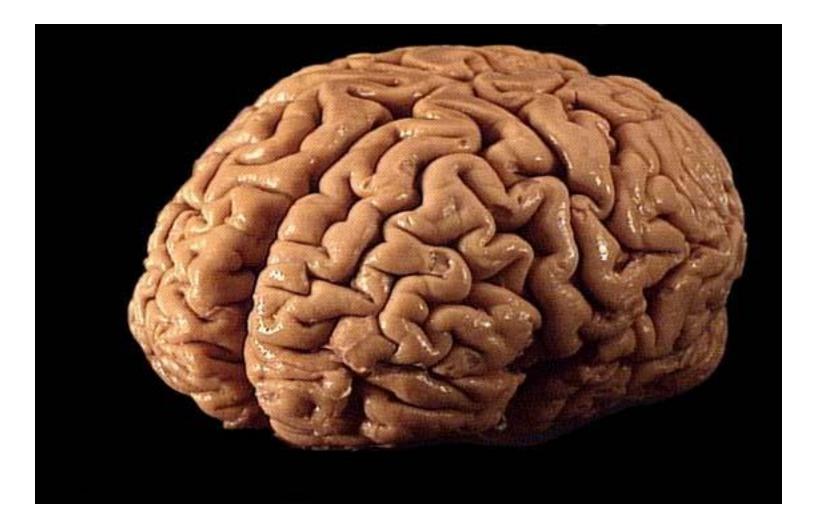
Machine Learning

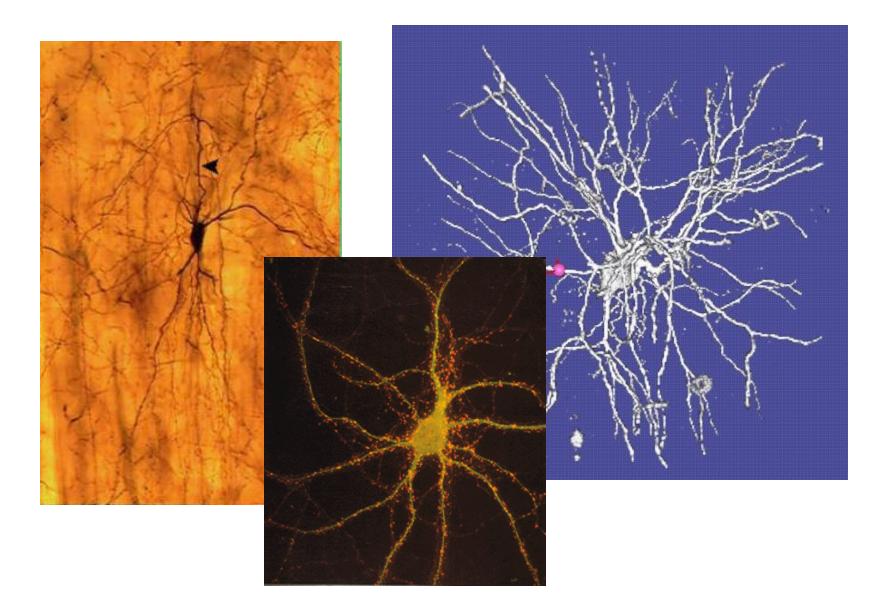
Neural Networks

(slides from Domingos, Pardo, others)

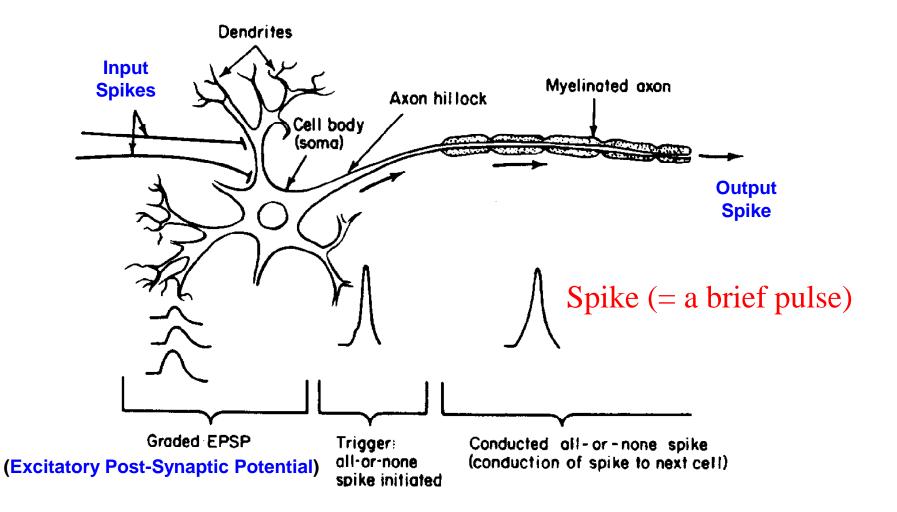
Human Brain



Neurons



Input-Output Transformation



Human Learning

- Number of neurons:
- Connections per neuron:
- Neuron switching time:
- Scene recognition time:

 $\sim 10^{11}$

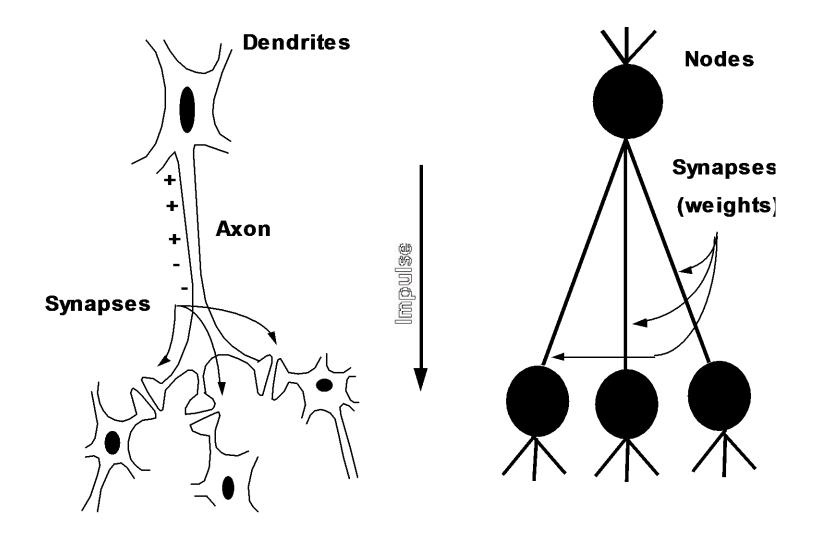
 $\sim 10^3$ to 10^5

 \sim 0.001 second

 ~ 0.1 second

100 inference steps doesn't seem much

Machine Learning Abstraction



Artificial Neural Networks

- Typically, machine learning ANNs are very artificial, ignoring:
 - Time
 - Space
 - Biological learning processes
- More realistic neural models exist
 - Hodgkin & Huxley (1952) won a Nobel prize for theirs (in 1963)
- Nonetheless, very artificial ANNs have been useful in many ML applications

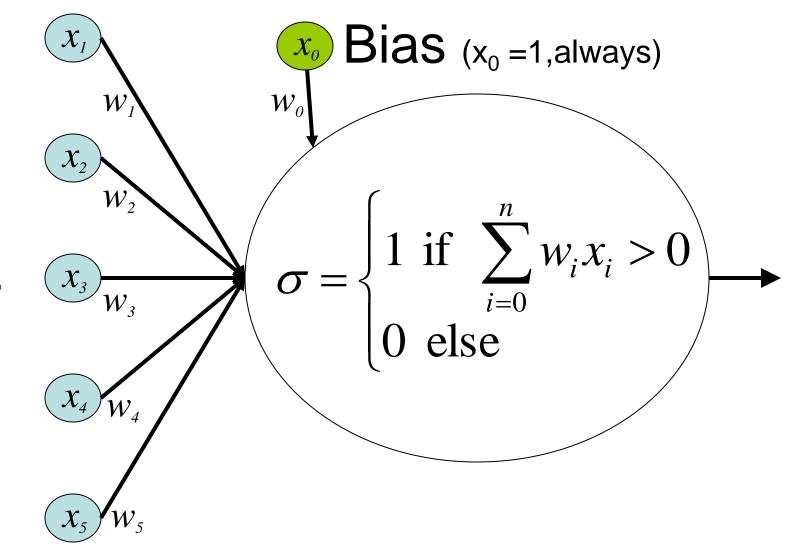
Perceptrons

- The "first wave" in neural networks
- Big in the 1960's
 - McCulloch & Pitts (1943), Woodrow & Hoff (1960), Rosenblatt (1962)

