
EECS 349 Problem Set 2

Due 11:59PM Friday, May 1

Overview

In this assignment you will work in groups of 2 or 3 to implement a decision tree learning

algorithm and apply it to a synthetic dataset. You will also implement a pruning strategy in your

algorithm. You will be given labeled training data, from which you will generate a model. You

will be given labeled validation data, for which you will report your model's performance. You

will also be given individualized unlabeled test data for which you will generate predictions.

Submission Instructions

Each student should turn in their own copy of the homework. You can work together on the

code, but you should write-up your answers to the questions independently. Here is how James

Bond would submit the homework. Please adjust for your own name:

1. Create a single PDF file with your answers to the questions below. Name this file

PS2-James-Bond.pdf.

2. Create a directory (i.e. a folder) named PS2-James-Bond.code that contains your source

code.

3. Create a file named README that explains how to build and run your code.

4. Run your code on test test file and output a file in the same format, but with your predicted

labels in the last column. Name this file PS2-James-Bond.csv.

5. Create a ZIP file named PS2-James-Bond.zip containing:

◦ PS2-James-Bond.pdf

◦ PS2-James-Bond.code (directory)

◦ README

◦ PS2-James-Bond.csv

6. Ensure that the zip file contains all of your source code.You may have to tell the ZIP utility

explicitly to include the contents of the subdirectory containing your code.

7. Turn in your code under Problem Set 2 in Canvas.

Download the Dataset

The dataset files are here:

• btrain.csv (labeled training set, 50000 instances)

• bvalidate.csv (labeled validation set, 10000 instances)

• btest.csv (unlabeled test set, 10000 instances)

The dataset is from a synthesized (and therefore fictitious) database of 70,000 baseball games

played between two rival teams. Each line of text contains the following information about the

http://www.cs.northwestern.edu/~ddowney/courses/349_Spring2015/btrain.csv
http://www.cs.northwestern.edu/~ddowney/courses/349_Spring2015/bvalidate.csv
http://www.cs.northwestern.edu/~ddowney/courses/349_Spring2015/btest.csv

game:

• Winning percentage of one team : numeric

• Winning percentage of the opposing team : numeric

• Weather : nominal

• Temperature: numeric

• # of injured players on one team: numeric

• # of injured players on the other team: numeric

• Starting pitcher: nominal

• Opposing starting pitcher: nominal

• Days since one team’s last game: numeric

• Days since the other team’s last game: numeric

• Whether it’s a home or away game (for the first team): nominal

• Run differential for first team: numeric

• Run differential for second team: numeric

• Winner : binary (0 or 1)

The class label is given by the winner attribute. This is a binary classification problem with

numeric and nominal attributes. Some attribute values are missing (as might happen in a

real-world scenario). These values are indicated by a "?" in the file. In the test files the class

labels are missing, and these missing labels are also indicated by a "?". The test sets are all drawn

from the same distribution as the training and validation sets.

If you want, you can imagine that the task is to predict the winner of a baseball game that will be

played under the conditions described by each line. However, it’s not advised to read too much

into the meaning of each attribute, since the data is fictional.

Implementation

For this assignment you will implement a decision tree algorithm in the language of your choice.

In particular, you should not use Weka or any other existing framework for generating decision

trees. You are free to choose how your algorithm works. Your program must be able to:

1. Read the training data file and generate a decision tree model.

2. Output the generated decision tree in disjunctive normal form.

3. Read the validation data file and report the accuracy of the model on that data (i.e. the

percentage of the validation data that was classified correctly).

4. Read a test data file with missing labels (question marks) in the last column and output a copy

of that file with predicted labels in the last column (replacing the question marks).

Note: your algorithm must handle missing attributes.

A Note About Design

The data files are provided to you in CSV format so that it will be easier for you to read them in.

One drawback of the CSV format is that it does not contain metadata (as ARFF does, for

example). This means that it is not possible from the data alone to know which attributes are

nominal and which are numeric. For example, weather and starting pitcher are

actually nominal attributes that are represented as integers, as described above. Therefore you

need to represent this information somewhere. You can either put this information directly in the

code that reads in the input files, or you can generate a metadata file of your own and write code

that interprets the input file based on the contents of the metadata file.

Regardless of how you translate the input file into an internal representation, write your

decision tree algorithm to handle a general binary classification problem. The algorithm

should be able to handle another binary classification problem with a different composition of

numeric and nominal attributes. For example, the algorithm itself should not assume that each

example contains exactly 12 attributes, nor for example should it assume that there is an attribute

named "elevel" with 5 categories.

