Support Vector Machines

EECS 349 Spring 2015

Support Vector Machines

The Learning Problem

- Set of *m* training examples: (\mathbf{X}_i, y_i)
- Where $\mathbf{x}_i \in \mathbf{R}^n$ $y_i \in \{-1,1\}$

SVMs are perceptrons that work in a derived feature space and maximize margin.

Perceptrons

A linear learning machine, characterized by a vector of real-valued weights **w** and bias *b*:

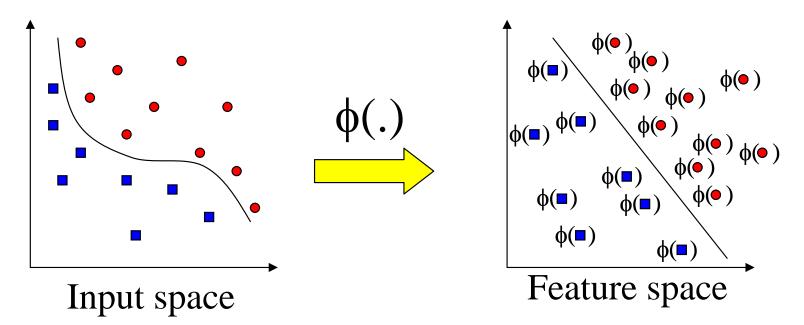
$$f(\mathbf{x}) = \operatorname{sgn}(\mathbf{w} \cdot \mathbf{x} + b)$$

Learning algorithm – repeat until no mistakes are made:

for
$$i = 1$$
 to m
if $y_i (\mathbf{w} \cdot \mathbf{x}_i + b) \le 0$
 $\mathbf{w} \leftarrow \mathbf{w} + \eta y_i \mathbf{x}_i$
 $b \leftarrow b + \eta y_i$

Derived Features

Linear Perceptrons can't represent XOR. Solution –map to a derived feature space:



Derived Features

With the derived feature x_1x_2 , XOR becomes linearly separable!

...maybe for another problem, we need $x_1^{7} x_2^{12}$

Large feature spaces =>

- Inefficiency
- 2) Overfitting

Perceptrons (dual form)

- w is a linear combination of training examples, and
- Only really need **dot products** of feature vectors

Standard form:

for
$$i = 1$$
 to m
if $y_i (\mathbf{w} \cdot \mathbf{x}_i + b) \le 0$
 $\mathbf{w} \leftarrow \mathbf{w} + \eta y_i \mathbf{x}_i$
 $b \leftarrow b + \eta y_i$

Dual form:

for
$$i = 1$$
 to m

if $y_i \left(\sum_{j=1}^m \alpha_j y_j (\mathbf{x}_j \cdot \mathbf{x}_i) + b \right) < 0$
 $\alpha_i \leftarrow \alpha_i + \eta$
 $b \leftarrow b + \eta y_i$

Kernels (1)

In the dual formulation, features only enter the computation in terms of dot products:

$$f(\mathbf{x}_i) = \left(\sum_{j=1}^l \alpha_j y_j(\mathbf{x}_j \cdot \mathbf{x}_i) + b\right)$$

In a derived feature space, this becomes:

$$f(\mathbf{x}_{i}) = \left(\sum_{j=1}^{l} \alpha_{j} y_{j} (\phi(\mathbf{x}_{j}) \cdot \phi(\mathbf{x}_{i})) + b\right)$$

Kernels (2)

The kernel trick – find an easily-computed function K such that: $K(\mathbf{x}_i, \mathbf{x}_i) = \phi(\mathbf{x}_i) \cdot \phi(\mathbf{x}_i)$

K makes learning in feature space efficient:

$$f(\mathbf{x}_{i}) = \left(\sum_{j=1}^{m} \alpha_{j} y_{j} K(\mathbf{x}_{j}, \mathbf{x}_{i}) + b\right)$$

We avoid explicitly evaluating $\phi(\mathbf{x})!$

Kernel Example

Let
$$K(\mathbf{x}, \mathbf{x}') = (\mathbf{x} \cdot \mathbf{x}')^2$$

 $K([x_1, x_2] \cdot [x'_1, x'_2]) = ([x_1, x_2] \cdot [x'_1, x'_2])^2$
 $= (x_1 x'_1 + x_2 x'_2)^2$
 $= x_1 x'_1 x_1 x'_1 + 2 x_1 x'_1 x_2 x'_2 + x_2 x'_2 x_2 x'_2$
 $= x_1^2 x'_1^2 + 2 x_1 x_2 x'_1 x'_2 + x_2^2 x'_2^2$
 $= ([x_1^2, \sqrt{2} x_1 x_2, x_2^2] \cdot [x'_1^2, \sqrt{2} x'_1 x'_2, x'_2^2])$
 $= \phi([x_1, x_2]) \cdot \phi([x'_1, x'_2])$

Where: $\phi([x_1, x_2]) = [x_1^2, \sqrt{2}x_1x_2, x_2^2]$... (we can do XOR!)