Perceptrons

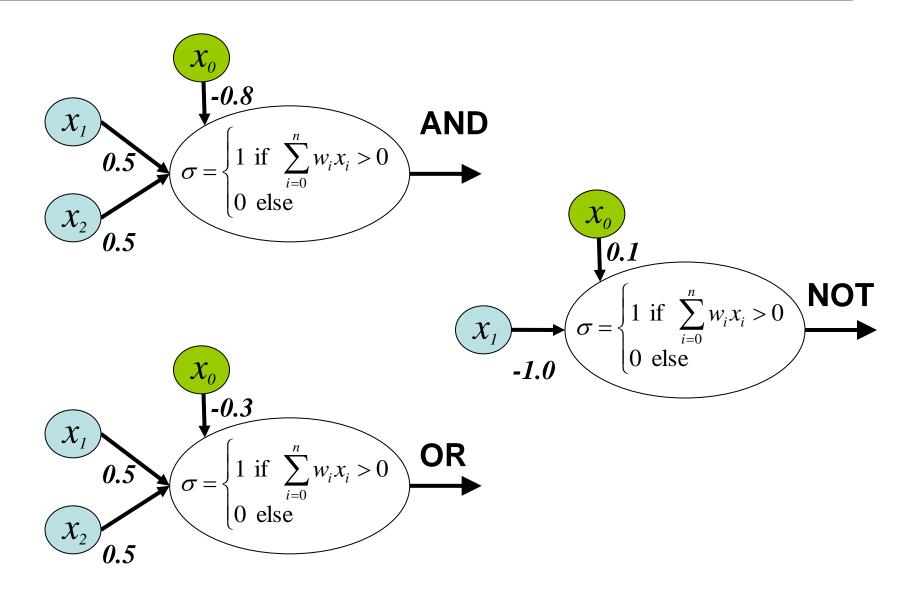
- Problem def:
 - Let f be a target function from $X = \langle x_1, x_2, ... \rangle$ where $x_i \in \{0, 1\}$ to
 - *Y* ∈{0, 1}
 - Given training data {(X_1, y_1), (X_2, y_2)...}
 - Learn h(X), an approximation of f(X)

A single perceptron



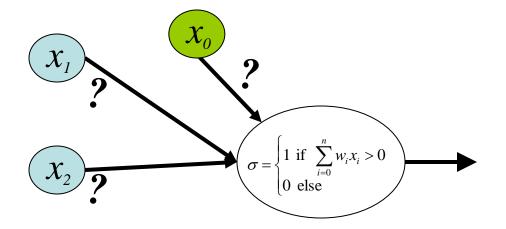
Inputs

Logical Operators



Learning Weights

- Perceptron Training Rule
- Gradient Descent
- (other approaches: Genetic Algorithms)

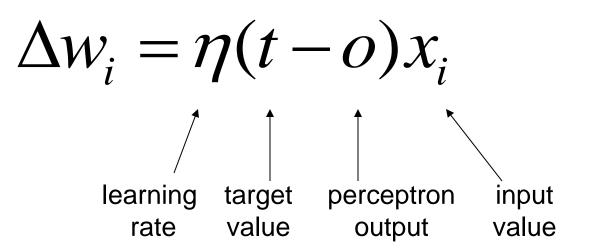


Perceptron Training Rule

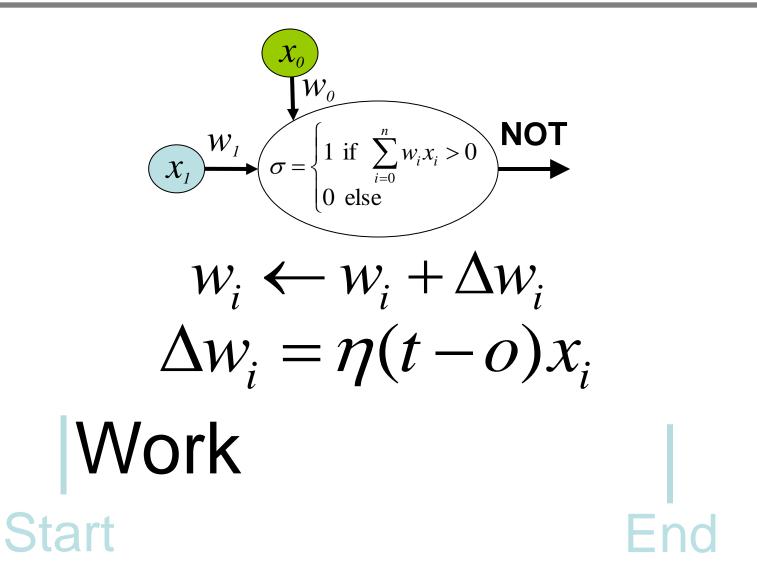
- Weights modified for each training example
- Update Rule:

$$W_i \leftarrow W_i + \Delta W_i$$

where

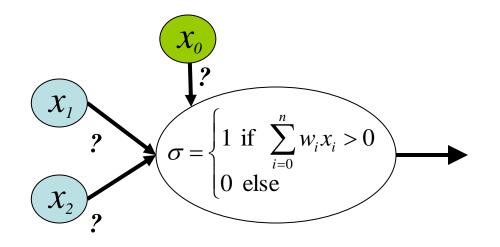


Perception Training for NOT



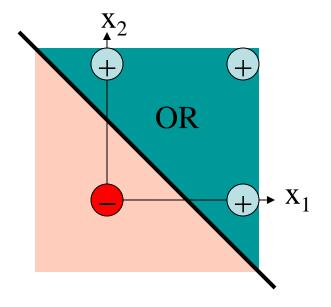
Bryan Pardo, Machine Learning: EECS 349 Fall 2009

What weights make XOR?

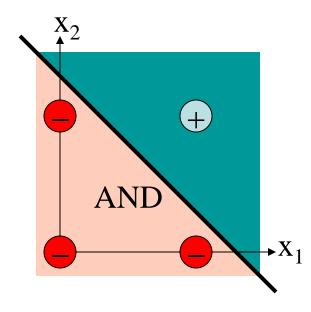


- No combination of weights works
- Perceptrons can only represent linearly separable functions

