Machine Learning

Reinforcement Learning

(slides from Bryan Pardo, Ian Horswill, thanks in part to Bill Smart at Washington University in St. Louis)
Learning Types

• Supervised learning:
 – (Input, output) pairs of the function to be learned can be perceived or are given.

 Back-propagation in Neural Nets

• Unsupervised Learning:
 – No information about desired outcomes given

 K-means clustering

• Reinforcement learning:
 – Reward or punishment for actions

 Q-Learning
Reinforcement Learning

• Task
 – Learn how to behave to achieve a goal
 – Learn through experience from trial and error

• Examples
 – Game playing: The agent knows when it wins, but doesn’t know the appropriate action in each state along the way

 – Control: a robot can measure whether it put a dish away without breaking it, but which action(s) cause success or failure?
1. Observe state, s_t
2. Decide on an action, a_t
3. Perform action
4. Observe new state, s_{t+1}
5. Observe reward, r_{t+1}
6. Learn from experience
7. Repeat

• Goal: Find a control policy that will maximize the observed rewards over the lifetime of the agent
An Example: Gridworld

• Canonical RL domain
 States are grid cells
 4 actions: N, S, E, W
 Reward for entering top right cell
 -0.01 for every other move
Mathematics of RL

• Before we talk about RL, we need to cover some background material
 – Simple decision theory
 – Markov Decision Processes
 – Value functions
 – Dynamic programming
Making Single Decisions

- Single decision to be made
 - Multiple discrete actions
 - Each action has a reward associated with it

- Goal is to maximize reward
 - Not hard: just pick the action with the largest reward

- State 0 has a value of 2
 - Sum of rewards from taking the best action from the state
Markov Decision Processes

• We can generalize the previous example to multiple sequential decisions
 – Each decision affects subsequent decisions

• This is formally modeled by a Markov Decision Process (MDP)
• Formally, a MDP is
 – A set of states, $S = \{s_1, s_2, \ldots, s_n\}$
 – A set of actions, $A = \{a_1, a_2, \ldots, a_m\}$
 – A reward function, $R: S \times A \times S \rightarrow \mathbb{R}$
 – A transition function, $P_{ij}^a = P(s_{t+1} = j | s_t = i, a_t = a)$
 • Sometimes $T: S \times A \rightarrow S$

• We want to learn a policy, $\pi: S \rightarrow A$
 – Maximize sum of rewards we see over our lifetime
Policies

- A policy $\pi(s)$ returns what action to take in state s.
- There are 3 policies for this MDP
 - Policy 1: $0 \rightarrow 1 \rightarrow 3 \rightarrow 5$
 - Policy 2: $0 \rightarrow 1 \rightarrow 4 \rightarrow 5$
 - Policy 3: $0 \rightarrow 2 \rightarrow 4 \rightarrow 5$
Comparing Policies

• Which policy is best?
• Order them by how much reward they see

Policy 1: \(0 \rightarrow 1 \rightarrow 3 \rightarrow 5 = 1 + 1 + 1 = 3\)
Policy 2: \(0 \rightarrow 1 \rightarrow 4 \rightarrow 5 = 1 + 1 + 10 = 12\)
Policy 3: \(0 \rightarrow 2 \rightarrow 4 \rightarrow 5 = 2 - 1000 + 10 = -988\)
Value Functions

• We can associate a value with each state
 – For a fixed policy
 – How good is it to run policy π from that state s
 – This is the state value function, V

$V^1(s_0) = 3$
$V^2(s_0) = 12$
$V^3(s_0) = -988$

$V^1(s_1) = 2$
$V^2(s_1) = 11$
$V^1(s_3) = 1$

$V^3(s_2) = -990$
$V^2(s_4) = 10$
$V^3(s_4) = 10$
Problems with Our Function

- Consider this MDP
 - Number of steps is now unlimited because of loops
 - Value of states 1 and 2 is infinite for some policies

\[V^1(s_0) = 1 + V^1(s_0) \]

- This is bad
 - All policies with a non-zero reward cycle have infinite value
Adding up the rewards

• We had said:
 – The reward for a policy (called the return) is just the sum of the rewards you get at every time step:
 \[R = r_1 + r_2 + r_3 + \cdots \]
 – And then look for a policy that maximizes the expected value of this sum

• But we don’t do that
 – Infinities
Discount factor

• The pure sum is **infinite** and in any case **model errors** (e.g. the agent dying) usually mean our estimates of rewards get less accurate the farther we look in the future.