Pruning

Add a pruning strategy to your decision tree algorithm. You are free to choose the pruning

strategy, but you SHOULD use the validation set for pruning. Note that you don't, for example,

iteratively greedily select the one *best* node to prune, as this might be computationally

prohibitive. So feel free to choose an approximation (e.g. any node that improves accuracy on the

validation set).

Be sure you can run your algorithm both with and without pruning.

Re-using attributes

In your code, in contrast to the decision tree pseudo-code in the lecture notes, you may want to

split on the same attribute more than once (for numeric attributes). As a result, you do not want

to remove attributes when split and recurse, and you don't need to check if the attribute set is

empty. You should, however, add a base case in your code to stop when no new split yields

non-zero information gain. Further, setting some limit on the number of splits on a given

numeric attribute may be wise, to prevent your trees from growing too large.

Learning curve

As discussed in class, in general, the more training data your algorithm has available, the better it

will perform. To illustrate this, you’ll be creating a graph showing the performance of your

decision trees on the validation set while restricting its training set to .1x, .2x, …, .9x, 1.0x the

size of the training set, with finer gradations if desired. For each amount of training data (except

the last, which uses all the data), take the average over multiple runs, using a different subset of

the training data each time.

Common-Sense Guidelines

1. Write your program so that you do not have to modify code when switching from one task to

another or when turning pruning on or off. For example, you might use command-line

parameters to enable or disable pruning and to distinguish between the model generation

task, the validation task, etc. An acceptable alternative is to follow the style of LIBSVM

and have separate programs for each task, e.g. model-train, model-validate,

model-predict, etc.

2. Do not hardcode the names of input or output files in your program. It should be possible to

run your program on another input file.

3. Document the usage of your program in the README.

4. While it is not required for this assignment, you may find it useful to have your program be

able to output the generated decision tree in a human-readable format similar to that

produced by J48 in Weka.

Questions

Put answers to the following questions in a PDF file, as described in the submission instructions.

Answer concisely. You may include pseudocode or short fragments of actual code if it helps to

answer the question. However, please keep the answer document self-contained. It should not be

necessary to look at your source files to understand your answers.

1. How did you represent the decision tree in your code?

2. How did you represent examples (instances) in your code?

3. How did you choose the attribute for each node?

4. How did you handle missing attributes in examples?

5. What is the termination criterion for your learning process?

6. Apply your algorithm to the training set, without pruning. Print out a Boolean formula in

disjunctive normal form that corresponds to the unpruned tree learned from the training

set. For the DNF assume that group label "1" refers to the positive examples. NOTE: if

you find your tree is cumbersome to print in full, you may restrict your print-out to only

16 leaf nodes.

7. Explain in English one of the rules in this (unpruned) tree.

8. How did you implement pruning?

9. Apply your algorithm to the training set, with pruning. Print out a Boolean formula in

disjunctive normal form that corresponds to the pruned tree learned from the training set.

10. What is the difference in size (number of splits) between the pruned and unpruned trees?

11. Test the unpruned and pruned trees on the validation set. What are the accuracies of each

tree? Explain the difference, if any.

12. Create learning curve graphs for both unpruned and pruned trees. Is there a difference

between the two graphs?

13. Which tree do you think will perform better on the unlabeled test set? Why? Run this tree

on the test file and submit your predictions as described in the submission instructions.

14. What aspects of the feature set (if any) are a good fit for decision trees, and what aspects

aren’t a good fit?

15. Which members of the group worked on which parts of the assignment?

16. BONUS: Define 1-3 features to address any problems you noted in 14. Calculate the

feature(s) for each example (the features should be functions of one or more elements

from the original feature set), modify btrain.csv to include them, and report the results of

running pruned and unpruned 10-fold CV on your new and improved feature set.

Grading Breakdown

http://www.csie.ntu.edu.tw/~cjlin/libsvm/

This assignment is worth 15 points, broken down as follows:

• Algorithmic Design (Questions 1-5)

◦ 5 points

• Disjunctive Normal Form (Questions 6-7)

◦ 2 points

• Pruning (Questions 8-11)

◦ 3 points

• Learning Curve (Question 12)

◦ 1 point

• Output of Algorithm (Question 13)

◦ 3 points

• Domain Suitability (Question 14)

◦ 1 point

• Feature Design (Question 16 - Bonus)

◦ 1 point

It is possible to get up to 12 points of credit without implementing pruning. (If you do not

implement pruning, Questions 11-12 can still receive full credit based on the output of the

algorithm without pruning.)