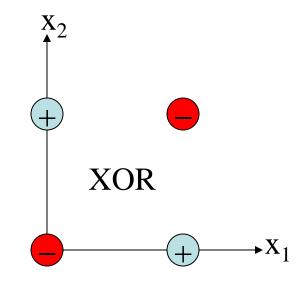
Linear Separability



Linear Separability



Linear Separability



Perceptron Training Rule

Converges to the correct classification IF

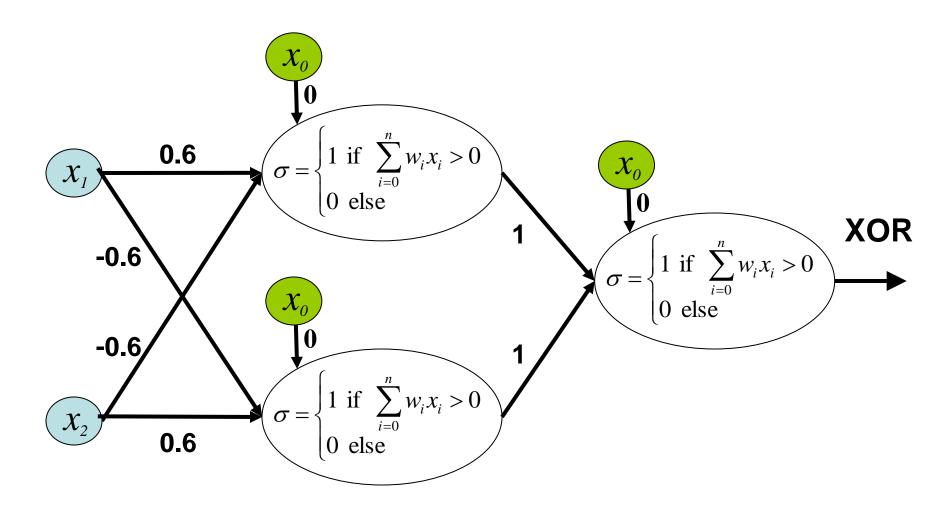
Cases are linearly separable

Learning rate is slow enough

– Proved by Minsky and Papert in 1969

Killed widespread interest in perceptrons till the 80's

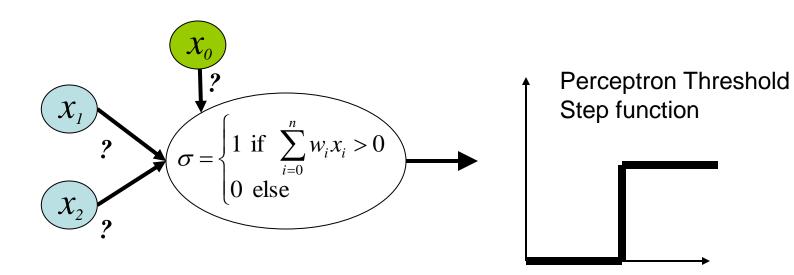
XOR



What's wrong with perceptrons?

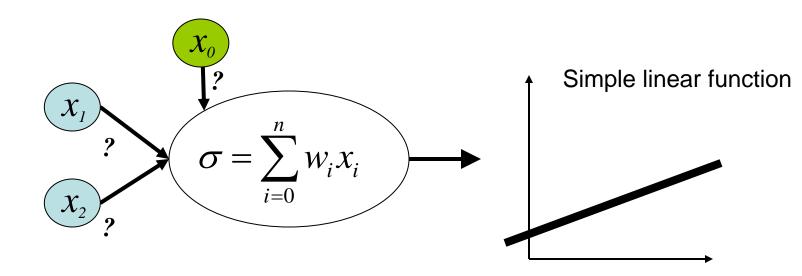
- You can always plug multiple perceptrons together to calculate any function.
- BUT...who decides what the weights are?
 - Assignment of error to parental inputs becomes a problem....

Perceptrons use a step function



 Small changes in inputs -> either no change or large change in output.

Solution: Differentiable Function



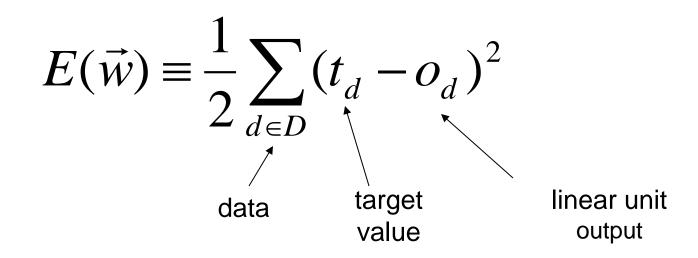
- Varying any input a little creates a perceptible change in the output
- We can now characterize how *error* changes w_i even in multi-layer case

Measuring error for linear units

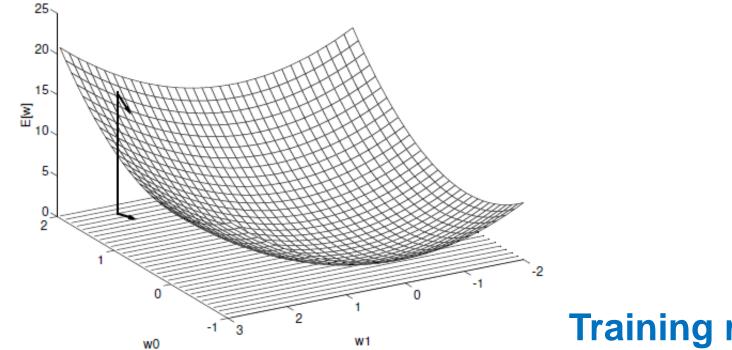
• Output Function

$$\sigma(\vec{x}) = \vec{w} \cdot \vec{x}$$

• Error Measure:



Gradient Descent



Gradient:

$$\nabla E[\vec{w}] \equiv \left[\frac{\partial E}{\partial w_0}, \frac{\partial E}{\partial w_1}, \cdots, \frac{\partial E}{\partial w_n}\right]$$

Training rule: $\Delta \vec{w} = -\eta \nabla E[\vec{w}]$

$$\Delta w_i = -\eta \frac{\partial E}{\partial w_i}$$

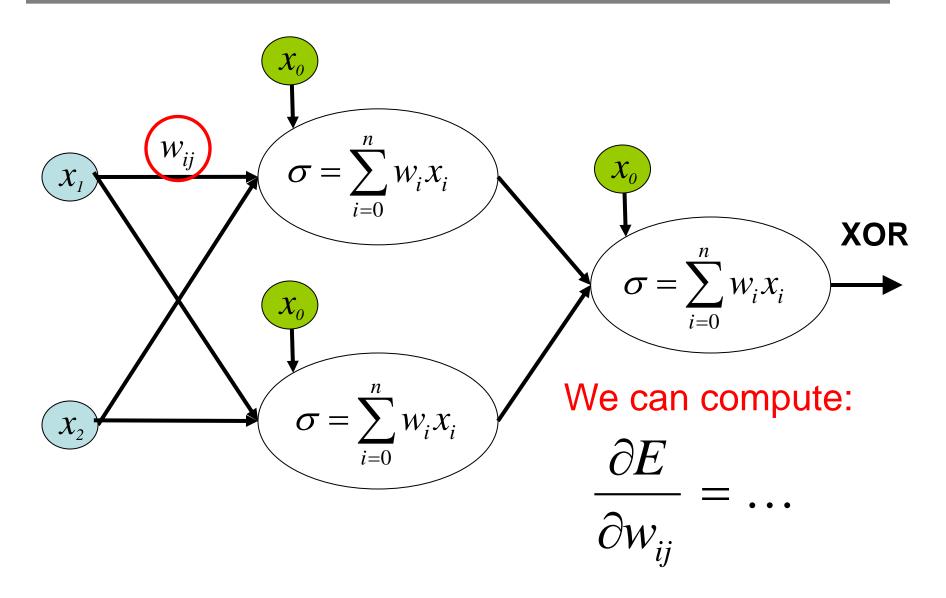
Gradient Descent Rule

$$\frac{\partial E}{\partial w_i} \equiv \frac{\partial}{\partial w_i} \frac{1}{2} \sum_{d \in D} (t_d - o_d)^2$$
$$= \sum_{d \in D} (t_d - o_d) (-x_{i,d})$$

Update Rule:

$$w_i \leftarrow w_i + \eta \sum_{d \in D} (t_d - o_d) x_{i,d}$$

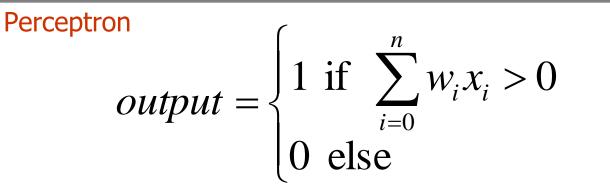
Gradient Descent for Multiple Layers

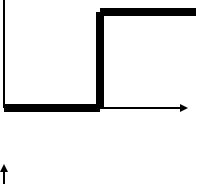


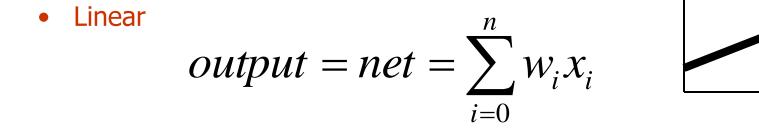
Gradient Descent vs. Perceptrons

- Perceptron Rule & Threshold Units
 - Learner converges on an answer ONLY IF data is linearly separable
 - Can't assign proper error to parent nodes
- Gradient Descent
 - (locally) Minimizes error even if examples are not linearly separable
 - Works for multi-layer networks
 - But...linear units only make linear decision surfaces (can't learn XOR even with many layers)
 - And the step function isn't differentiable...