• So we weight future returns less by a factor γ (the **discount rate**):
 \[R = r_1 + \gamma r_2 + \gamma^2 r_3 + \cdots \]

• And then our goal is to find a policy that **maximizes expected time-discounted reward**.
What to do??

• A (now randomized) **policy**
 \[\pi: S \times \mathcal{A} \rightarrow [0,1] \]
gives the probability of \(\pi \) running a given action in a given state

 – A **deterministic policy** \(\pi: S \rightarrow \mathcal{A} \) is a policy that in state \(s \) runs action \(\pi(s) \) always

• We want to **pick a policy** that will **maximize expected reward**

• First: how do we even compute the expected reward for a **given** policy?
Value functions

- One you decide on a given policy, π, you can compute the expected return for the policy
- We express that in terms of the **state value function** for the policy
 - $V^\pi(s)$ is the **expected return** when starting from state s and running the policy π
 \[
 V^\pi(s) = \sum_a \pi(s, a) \sum_{s'} \mathcal{P}^a_{ss'} [\mathcal{R}^a_{ss'} + \gamma V^\pi(s')] \]
 - This **averages** over
 - All possible actions π could take from state s
 - All possible successor states s' those actions could land us in
 - All possible rewards we could get from it
- And sums for each of them
 - The reward $\mathcal{R}^a_{ss'}$ you get with
 - The expected return $V^\pi(s')$ for running the policy from the resulting state s', subject to the discount rate γ
Computing V^π (aka policy evaluation)

- The naïve thing to do is just to evaluate the definition directly:
 \[V^\pi(s) = \sum_a \pi(s, a) \sum_{s'} P_{ss'}^a \left[R_{ss'}^a + \gamma V^\pi(s') \right] \]

- That is, we interpret it as a function definition:

```plaintext
V(\pi, s) {
    sum = 0;
    foreach a {
        foreach s' {
            r = R[a, s, s'] + \gamma * V(\pi, s');
            sum += \pi(s, a) * P[a, s, s'] * r;
        }
    }
    return sum;
}
```

- Of course, this code won’t work
- Why?
Computing V^π (aka policy evaluation)

- It’s an infinite recursion

```plaintext
V(\pi, s) {
    sum = 0;
    foreach a {
        foreach s' {
            r = R[a,s,s'] + \gamma * V(\pi, s');
            sum += \pi(s, a) * P[a,s,s'] * r;
        }
    }
    return sum;
}
```
Computing V^π (aka policy evaluation)

• But we can fix it by only recursing a certain number of times

• This raises the question of whether this will give us the right answer
 – We’ll get to that later

```c
V(\pi, s, k) {  
    if (k == 0) return 0;  
    sum = 0;  
    foreach a {  
        foreach s’ {  
            r = R[a,s,s’]+ \gamma*V(\pi, s’, k-1);  
            sum += \pi(s, a)*P[a,s,s’]*r;  
        }  
    }  
    return sum;  
}
```
Computing V^π (aka policy evaluation)

- But even this still has a massive problem
- Can you see what it is?

```python
V(\pi, s, k) {
    if (k == 0) return 0;
    sum = 0;
    foreach a {
        foreach s’ {
            r = R[a,s,s’] + \gamma * V(\pi, s’, k-1);
            sum += \pi(s, a)*P[a,s,s’]*r;
        }
    }
    return sum;
}
```
Computing V^π (aka policy evaluation)