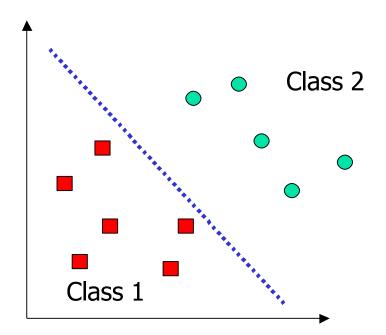
Kernel Examples

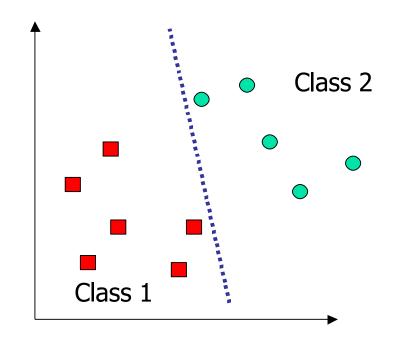
$$K(\mathbf{x}, \mathbf{x}') = (\mathbf{x} \cdot \mathbf{x}' + 1)^d$$
 -- Polynomial Kernel (hypothesis space is all polynomials up to degree d). VC dimension gets large with d .

$$K(\mathbf{x}, \mathbf{x}') = e^{-\|\mathbf{x} - \mathbf{x}'\|^2/\sigma^2}$$
 -- Gaussian Kernel (hypotheses are 'radial basis function networks'). VC dimension is infinite.

With such high VC dimension, how can SVMs avoid overfitting?

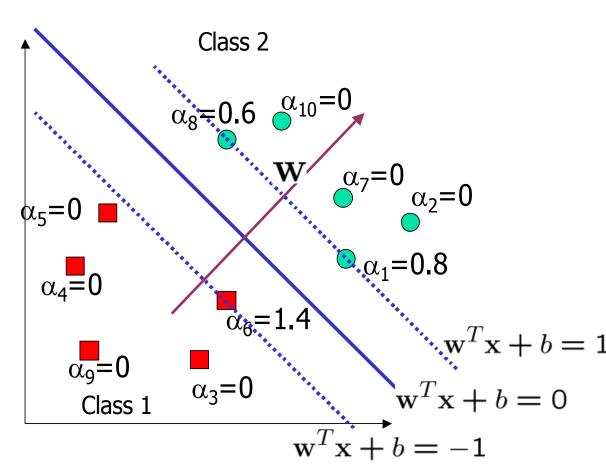
'Bad' separators





Margin

Margin – minimum distance between the separator and an example.
Hence, only some examples (the 'support vectors') actually matter.

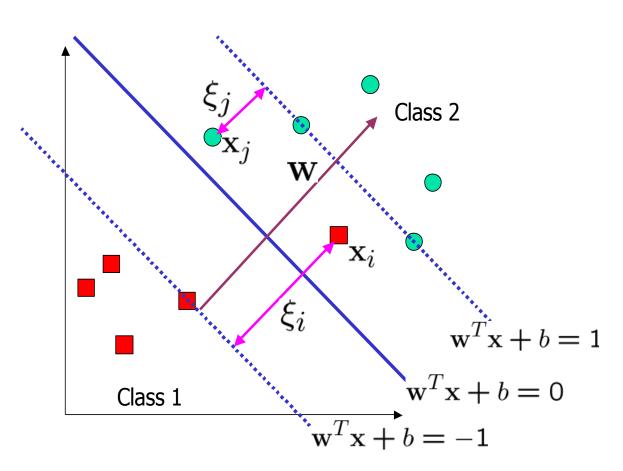


(from http://www.cse.msu.edu/~lawhiu/intro_SVM.ppt)

Slack Variables

What if data is not separable?

Slack variables –
allow training
points to move
normal to
separating
hyperplane with
some penalty.



(from http://www.cse.msu.edu/~lawhiu/intro_SVM.ppt)

Avoiding Overfitting

- PAC bounds can be found in terms of margin (instead of VC dimension).
- Thus, SVMs find the separating hyperplane of maximum margin.
- (Burges, 1998) gives an example in which performance improves for Gaussian kernals when σ is chosen according to a generalization bound.

Finding the maximum margin hyperplane

Minimize
$$\|\mathbf{w}\|^2 + C(\sum_i \xi_i)$$

Subject to the constraints that

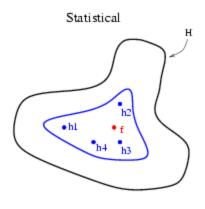
$$\mathbf{x}_{i} \cdot \mathbf{w} + b \ge +1 - \xi_{i}$$
 for $y_{i} = +1$
 $\mathbf{x}_{i} \cdot \mathbf{w} + b \le -1 + \xi_{i}$ for $y_{i} = -1$
 $\xi_{i} \ge 0$

This can be expressed as a convex quadratic program.

Flashforward to Boosting

One justification for boosting –averaging over several hypotheses h helps to find the true concept f.

Similar to f having maximum margin — indeed, boosting does maximize margin.



From (Dietterich, 2000)

Fine Print

Minimize
$$\|\mathbf{w}\|^2 + C(\sum_i \xi_i)$$

- We have to choose C
- We also have to choose our kernel and its parameters (e.g. Gaussian width)
- Use cross validation!

References

- Martin Law's tutorial, *An Introduction to Support Vector Machines:*http://www.cse.msu.edu/~lawhiu/intro_SVM.ppt
- (Christianini and Taylor, 1999) Nello Cristianini, John Shawe-Taylor, An introduction to support Vector Machines: and other kernelbased learning methods, Cambridge University Press, New York, NY, 1999
- (Burges, 1998) C. J. C. Burges, *A tutorial on support vector machines for pattern recognition*," Data Mining and Knowledge Discovery, vol. 2, no. 2, pp. 1-47, 1998
- (Dietterich, 2000) Thomas G. Dietterich, Ensemble Methods in Machine Learning, Proceedings of the First International Workshop on Multiple Classifier Systems, p.1-15, June 21-23, 2000