A compromise function





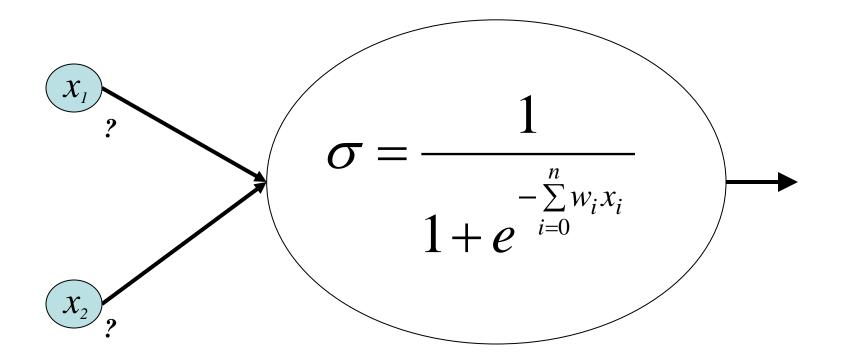


• Sigmoid (Logistic)

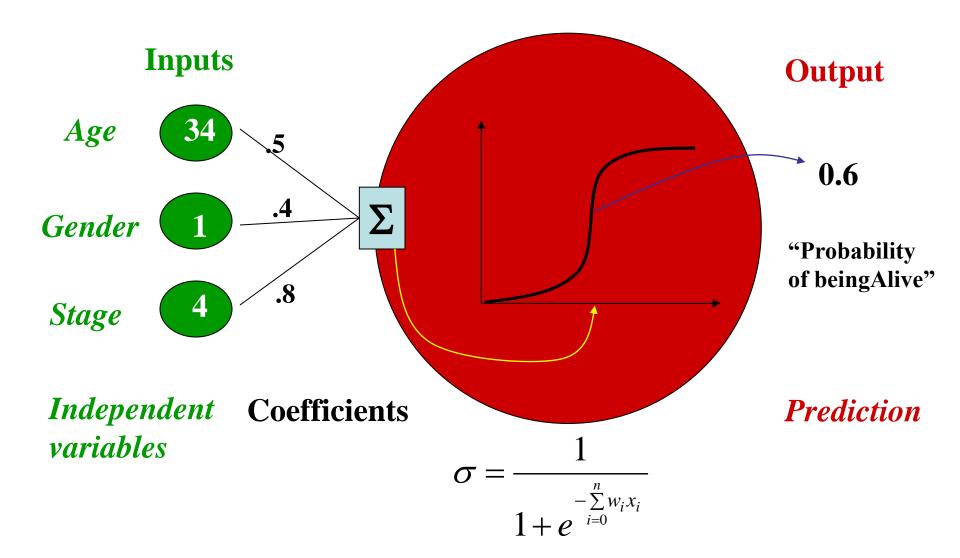
$$output = \sigma(net) = \frac{1}{1 + e^{-net}}$$

The sigmoid (logistic) unit

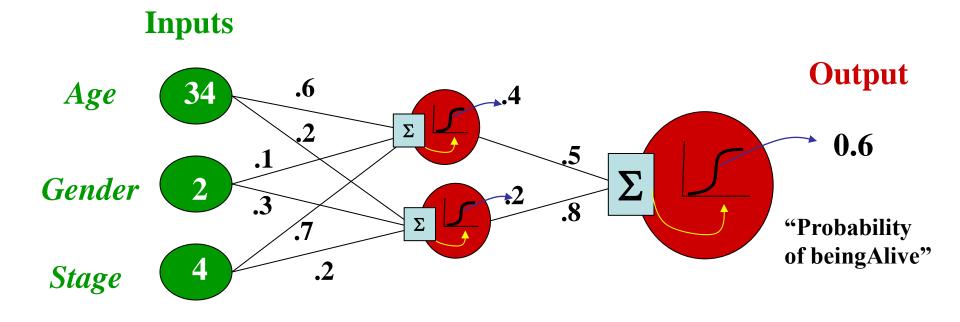
- Has differentiable function
 Allows gradient descent
- Can be used to learn non-linear functions



Logistic function



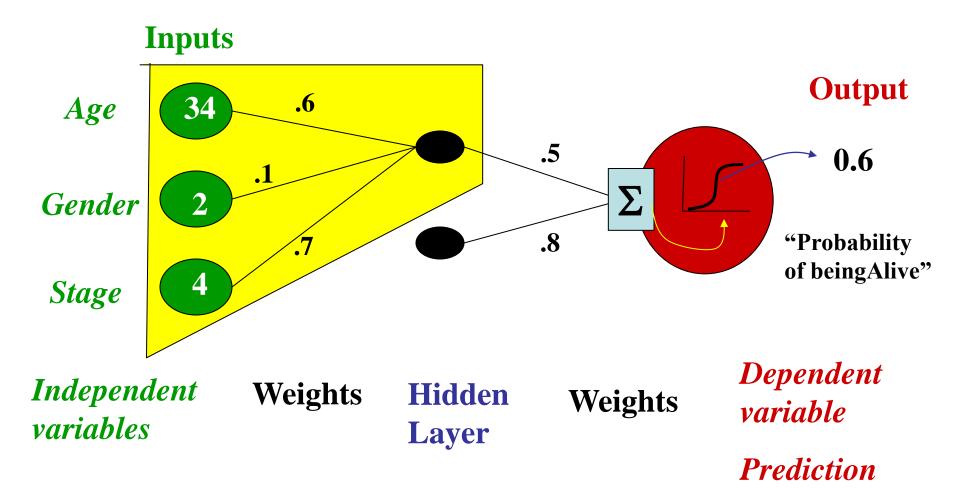
Neural Network Model



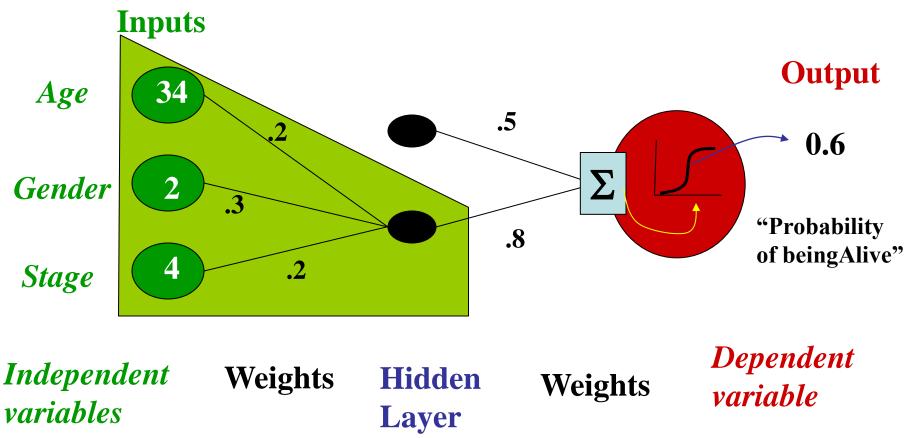
IndependentWeightsHiddenWeightsDependentvariablesLayerLayervariable

