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Overview

» Hypothesis Testing: How do we know our learners are
(‘good” ?
What does performance on test data imply/guarantee about future
performance?

» Computational Learning Theory:Are there general laws
that govern learning?

Sample Complexity: How many training examples are needed to
learn a successful hypothesis!?

Computational Complexity: How much computational effort is
needed to learn a successful hypothesis?



Some terms

X 1s the set of all possible instances

C IS the set of all possible concepts ¢
where c: X — {0,1}

H 1s the set of hypotheses considered
by a learner, H < C

L is the learner

D is aprobability distribution over X

that generates observed instances



Definition

» The true error of hypothesis h, with respect to the
target concept ¢ and observation distribution D is the

probability that h will misclassify an instance drawn
according to D

P [c(x) # h(x)]

XxeD

error,

» In a perfect world, we'd like the true error to be 0



Definition

» The sample error of hypothesis h, with respect to
the target concept ¢ and sample S is the proportion
of S that that h misclassifies:

errorg(h) = 1/|S| .5 & (c(x), h(x))

where 0 (c(x), h(x)) = 0 if c¢(x) = h(x),
| otherwise



Problems Estimating Error

1. Bias: If S is training set, errors(h) is
optimistically biased

bias = Elerrors(h)] — errorp(h)
For unbiased estimate. A and S must be chosen
independently

2. Variance: Even with unbiased S, errors(h) may
still vary from errorp(h)



Example on Independent Test Set

Hypothesis h misclassifies 12 of the 40 examples in

S
] 12
rrorg(h) = == = .30
errors(h) 10

What is errorp(h)?



Estimators

Experiment:

1. choose sample S of size n according to
distribution D

2. measure errors(h)

errors(h) is a random variable (i.e., result of an
experiment)

errors(h) is an unbiased estimator tor errorp(h)

Given observed errorg(h) what can we conclude
about errorp(h)?



Confidence Intervals

It

e S contains n examples. drawn independently of
h and each other

e n > 30 and n*error¢(h), n*(1-error¢(h)) each > 5
Then

e With approximately 95% probability, errorp(h)
lies in interval

errors(h)(1 — errorg(h
errors(h) £ 1'96\ errors(h) errors(h))
n



Confidence Intervals

» Under same conditions...

e With approximately N% probability, errorp(h)
lies in interval

-f.‘.'-'f"'f"()'f" y h- 1 — CTTrorg h-
rvors(i) & oy TSN —crrors(h)
\ n
where
zy: 10.67 1.00 1.28 1.64 1.96 2.33 2.58




Life Skills

» “Convincing demonstration” that certain enhancements
improve performance!

» Use online Fisher Exact or Chi Square tests to evaluate
hypotheses, e.g:


http://people.ku.edu/~preacher/chisq/chisq.htm

Overview

» Computational Learning Theory:Are there general laws
that govern learning?

Sample Complexity: How many training examples are needed to
learn a successful hypothesis!?

Computational Complexity: How much computational effort is
needed to learn a successful hypothesis?



Computational Learning Theory

» Are there general laws that govern learning?

No Free Lunch Theorem: The expected accuracy of any
learning algorithm across all concepts is 50%.

» But can we still say something positive?
Yes.
Probably Approximately Correct (PAC) learning



The world isn’t perfect

» If we can’t provide every instance for training, a consistent
hypothesis may have error on unobserved instances.

Instance Space X

Hypothesis H

\s- _—’
i

Concept C

» How many training examples do we need to bound the
likelihood of error to a reasonable level?

When is our hypothesis Probably Approximately Correct (PAC)?



Definitions

» A hypothesis is consistent if it has zero error on training
examples

» The version space (VS ) is the set of all hypotheses
consistent on training set T in our hypothesis space H

(reminder: hypothesis space is the set of concepts we're
considering, e.g. depth-2 decision trees)



Definition: €-exhausted

IN ENGLISH:
The set of hypotheses consistent with the training data

T is &exhausted if, when you test them on the actual
distribution of instances, all consistent hypotheses have
error below ¢

IN MATH:
VS

H,T

IS ¢ - exhausted for concept c

and sample distributi on D, If....

