g;wixi >0 I

0 else

e Linear n
output =net = > WX, |
i=0 '

e Sigmoid (Logistic)

1
1+e

output = o(net) =

—net

The sigmoid (logistic) unit

e Has differentiable function
— Allows gradient descent

e Can be used to learn non-linear functions

Logistic function

Output

0.6

Gender 0

“Probability
of beingAlive”
Stage a
Independent Coefficients Prediction
variables 1

n
— 2 W;X;

l+e =0

Neural Network Model

rae Output
0.6
Gender
“Probability
of beingAlive”
Stage
_ _ Dependent
Independent Weights Hidden Weights varl?able

variables Layer
Prediction

Getting an answer from a NN

Inputs
rae Output
0.6
Gender
“Probability
of beingAlive”
Stage
_ _ Dependent
Independent \Weights Hidden Weights varl?able

variables Layer
Prediction

Getting an answer from a NN

Inputs
rge Output
0.6
Gender
“Probability
of beingAlive”
Stage
_ _ Dependent
Independent \Weights Hidden Weights var?able

variables Layer
Prediction

Getting an answer from a NN

Inputs
Age \ Output
5
Gender >
>‘/8 “Probability
' of beingAlive”
Stage
independent Weights Hidden Weights o

variables Layer
Prediction

Minimizing the Error

initial error
Error surface

negative derivative

final error

| mMinimum

Wlnltlal Wtralned

———
positive change

Differentiability is key!

e Sigmoid is easy to differentiate

oo (Y)
oy

e For gradient descent on multiple layers, a
little dynamic programming can help:
— Compute errors at each output node
— Use these to compute errors at each hidden node
— Use these to compute errors at each input node

=ao(y)-1-o(y))

The Backpropagation Algorithm

For each input training example, (X,t)

1. Inputinstance X to the network and computethe outputo,
for every unit u in the network

2. For each outputunit k, calculate its error term g,
5k — 0 (1_ Ok)(tk - Ok)

3. For each hidden unit h, calculate its error term ¢,

Oy < 0,(1-0,) D Wy,

keoutputs

4.Updateeach network weight w;

W;; <= W;; + 775kX,-i

Learning Weights

Age \ Output
D
Gender >
>‘/8 “Probability
' of beingAlive”
Stage
)] D
Independent Weights Hidden Weights V:ﬁzgﬁ:m

variables Layer
Prediction

The fine print

e Don't implement back-propagation
— Use a package

— Second-order or variable step-size
optimization techniques exist

e Feature normalization

— Typical to normalize inputs to lie in [0,1]
e (and outputs must be normalized)

e Problems with NN training:
— Slow training times (though, getting better)
— Local minima

Minimizing the Error

initial error
Error surface

negative derivative

final error

| mMinimum

Wlnltlal Wtralned

———
positive change

Expressive Power of ANNs

e Universal Function Approximator:

— Given enough hidden units, can approximate
any continuous function 7

e Need 2+ hidden units to learn XOR

e Why not use millions of hidden units?
— Efficiency (training is slow)
— Overfitting

Overfitting

Real Distribution Overfitted Model

(.

Combating Overfitting in Neural Nets

e Many techniques

e Two popular ones:

— Early Stopping
e Use “a lot” of hidden units
e Just don't over-train

— Cross-validation

e Test different architectures to choose “right”
number of hidden units

ererr

Early Stopping

\

»>Stopping criterion

Epochs

Cross-validation

o Cross-validation: general-purpose technique for
model selection
— E.g., "how many hidden units should I use?”

o More extensive version of validation-set approach.

Cross-validation

e Break training set into k sets
e For each model M
— For i=1l..k
e Train M on all but set 1

s Test on set 1

e Output M with highest average test score,
trained on full training set

Summary of Neural Networks

When are Neural Networks useful?
— Instances represented by attribute-value pairs
e Particularly when attributes are real valued

— The target function is
e Discrete-valued
e Real-valued
e Vector-valued

— Training examples may contain errors
— Fast evaluation times are necessary

When not?

— Fast training times are necessary
— Understandability of the function is required

Summary of Neural Networks

Non-linear regression technique that is trained
with gradient descent.

Question: How important is the biological
metaphor?