Prediction

Getting an answer from a NN

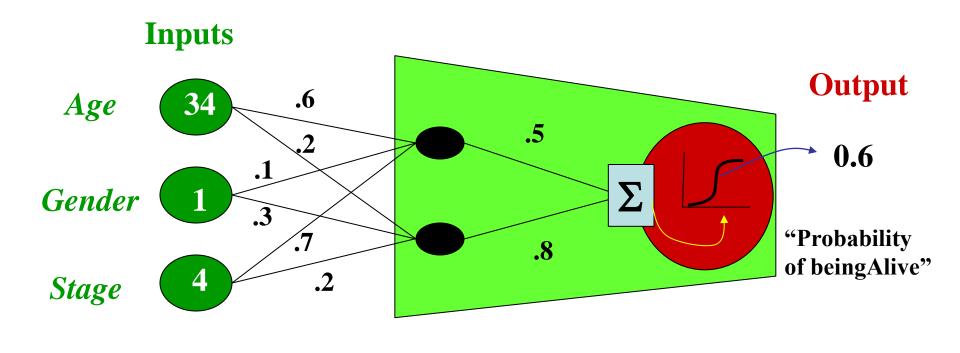


Getting an answer from a NN



Prediction

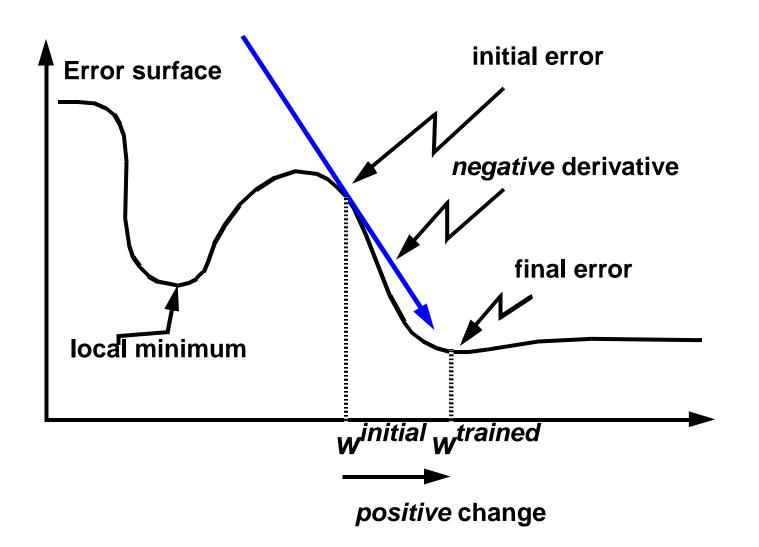
Getting an answer from a NN



IndependentWeightsHiddenWeightsDependentvariablesLayerVariable

Prediction

Minimizing the Error



Differentiability is key!

• Sigmoid is easy to differentiate

$$\frac{\partial \sigma(y)}{\partial y} = \sigma(y) \cdot (1 - \sigma(y))$$

- For gradient descent on multiple layers, a little dynamic programming can help:
 - Compute errors at each output node
 - Use these to compute errors at each hidden node
 - Use these to compute errors at each input node

The Backpropagation Algorithm

For each input training example, $\langle \vec{x}, \vec{t} \rangle$

- 1. Input instance \vec{x} to the network and compute the output o_u for every unit u in the network
- 2. For each output unit k, calculate its error term δ_k

$$\delta_k \leftarrow o_k (1 - o_k)(t_k - o_k)$$

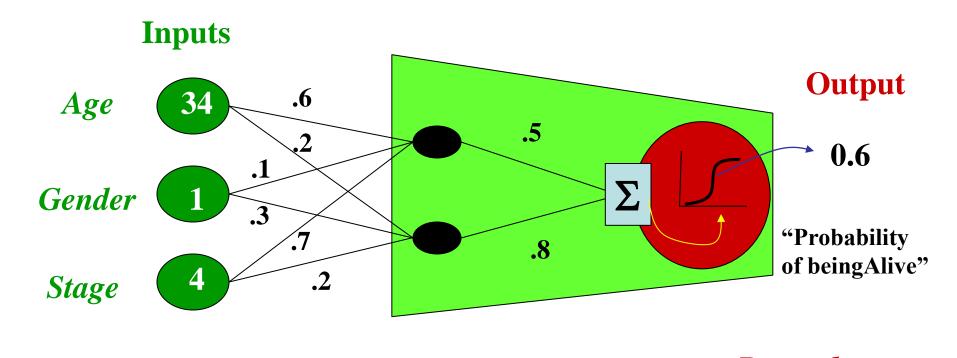
3. For each hidden unit h, calculate its error term δ_h

$$\delta_h \leftarrow O_h (1 - O_h) \sum_{k \in outputs} W_{hk} \delta_k$$

4.Updateeach network weight w_{ji}

$$w_{ji} \leftarrow w_{ji} + \eta \delta_k x_{ji}$$

Learning Weights



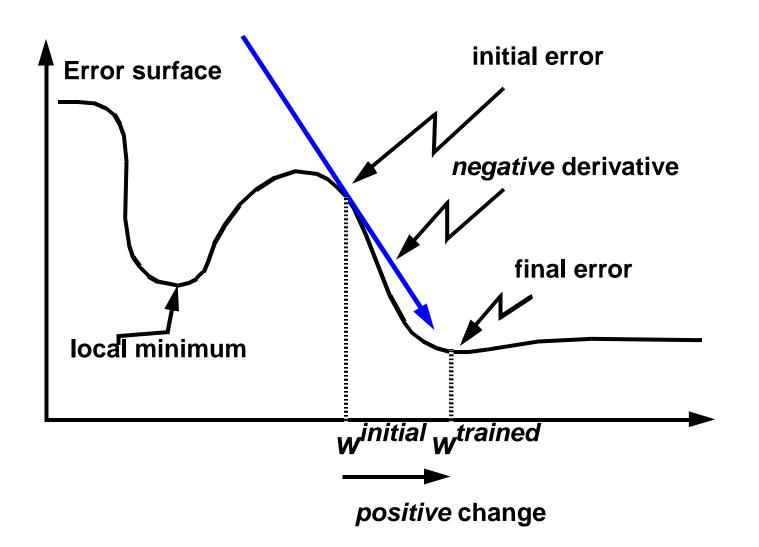
IndependentWeightsHiddenWeightsDependentvariablesLayerVariable

Prediction

The fine print

- Don't implement back-propagation
 - Use a package
 - Second-order or variable step-size optimization techniques exist
- Feature normalization
 - Typical to normalize inputs to lie in [0,1]
 - (and outputs must be normalized)
- Problems with NN training:
 - Slow training times (though, getting better)
 - Local minima

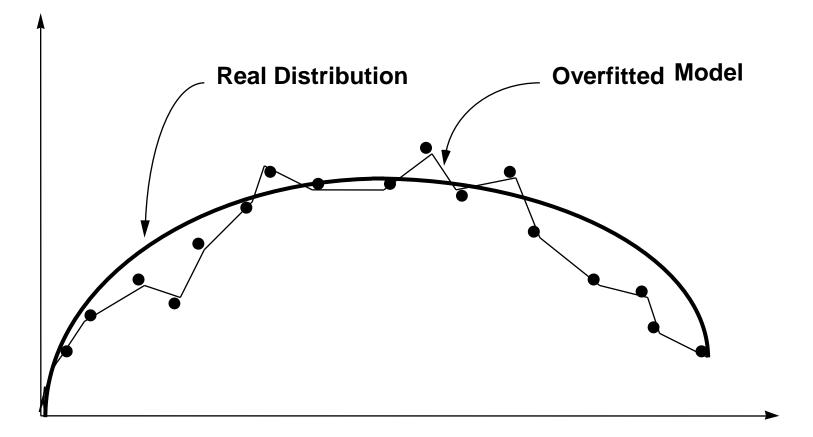
Minimizing the Error



Expressive Power of ANNs

- Universal Function Approximator:
 - Given enough hidden units, can approximate any continuous function *f*
- Need 2+ hidden units to learn XOR
- Why not use millions of hidden units?
 - Efficiency (training is slow)
 - Overfitting

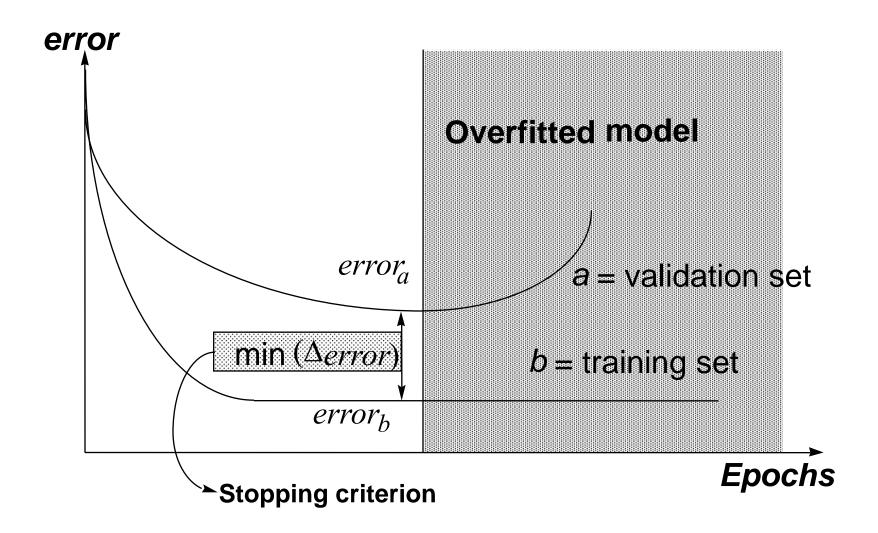
Overfitting



Combating Overfitting in Neural Nets

- Many techniques
- Two popular ones:
 - Early Stopping
 - Use "a lot" of hidden units
 - Just don't over-train
 - Cross-validation
 - Test different architectures to choose "right" number of hidden units

Early Stopping



Cross-validation

• Cross-validation: general-purpose technique for model selection

– E.g., "how many hidden units should I use?"