It’s massively **inefficient**

- $V(\pi, s', k-1)$ gets recomputed once for each value of a
 - (each iteration of the outer loop)
- Worse, the recursive calls that those calls make get repeated too
- So if there are n different actions, then $V(\pi, s', k-i)$ gets computed n^i times
- How do we fix this?

```java
V(\pi, s, k) {
  if (k == 0) return 0;
  sum = 0;
  foreach a {
    foreach s' {
      r = R[a,s,s'] + \gamma * V(\pi, s', k-1);
      sum += \pi(s, a) * P[a,s,s'] * r;
    }
  }
  return sum;
}
```
Dynamic programming

- Compute each value of $V(\pi, s', k)$ **once only**
- Stash it in a **table**
- Use the value in the table for subsequent calls

- This is known as **top-down dynamic programming** or **memoization**
 - C.f. 214, 336, and some versions of 111

```c
V(\pi, s, k) {
  if (k == 0) return 0;
  if (table[s,k] filled in)
    return table[s,k]
  sum = 0;
  foreach a {
    foreach s’ {
      r = R[a,s,s’] + \gamma * V(\pi, s’, k-1);
      sum += \pi(s, a)*P[a,s,s’]*r;
    }
  }
  table[s,k] = sum;
  return sum;
}
```
Dynamic programming

- However, since we know we’ll end up computing all the entries in table[s,k] anyway, why bother with the annoying recursion?
 - Just compute all the entries for table[s,0]
 - Then compute all the entries for table[s,1]
 - Then compute all the entries for table[s,2]
 - Etc.

\[
V(\pi, s, k) \{
 \text{if } (k == 0) \text{ return } 0;
 \text{if } (\text{table}[s,k] \text{ filled in})
 \quad \text{return } \text{table}[s,k]
 \text{sum} = 0;
 \text{foreach } a \{
 \text{foreach } s' \{
 r = R[a,s,s'] + \gamma * V(\pi, s', k-1);
 \text{sum += } \pi(s, a) * P[a,s,s'] * r;
 \}
 \}
 \text{table}[s,k] = \text{sum};
 \text{return sum;}
\}
\]
Dynamic programming

- Here’s the code

- Just call this, and then the estimated values of V are all in \(\text{table}[s, k] \)

- This is known as **bottom-up dynamic programming**

```cpp
FillTable() {
    foreach s
        table[s,0]=0
    for i=1 to k
        foreach s {
            sum = 0;
            foreach a {
                foreach s' {
                    r = R[a,s,s']+ \gamma*V(\pi, s', k-1);
                    sum += \pi(s, a)*P[a,s,s']*r;
                }
                table[s,k] = sum;
            }
        }
}
```
Dynamic programming

• Dynamic programming was originally invented by Bellman for solving MDPs

• It was called dynamic programming because
 – Programming in those days meant optimization
 – He solved an optimization involving time
 – He thought the word dynamic made it sound more impressive (no, really!)

```java
public static void FillTable()
{
    foreach s
        table[s,0]=0
    for i=1 to k
        foreach s {
            sum = 0;
            foreach a {
                foreach s’ {
                    r = R[a,s,s’]+ γ*V(π, s’, k-1);  
                    sum += π(s, a)*P[a,s,s’]*r;
                }
                table[s,k] = sum;
            }
        }
}
```
Getting back to the equations…

- We’re trying to compute
 \[
 V^\pi(s) = \sum_a \pi(s, a) \sum_{s'} P_{ss'}^a [R_{ss'}^a + \gamma V^\pi(s')] \]

- And we basically said we could compute it by computing
 \[
 V_k^\pi(s) = \sum_a \pi(s, a) \sum_{s'} P_{ss'}^a [R_{ss'}^a + \gamma V_{k-1}^\pi(s')] \]

- For large values of \(k \)
- This was Bellman’s original formulation
Finding the optimal policy

• The **optimal state value function** would be the one that does whatever the best policies do in any given state:
 \[V^*(s) = \max_\pi V^\pi(s) \]

• If we knew what \(V^* \) was, we could compute an **optimal action-state value function** for it:
 \[Q^*(s, a) = Q^{\pi^*}(s, a) = \sum_{s', a'} P^a_{ss'} [R^a_{ss'} + \gamma V^*(s')] \]