V h e VS error ,(h) < ¢

HT



A Theorem

If hypothesis space H is finite, & training
set T contains m independen t randomly

drawn examples of concept c

THEN, for any 0 <¢ <1..

is NOT ¢ -exhausted) < [H]e ™"

T

P(VS



Prootf of Theorem

If hypothesis h has true error &,the probabilit y of it

getting a single random exampe right Is :

P(h got 1example right) =1-¢

Ergo the probabilit y of h getting m examples right is:

P(h got m examples right) = (1-¢)"



Proof of Theorem
If there are k hypotheses in H with error at least

g, call the probabilit y at least of those k hypotheses

got m instances right P(at least one bad h looks good ).

This prob. is BOUNDED by k(1-¢)"

P(at least one bad h looks good )< k(1-¢)"

“Union’’ bound



Prootf of Theorem (continued)

Since k <|H| it follows that k(l-¢)™ <|H|(1-¢)"
If 0<e<1,then 1-¢g)<e”

Therefore.

P (at least one bad h looks good ) < k(1-¢)" < ‘H‘(l—g)m < ‘H‘e—gm

Proof complete!
We now have a bound onthe likelihood that a
hypothsesi s consistent withthe training data

will have error > ¢



Using the theorem

Let' s rearrange to see
how manytrain ing
examples we nheed
to set a bound o on
the likeltihood our

true error IS €.




Probably Approximately Correct (PAC)

S (n(H)-n(s) < m

&

The likelihood a
hypothesis consistent
with the training data

The worst error hypothesis
we'll tolerate space size

will have error ¢

number of training examples



Using the bound

= (In(H))- ()< m

&

Plug in & 0, and H to get a number of training examples m that
will “guarantee” your learner will generate a hypothesis that is
Probably Approximately Correct.

NOTE:This assumes that the concept is actually IN H, that H is finite,
and that your training set is drawn using distribution D
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Average accuracy of any learner across

all concepts is 50%, but also:
1

=(In(|H])-In(5))< m

E
How can both be true!?

Think |

Start End
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Average accuracy of any learner across
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1
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E
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Average accuracy of any learner across
all concepts is 50%, but also:

1

=(In(|H])-In(5))< m

E
How can both be true!?

Share

26



Problems with PAC
» The PAC Learning framework has 2 disadvantages:

l) It can lead to weak bounds

2)Sample Complexity bound cannot be established for infinite
hypothesis spaces

» We introduce the VC dimension for dealing with
these problems



Shattering

Def: A set of instances S is shattered by hypothesis set H iff
for every possible concept ¢ on S there exists a hypothesis h in

H that is consistent with that concept.




Can a linear separator shatter this?

NO!
®@ o

The ability of H to shatter a set of instances is a measure
of its capacity to represent target concepts defined over
those instances



Can a quadratic separator shatter this?




Can a quadratic separator shatter this?

®@ o
Think |

Start End




Can a quadratic separator shatter this?

O @
Pair |

Start End




Can a quadratic separator shatter this?

Share



Vapnik-Chervonenkis Dimension

Def: The Vapnik-Chervonenkis dimension, VC(H) of
hypothesis space H defined over instance space X is the
size of the largest finite subset of X shattered by H. If
arbitrarily large finite sets can be shattered by H, then

VC(H) is infinite.



How many training examples needed?

» Upper bound on m using VC(H)

m > £(4Iog2(2/5)+8VC (H)log ,(13/¢))
E



Infinite VC dimension?
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What kind of classifier (that we've talked
about) has infinite VC dimension!?

Think

Start End
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What kind of classifier (that we've talked
about) has infinite VC dimension!?

Pair

Start End
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What kind of classifier (that we've talked
about) has infinite VC dimension!?

Share