• More extensive version of validation-set approach.

Cross-validation

- Break training set into k sets
- For each model M
 - For **i=1...k**
 - Train M on all but set i
 - Test on set i
- Output M with highest average test score, trained on full training set

Summary of Neural Networks

When are Neural Networks useful?

- Instances represented by attribute-value pairs
 - Particularly when attributes are real valued
- The target function is
 - Discrete-valued
 - Real-valued
 - Vector-valued
- Training examples may contain errors
- Fast evaluation times are necessary

When not?

- Fast training times are necessary
- Understandability of the function is required

Summary of Neural Networks

Non-linear regression technique that is trained with gradient descent.

Question: How important is the biological metaphor?

Advanced Topics in Neural Nets

- Batch Move vs. incremental
- Auto-Encoders
- Deep Nets (briefly)
- Neural Networks on Silicon
- Neural Network language models

Incremental vs. Batch Mode

Incremental mode Gradient Descent: Do until satisfied

- \bullet For each training example d in D
 - 1. Compute the gradient $\nabla E_d[\vec{w}]$ 2. $\vec{w} \leftarrow \vec{w} - \eta \nabla E_d[\vec{w}]$

Batch mode Gradient Descent: Do until satisfied

1. Compute the gradient $\nabla E_D[\vec{w}]$

2. $\vec{w} \leftarrow \vec{w} - \eta \nabla E_D[\vec{w}]$ $E_D[\vec{w}] \equiv \frac{1}{2} \sum_{d \in D} (t_d - o_d)^2$

Incremental vs. Batch Mode

• In Batch Mode we minimize:

$$E_D[\vec{w}] \equiv \frac{1}{2} \sum_{d \in D} (t_d - o_d)^2$$

• Same as computing: $\Delta \vec{w}_D = \sum_{d \in D} \Delta \vec{w}_d$

• Then setting $\vec{w} \leftarrow \vec{w} + \Delta \vec{w}_D$

Advanced Topics in Neural Nets

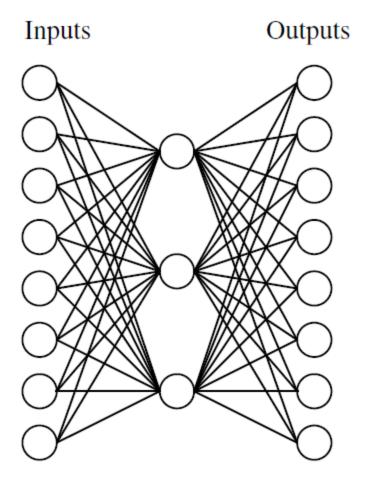
- Batch Move vs. incremental
- Auto-Encoders
- Deep Nets (briefly)
- Neural Networks on Silicon
- Neural Network language models

Hidden Layer Representations

- Input->Hidden Layer mapping:
 - representation of input vectors tailored to the task
- Can also be exploited for *dimensionality* reduction
 - Form of unsupervised learning in which we output a "more compact" representation of input vectors
 - $-<x_1, ..., x_n > -> < x'_1, ..., x'_m >$ where m < n
 - Useful for visualization, problem simplification, data compression, etc.

Dimensionality Reduction

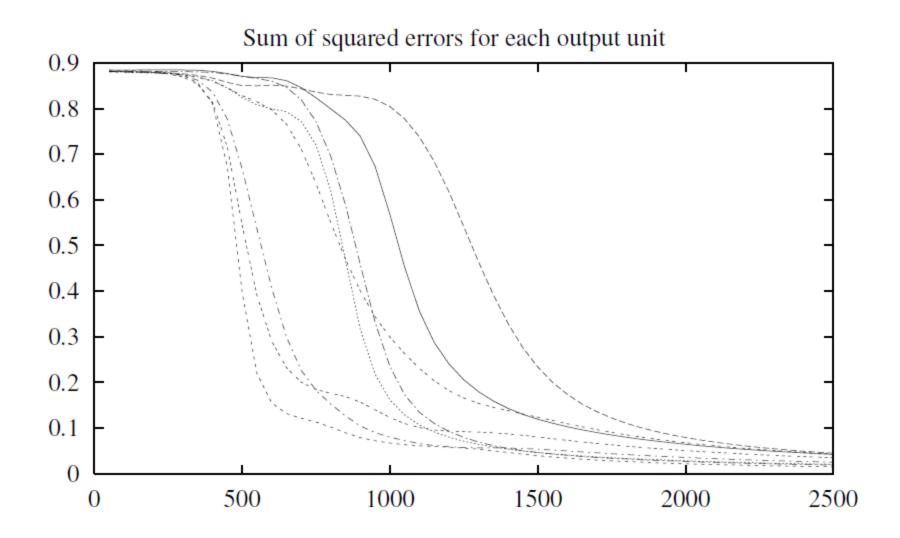
Model:

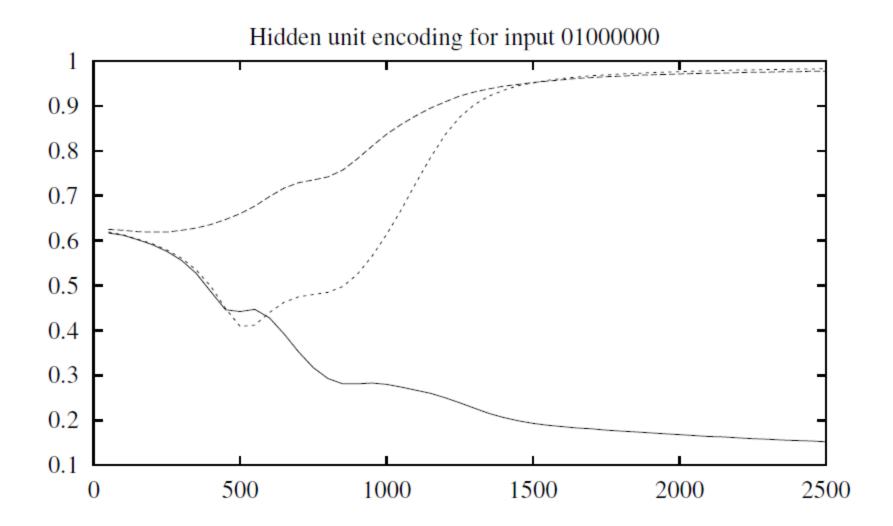


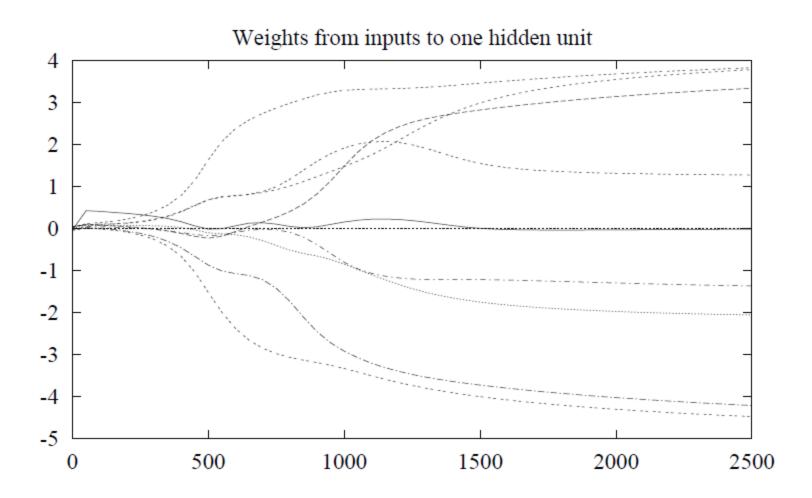
Function to learn:

Input		Output
1000000	\rightarrow	1000000
01000000	\rightarrow	0100000
00100000	\rightarrow	00100000
00010000	\rightarrow	00010000
00001000	\rightarrow	00001000
00000100	\rightarrow	00000100
0000010	\rightarrow	0000010
00000001	\rightarrow	00000001

Input		Hidden			Output		
Values							
10000000	\rightarrow	.89	.04	.08	\rightarrow	10000000	
01000000	\rightarrow	.01	.11	.88	\rightarrow	01000000	
00100000	\rightarrow	.01	.97	.27	\rightarrow	00100000	
00010000	\rightarrow	.99	.97	.71	\rightarrow	00010000	
00001000	\rightarrow	.03	.05	.02	\rightarrow	00001000	
00000100	\rightarrow	.22	.99	.99	\rightarrow	00000100	
0000010	\rightarrow	.80	.01	.98	\rightarrow	00000010	
0000001	\rightarrow	.60	.94	.01	\rightarrow	00000001	



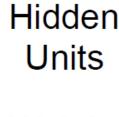




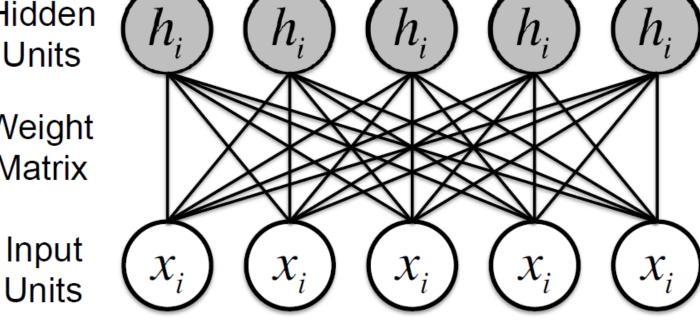
Advanced Topics in Neural Nets

- Batch Move vs. incremental
- Auto-encoders
- Deep Nets (briefly)
- Neural Networks on Silicon
- Neural Network language models

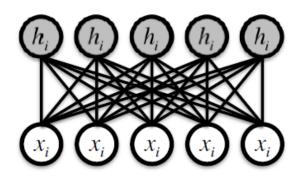
Restricted Boltzman Machine



Weight Matrix



2 layers (hidden & input) of Boolean nodes Nodes only connected to the other layer



 Setting the hidden nodes to a vector of values updates the visible nodes...and vice versa

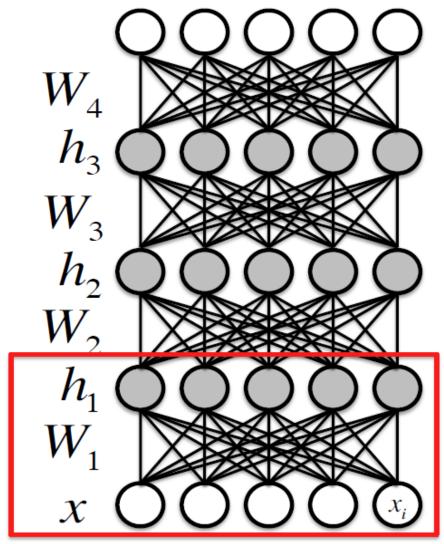
Auto-encoders vs. RBMs?

- Similar
- Auto-encoder (AE) goal is to reconstruct input in two steps, input->hidden->output
- RBM defines a probability distribution over P(**x**)
 - Goal is to assign high likelihood to the observed training examples
 - Determining likelihood of a given **x** actually requires summing over all possible settings of hidden nodes, rather than just computing a single activation as in AE
 - Take EECS 395/495 Probabilistic Graphical Models to learn more

Deep Belief Nets

- A stack of RBNS
- Trained bottom to top with Contrastive Divergence
- Trained AGAIN with supervised training (similar to backprop in MLPs)

RBN

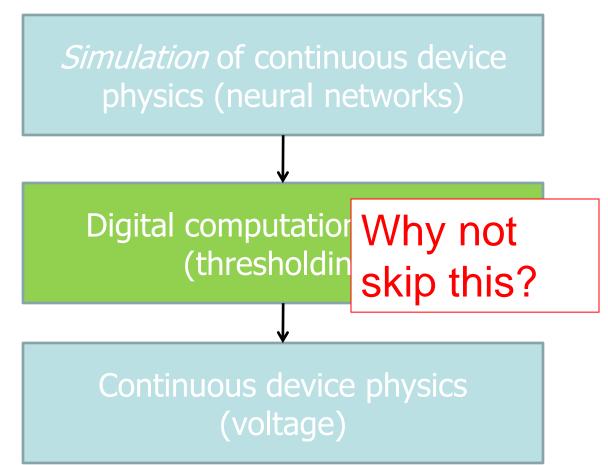


Advanced Topics in Neural Nets

- Batch Move vs. incremental
- Auto-Encoders
- Hopfield Nets
- Neural Networks on Silicon
- Neural Network language models

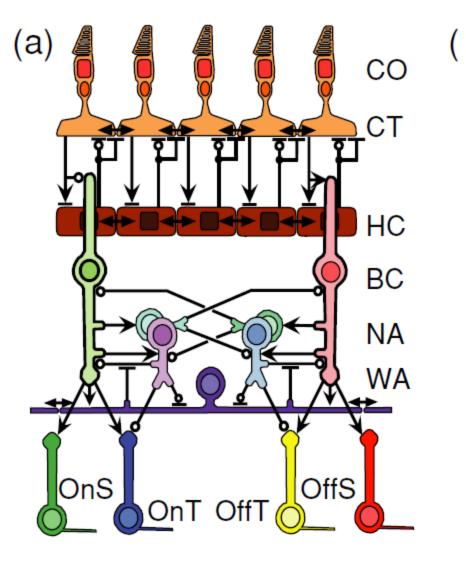
Neural Networks on Silicon

• Currently:



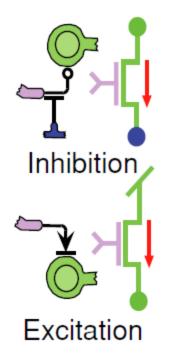
Example: Silicon Retina

Simulates function of biological retina Single-transistor synapses adapt to luminance, temporal contrast Modeling retina directly on chip => requires 100x less power!

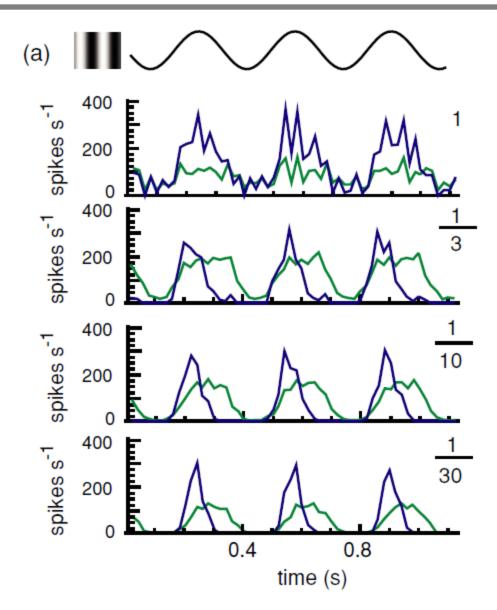


Example: Silicon Retina

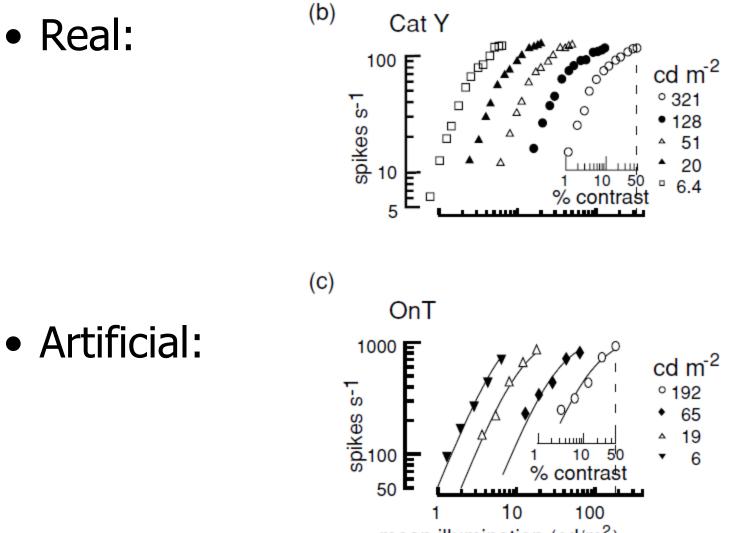
• Synapses modeled with single transistors