• And back-solve the **optimal policy** from that:
 \[\pi^*(s, a) = \begin{cases} 1, & a = \max_{a'} Q^*(s, a') \\ 0, & \text{otherwise} \end{cases} \]
Bellman’s optimality criteria

- Bellman showed that the **optimal value function** is one that does what the **optimal policy** does for any given state:

\[
V^*(s) = \max_a Q^\pi^*(s, a)
\]

\[
= \max_a \sum_{s'} P_{ss'}^a \left[R_{ss'}^a + \gamma V^*(s') \right]
\]
Value iteration

- So we can approximate V^* using the same dynamic programming trick used for policy evaluation:

$$V^*(s) = \lim_{k \to \infty} V_k(s)$$

$$V_k(s) = \max_a \sum_{s'} P_{ss'}^a [R_{ss'}^a + \gamma V_{k-1}(s')]$$
Value iteration

Initialize V arbitrarily, e.g., $V(s) = 0$, for all $s \in S^+$

Repeat
\[\Delta \leftarrow 0 \]
For each $s \in S$:
\[v \leftarrow V(s) \]
\[V(s) \leftarrow \max_a \sum_{s'} P_{ss'}^a [R_{ss'}^a + \gamma V(s')] \]
\[\Delta \leftarrow \max(\Delta, |v - V(s)|) \]
until $\Delta < \theta$ (a small positive number)

Output a deterministic policy, π, such that
\[\pi(s) = \arg \max_a \sum_{s'} P_{ss'}^a [R_{ss'}^a + \gamma V(s')] \]
Conclusion

• Value iteration gives us a **greedy** policy provided we have a **perfect model** of the world
 – In the form of $P^a_{ss'}$ and $R^a_{ss'}$

• Next time we’ll look at **learning policies from experience** without assuming a prior model
Recall

- Optimal “value function”:

\[
V^*(s) = \lim_{k \to \infty} V_k(s)
\]

\[
V_k(s) = \max_a \sum_{s'} P^a_{ss'} [R^a_{ss'} + \gamma V_{k-1}(s')]
\]
Learning from Experience

• We need
 – Model of the world \(P_{ss'} \)
 – Reward model \(R_{ss'} \)

• How do we get them?
 – One option, we write them down
 • Design reward function, physical model, etc.
 – What about uncertain environments? => LEARN
Gee, it’s easy

• Collect experience by moving through the world
 – $s_0, a_0, r_1, s_1, a_1, r_2, s_2, a_2, r_3, s_3, a_3, r_4, s_4, a_4, r_5, s_5, \ldots$

• Use these to estimate world, reward models

• Solve for the optimal value function

• Compute the optimal policy from it
Example

From Russell and Norvig
What’s wrong with that?

- Intractable for all but the simplest problems
- Spends a ton of time in low-value states
Let’s start with tractability

• Do we really have to learn $P^a_{ss'}$?

• Related question – you may be able to play Pac-Man. Does that mean you’ve computed the stochastic model underlying Pac-Man?
 – No.

• Idea: learn what to do next, *without* world model
TD(0)-Learning Algorithm

• Input – a **fixed** policy π to evaluate
• Initialize $V^\pi(s)$ to 0
• For each ‘episode’ (episode = series of actions)
 – Repeat until out of actions:
 1. Observe state s
 2. Perform action according to the policy $\pi(s)$
 3. $V(s) \leftarrow (1-\alpha)V(s) + \alpha[r + \gamma V(s')]$
 4. $s \leftarrow s'$

r = reward
α = learning rate
γ = discount factor

Note: this formulation is from Sutton & Barto’s “Reinforcement Learning”
• TD(0)’s $V(s)$ estimate will converge to $V^\pi(s)$
 – After an infinite number of experiences
 – If we decay the learning rate s.t.:
 \[\sum_{t=0}^{\infty} \alpha_t = \infty \quad \sum_{t=0}^{\infty} \alpha_t^2 < \infty \]
 – …so
 \[\alpha_t = \frac{c}{c + t} \text{ will work} \]

• => We can get $V^\pi(s)$ more tractably… but $V^*(s)$?
 – And we’re still spending lots of time in low-val states
Exploration vs. Exploitation