Advanced Topics in Neural Nets

e Batch Move vs. incremental

o Auto-Encoders

e Deep Nets (briefly)

e Neural Networks on Silicon

o Neural Network language models

Incremental vs. Batch Mode

Incremental mode Gradient Descent:

Do until satistied

e For each training example d in D

1. Compute the grac

Batch mode Gradient
Do until satisfied

lient V E[]
2.0 + w — nV Ey[]

Descent:

1. Compute the gradient V Ep|w]

2. %« W — nV Ep|id]

1
2d

Eplw] =

Z (IL‘{? — Of‘r’>2
leD

Incremental vs. Batch Mode

e In Batch Mode we minimize:

Eplw] = 5 {%D(t{; — 04)°

* Same as computing: AW, = » AW,
deD

e Then setting W « W+ AW,

Advanced Topics in Neural Nets

e Auto-Encoders

Hidden Layer Representations

e Input->Hidden Layer mapping:
— representation of input vectors tailored to the
task

e Can also be exploited for dimensionality
reduction

— Form of unsupervised learning in which we
output a “more compact” representation of
iInput vectors

— <Xy, X, > > <Xy, ..., X, > Where m<n

— Useful for visualization, problem simplification,
data compression, etc.

Dimensionality Reduction

Model:

[nputs

Outputs

Function to learn:

Input Output
10000000 — 10000000
01000000 — 01000000
00100000 — 00100000
00010000 — 00010000
00001000 — 00001000
00000100 — 00000100
00000010 — 00000010
00000001 — 00000001

Dimensionality Reduction: Example

Input Hidden Output
Values

10000000 — .89 .04 .08 — 10000000
01000000 — .01 .11 .88 — 01000000
00100000 — .01 .97 .27 — 00100000
00010000 — .99 .97 .71 — 00010000
00001000 — .03 .05 .02 — 00001000
00000100 — .22 .99 .99 — 00000100
00000010 — .80 .01 .98 — 00000010
00000001 — .60 .94 .01 — 00000001

Dimensionality Reduction: Example

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

Sum of squared errors for each output unit

—————— — 1 T T T
= -'\:_- - _H-:h._.%h“-::-. —_—
B . '\.‘. \\\\ *\ —
A \
\
b
\ _
,
\ e e

. .

I I I e

Dimensionality Reduction: Example

Hidden unit encoding for input 01000000

1 T T T I P -

o

- ‘
.-"- :
P ‘
- ¢
P :
- P . -
. # ‘
- .
- _."
=" r
[} —J'Ir B - . _
. - .
.

0.6 F==

0.5 F \\ i
0.4 | \ _
0.3 | . -

0.2 } — -

[}1 | 1 | 1

Dimensionality Reduction: Example

Weights from inputs to one hidden unit
4 | | | ...

1 - . |
S o
0 "-**'2"‘—'-‘4“-"-“_—;—"-:._”“ == e - — msssamnnnsmmsnsnnn n amns e
-

0 500 1000 1500 2000 2500

Advanced Topics in Neural Nets

e Deep Nets (briefly)

Restricted Boltzman Machine

e (1) (1) () (n) (h)
Units | |

Weight

Matrix . ///%7{‘#&%&

2 layers (hidden & input) of Boolean nodes
Nodes only connected to the other layer

e Setting the hidden nodes to a vector of
values updates the visible nodes...and vice
Versa

Auto-encoders vs. RBMs?

o Similar
o Auto-encoder (AE) goal is to reconstruct input in
two steps, input->hidden->output

o RBM defines a probability distribution over P(x)
— Goal is to assign high likelihood to the observed
training examples

— Determining likelihood of a given x actually requires
summing over all possible settings of hidden nodes,
rather than just computing a single activation as in AE

— Take EECS 395/495 Probabilistic Graphical Models to
learn more

Deep Belief Nets

e A stack of RBNS

 Trained bottom to top with

Contrastive Divergence

e Trained AGAIN with
supervised training (similar

to backprop in MLPs)

RBN

f;‘ ‘ "
& r.& y & * .
f. lg f. 11

\ [

7' "

W
X
X
W)
Xi
éh A\
N

N7
X%
o,
R

NeS 2l

o
1 LJ
N
AN
/ l‘a‘a
vl
/)

/
/)

8

')
)
/ b |

b]

O
A\

/4

4

N/

= TSI
C
C
C
)

Advanced Topics in Neural Nets

e Neural Networks on Silicon

Neural Networks on Silicon

e Currently:

Digital computatior Why not
(thresholdin Sk|p this?

Example: Silicon Retina

Simulates function (a) C
of biological retina

Single-transistor
synapses adapt to
luminance,
temporal contrast

Modeling retina
directly on chip

=> requires 100x lCTS fS
less power! S

WA

Example: Silicon Retina

e Synapses modeled with single transistors

vl

Inhibition

x|
O=

Excitation

Luminance Adaptation

spikes g1 spikes g1

spikes g spikes g

400

1

"~ W
0 . . -

400 1

" M
O 2 2

Comparison with Mammal Data

e Real:

e Artificial:

®) caty
A o
100 D@gﬂ‘. £ o 2
sy I
O ““ A L] DO | CdITI
AN A A 2 © 321
o A ® g |
o L % e o . *128
© O & % g & 51
e
) o 4 a Lumu.Luug 20
%10 1 10 50 o 6.4
. O % contrast '
| N TTTT N TRV -
(c)
OnT
1000 5
oecdm
i 0192
0 ! * 65
E]_I_LLLIJ.lll_I_I_IJ a 19
2100 1 10 50 «~ g
o % contrast
50

1 10 100
mean illumination (cd/m?)

e Graphics and results taken from:

INSTITUTE OF PHYSICS PUBLISHING JoumNAL OF NEURAL ENGINEERING

1. Meural Eng. 3 {2006) 257-267 doi: 10 T08S/1741-2560/3/4/002

A silicon retina that reproduces signals in
the optic nerve

Kareem A Zaghloul' and Kwabena Boahen”"

General NN learning in silicon?

e Seems less in-vogue than in late 90s

e In early 2000s, interest turned somewhat
to implementing Bayesian techniques in
analog silicon

Advanced Topics in Neural Nets

o Neural Network language models

Neural Network Language Models

e Statistical Language Modeling:
— Predict probability of next word in sequence

I was headed to Madrid ,
P(___ =“spain”) = 0.5,
P(__ ="but”) = 0.2, etc.

e Used in speech recognition, machine
translation, (recently) information
extraction

e Estimate:

Formally

Neural Network

fr——— = = — — — — — - — —

) o . . output
| mput probability estimation layer |
Wi |- ' P11~
| . layer hidden A J J
' layer :
- 3
o Pi T
| : : > P(w;=ilh;)
W j_p b2 I P shared , : |
| I_ projections y
.
1y
|] P(w;j=N|h;)
| N N
discrete continuous LM probabilities
representation: representation: for all words

indices in wordlist P dimensional vectors

Optimizations

e Key idea — learn simultaneously:
— vector representations of each word (here 120 dim)
— predictor of next word. based on previous vectors

e Short-lists

— Much complexity in hidden->output layer
e Number of possible next words is large

— Only predict a subset of words
e Use a standard probabilistic model for the rest

Design Decisions (1)

e Number of hidden units

size 400 500 600 1000~

Tr. ttme | 11h20 | 13h50 | 16h15 | 11+16h
Px alone | 100.5 100.1 99.5 94.5
interpol. | 68.3 68.3 68.2 68.0

Werr | 13.99% | 13.97% | 13.96% | 13.92%

“ Interpolation of networks with 400 and 600
hidden units.

Design Decisions (2)

e Word representatlon (# of dlmen5|ons)

120
dim 50
5 dim 60 i
) : dim 70 --------
dim 100 e
2 T dim 120 -
5 dim 150 --------
= 105
2
100 =
95 |
90 L 1 : : |
0 10 0 30 40
Epochs

e They chose 120

50

Comparison vs. state of the art

e Circa 2005

Back-off LM

Neural Network LM

Traming data [#words] 600M AM 22M | 92.5M” 600M*
Training time [h/epoch] - 2h40 14h 9h40 12h 3 x 12h
Perplexity (NN LM alone) - 103.0 97.5 84.0 80.0 76.5
Perplexity (interpolated LMs) 70.2 67.6 67.9 66.7 66.5 65.9
Word error rate (interpolated LMs) 14.24% 14.02% | 13.88% | 13.81% | 13.75% | 13.61%

* By resampling different random parts at the beginning of each epoch.

Schwenk, Holger, and Jean-Luc Gauvain. "Training neural network language

models on very large corpora.” Proceedings of the conference on Human
Language Technology and Empirical Methods in Natural Language

Processing. Association for Computational Linguistics, 2005.

Latest Results

Model Num. Params | Training Time | Perplexity
[billions] [hours] | [CPUs]
Interpolated KN 5-gram, 1.1B n-grams (KN) .76 3 100 67.6
Katz 5-gram, 1.1B n-grams .74 2 100 79.9
Stupid Backoff 5-gram (SBO) .13 0.4 200 87.9
Interpolated KN 5-gram, 15M n-grams 0.03 3 100 243.2
Katz 5-gram. 15M n-grams 0.03 2 100 127.5
Binary MaxEnt 5-gram (n-gram features) .13 I 5000 [15.4
Binary MaxEnt 5-gram (n-gram + skip-1 features) 1.8 [.25 5000 107.1
Hierarchical Softmax MaxEnt 4-gram (HME) 6 3 | 101.3
Recurrent NN-256 + MaxEnt 9-gram 20 60 24 58.3
Recurrent NN-512 + MaxEnt 9-gram 20 120 24 54.5
Recurrent NN-1024 + MaxEnt 9-gram 20 240 24 51.3

Chelba, Ciprian, et al. "One billion word benchmark for

measuring progress in statistical language modeling." arXiv
preprint arXiv:1312.3005 (2013).