Luminance Adaptation



Comparison with Mammal Data



mean illumination (cd/m²)

• Graphics and results taken from:

INSTITUTE OF PHYSICS PUBLISHING

JOURNAL OF NEURAL ENGINEERING

J. Neural Eng. 3 (2006) 257-267

doi:10.1088/1741-2560/3/4/002

A silicon retina that reproduces signals in the optic nerve

Kareem A Zaghloul¹ and Kwabena Boahen^{2,3}

General NN learning in silicon?

• Seems less in-vogue than in late 90s

 In early 2000s, interest turned somewhat to implementing Bayesian techniques in analog silicon

Advanced Topics in Neural Nets

- Batch Move vs. incremental
- Hidden Layer Representations
- Hopfield Nets
- Neural Networks on Silicon
- Neural Network language models

Neural Network Language Models

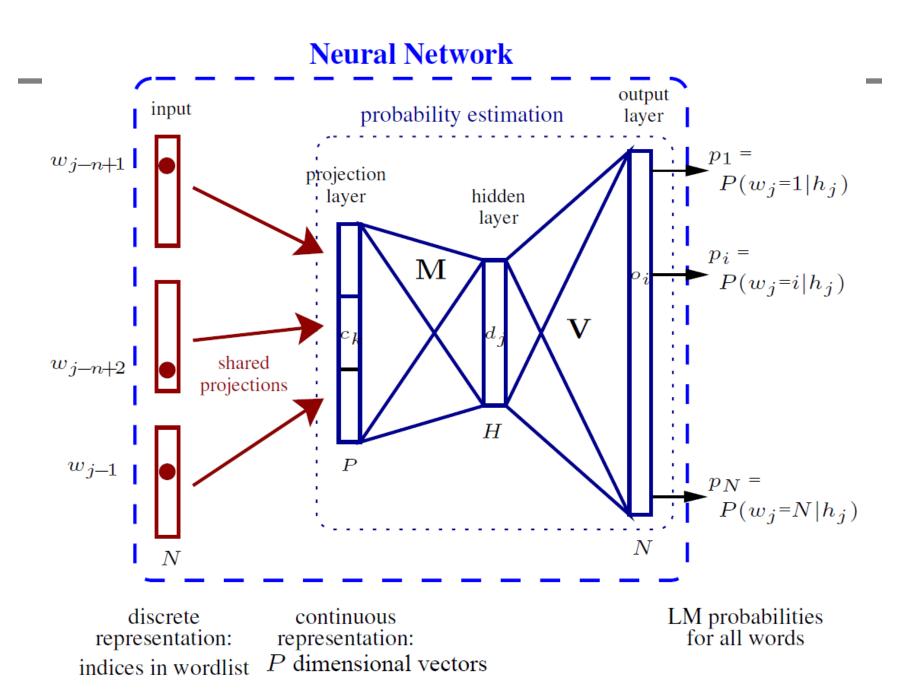
- Statistical Language Modeling:
 Predict probability of next word in sequence
 - I was headed to Madrid , _____ P(____ = "Spain") = 0.5, P(____ = "but") = 0.2, etc.
- Used in speech recognition, machine translation, (recently) information extraction

Formally

• Estimate:

$$P(w_j \mid w_{j-1}, w_{j-2}, ..., w_{j-n+1})$$

 $= P(w_j \mid h_j)$



Optimizations

- Key idea learn simultaneously:
 - vector representations of each word (here 120 dim)
 - predictor of next word. based on previous vectors
- Short-lists
 - Much complexity in hidden->output layer
 - Number of possible next words is large
 - Only predict a *subset* of words
 - Use a standard probabilistic model for the rest

Design Decisions (1)

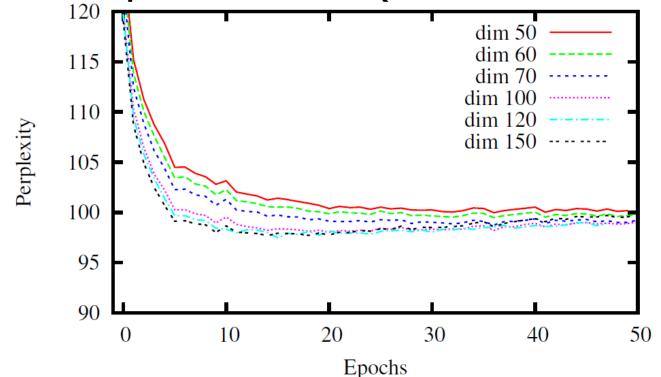
• Number of hidden units

size	400	500	600	1000*		
Tr. time	11h20	13h50	16h15	11+16h		
Px alone	100.5	100.1	99.5	94.5		
interpol.	68.3	68.3	68.2	68.0		
Werr	13.99%	13.97%	13.96%	13.92%		
* Interpolation of networks with 400 and 600						
hiddon mita						

hidden units.

Design Decisions (2)

• Word representation (# of dimensions)



• They chose 120

Comparison vs. state of the art

• Circa 2005

	Back-off LM	Neural Network LM				
Training data [#words]	600M	4M	22M	92.5M*	600	M^*
Training time [h/epoch]	-	2h40	14h	9h40	12h	$3 \times 12h$
Perplexity (NN LM alone)	-	103.0	97.5	84.0	80.0	76.5
Perplexity (interpolated LMs)	70.2	67.6	67.9	66.7	66.5	65.9
Word error rate (interpolated LMs)	14.24%	14.02%	13.88%	13.81%	13.75%	13.61%

* By resampling different random parts at the beginning of each epoch.

Schwenk, Holger, and Jean-Luc Gauvain. "Training neural network language models on very large corpora." *Proceedings of the conference on Human Language Technology and Empirical Methods in Natural Language Processing*. Association for Computational Linguistics, 2005.

Latest Results

Model	Num. Params	Training Time		Perplexity
	[billions]	[hours]	[CPUs]	
Interpolated KN 5-gram, 1.1B n-grams (KN)	1.76	3	100	67.6
Katz 5-gram, 1.1B n-grams	1.74	2	100	79.9
Stupid Backoff 5-gram (SBO)	1.13	0.4	200	87.9
Interpolated KN 5-gram, 15M n-grams	0.03	3	100	243.2
Katz 5-gram, 15M n-grams	0.03	2	100	127.5
Binary MaxEnt 5-gram (n-gram features)	1.13	1	5000	115.4
Binary MaxEnt 5-gram (n-gram + skip-1 features)	1.8	1.25	5000	107.1
Hierarchical Softmax MaxEnt 4-gram (HME)	6	3	1	101.3
Recurrent NN-256 + MaxEnt 9-gram	20	60	24	58.3
Recurrent NN-512 + MaxEnt 9-gram	20	120	24	54.5
Recurrent NN-1024 + MaxEnt 9-gram	20	240	24	51.3

Chelba, Ciprian, et al. "One billion word benchmark for measuring progress in statistical language modeling." *arXiv preprint arXiv:1312.3005* (2013).