• We want to pick good actions most of the time, but also do some exploration
• Exploring means we can learn better policies
• But, we want to balance known good actions with exploratory ones
• This is called the exploration/exploitation problem
Let’s Explore! And exploit

- **On-policy algorithms**
 - Final policy is influenced by the exploration policy
 - Generally, the exploration policy needs to be “close” to the final policy
 - Can get stuck in local maxima

- **Off-policy algorithms**
 - Final policy is independent of exploration policy
 - Can use arbitrary exploration policies
 - Will not get stuck in local maxima
We’ll learn Q

• Rather than $V^*(s)$, we’ll learn:
 – $Q(s, a) = \text{the expected utility of taking a particular action } a \text{ in state } s$
Picking Actions

\(\varepsilon \)-greedy
- Pick best (greedy) action with probability \(\varepsilon \)
- Otherwise, pick a random action

- Boltzmann (Soft-Max)
 - Pick an action based on its Q-value

\[
P(a | s) = \frac{\text{e}^{\left(\frac{Q(s, a)}{\tau}\right)}}{\sum_{a'} \text{e}^{\left(\frac{Q(s, a')}{\tau}\right)}}
\]

...where \(\tau \) is the “temperature”
Two methods

• SARSA (on-policy)
• Q-learning (off-policy)
SARSA

- SARSA iteratively approximates the state-action value function, Q
 - SARSA learns the policy and the value function simultaneously

- Keep an estimate of Q(s, a) in a table
 - Update these estimates based on experiences
 - Estimates depend on the exploration policy
 - SARSA is an on-policy method
 - Policy is derived from current value estimates
SARSA Algorithm

1. Initialize $Q(s, a)$ to small random values, $\forall s, a$
2. Observe state, s
3. $a \leftarrow \pi(s)$
 (policy derived from Q, e.g. ϵ-greedy)
4. Observe next state, s', and reward, r
5. $Q(s, a) \leftarrow (1-\alpha)Q(s, a) + \alpha(r + \gamma Q(s', \pi(s')))$
6. Go to 2

- $0 \leq \alpha \leq 1$ is the learning rate
 - We should decay this, just like TD
Q-Learning

- Q-learning iteratively approximates the state-action value function, Q
 - Like SARSA, we won’t estimate a world model
 - Learns the value function and policy simultaneously

- Keep an estimate of Q(s, a) in a table
 - Update these estimates as we gather more experience
 - Estimates do not depend on exploration policy
 - Q-learning is an off-policy method

[Watkins & Dayan, 92]
Q-Learning Algorithm

1. Initialize $Q(s, a)$ to small random values, $\forall s, a$ (what if you make them 0? What if they are big?)
2. Observe state, s
3. Pick action a using policy derived from Q
4. Observe next state, s', and reward, r
5. $Q(s, a) \leftarrow (1 - \alpha)Q(s, a) + \alpha(r + \gamma \max_{a'}Q(s', a'))$
6. $s \leftarrow s'$
7. Go to 2

$0 \leq \alpha \leq 1$ is the learning rate & we should decay α, just like in TD
This formulation is from Sutton & Barto’s “Reinforcement Learning”
Q-learning vs. SARSA

• SARSA:
 – $Q(s, a) \leftarrow (1-\alpha)Q(s, a) + \alpha(r + \gamma Q(s', \pi(s')))$

• Q-learning:
 – $Q(s, a) \leftarrow (1 - \alpha)Q(s, a) + \alpha(r + \gamma \max_{a'}Q(s', a'))$

• In both algorithms, actions chosen according to the Q being learned (exploit while exploring)…
 – So why is Q-learning “off-policy”?
Reinforcement Learning for Robotics?

• Challenges
 – Actions have physical consequences
 – State-action space is continuous/high-dim
 • Sparse! And, how to get $\max_{a'}()$?
 – Bottom line: RL not feasible in robots w/out modifications

• Good news
 – Good framework to start with
 – Parallel to human/animal learning
 • (vs. input/output pairs in supervised learning)
 – Modifications have been developed to port RL to robots