
EECS 349 Problem Set 2 

Due 11:59PM Monday, May 9 

Overview 

In this assignment you will work in groups of 2 or 3 to implement a decision tree learning 

algorithm and apply it to a synthetic dataset. You will also implement a pruning strategy in your 

algorithm. You will be given labeled training data, from which you will generate a model. You 

will be given labeled validation data, for which you will report your model's accuracy. You will 

also be given unlabeled test data for which you will generate predictions. 

Submission Instructions 

Each student should turn in their own copy of the homework.  You can work together on the 

code, but you should write-up your answers to the questions independently.  Here is how James 

Bond would submit the homework. Please adjust for your own name: 

1. Create a single PDF file with your answers to the questions below. Name this file PS2.pdf. 

2. Create a directory (i.e. a folder) named PS2.code that contains your source code. 

3. Run your code on the btest.csv test file and output a file in the same format, but with your 

predicted labels in the last column. Name this file PS2.csv. 

4. Create a ZIP file named PS2.zip containing: 

◦ PS2.pdf 

◦ PS2.code (directory) 

◦ PS2.csv 

5. Ensure that the zip file contains all of your source code. You may have to tell the ZIP 

utility explicitly to include the contents of the subdirectory containing your code. 

6. Turn in your code under Problem Set 2 in Canvas. 

 

Download the Homework Zip 

Start by downloading PS2.code.zip, which contains all the code and data you’ll need for the 

assignment. 

The primary data sets include: 

• btrain.csv : the training set 

• bvalidate.csv: the validation set 

• btest.csv : the test set 

 

We have also included smaller test_*.csv versions of these data for convenience in testing your 

../349_Spring2016/PS2.code.zip


code. 

 

The dataset is from a synthesized (and therefore fictitious) database of 70,000 baseball games 

played between two rival teams. Each line of text contains the following information about the 

game: 

• Winning percentage of one team : numeric 

• Winning percentage of the opposing team : numeric 

• Weather : nominal 

• Temperature: numeric  

• # of injured players on one team: numeric 

• # of injured players on the other team: numeric 

• Starting pitcher: nominal 

• Opposing starting pitcher: nominal 

• Days since one team’s last game: numeric 

• Days since the other team’s last game: numeric 

• Whether it’s a home or away game (for the first team): nominal 

• Run differential for first team: numeric 

• Run differential for second team: numeric 

• Winner : binary (0 or 1) 

The class label is given by the winner attribute. This is a binary classification problem with 

numeric and nominal attributes. Some attribute values are missing (as might happen in a 

real-world scenario). These values are indicated by a "?" in the file. In the test files the class 

labels are missing, and these missing labels are also indicated by a "?". The test sets are all drawn 

from the same distribution as the training and validation sets. 

If you want, you can imagine that the task is to predict the winner of a baseball game that will be 

played under the conditions described by each line. However, it’s not advised to read too much 

into the meaning of each attribute, since the data is fictional. 

Implementation 

For this assignment you will implement a decision tree algorithm starting from Python starter 

code. You should not use Weka or any other existing framework for generating decision trees, 

instead, you should complete the individual Python methods in the starter code we have 

provided. 

Note: your algorithm must handle missing attributes, and must use some kind of pruning 

strategy.  The exact choice of pruning strategy is up to you. 

Pruning 

Add a pruning strategy to your decision tree algorithm. You are free to choose the pruning 

strategy, but you SHOULD use the validation set for pruning. Note that you don't, for example, 

necessarily need to iteratively greedily select the one *best* node to prune, as this might be 

computationally prohibitive. So feel free to choose an approximation (e.g. any node that 



improves accuracy on the validation set). 

Be sure you can run your algorithm both with and without pruning. 

Learning curve 

As discussed in class, in general, the more training data your algorithm has available, the better it 

will perform. To illustrate this, you’ll be creating a graph showing the performance of your 

decision trees on the validation set while restricting its training set to .1x, .2x, …, .9x, 1.0x the 

size of the training set, with finer gradations if desired. For each amount of training data (except 

the last, which uses all the data), take the average over multiple runs, using a different subset of 

the training data each time. 

Getting Started with the Code 

You want to use Python 2.7, and make sure you have the matplotlib library installed.  Your first 

step should be to unpack the starter code in PS2.code.zip.  Then, from the PS2.code directory, 

run autograder.py.  You’ll see that the tests fail, which is exactly as expected.  Your goal is to 

go through the individual modules (in the “modules” folder) and implement each method that 

currently has a body consisting of pass.  Implement those according to the specification given in 

the comments. 

As you’re writing methods, you can check many, but not all, of them for correctness using the 

script in auto_grader.py.  There are a handful of methods (including the pruning and graphing 

methods) that you can write in any appropriate manner you choose, so you will need to write 

your own tests for these methods.  Once your implementation is complete, you can run 

decision_tree_driver.py to complete the experiments needed to answer the questions below. 

Where should I Start? 

You can choose, but starting in the Node file and then moving to ID3 is one good option.  

Data Format 

The code represents the data_set as a list of examples.  Each example is a list.  In each 

example, the first entry represents the output (winner or not winner), and the other attribute 

values follow. The parse function has already been written for you to read the data files we’ve 

given you into this format. 

What is ID3? 

ID3 is your main training function.  It takes in a data_set of examples, 

attribute_metadata giving information about the attributes (names, whether or not they 

are nominal), numeric_split_counts (discussed under “Numeric Attributes” below) and a 

depth limit.  It returns a trained tree, which is a Node object (see node.py).  The basic recursive 

algorithm to use here is given in the lecture notes, although your implementation of ID3 will 

http://matplotlib.org/


include enhancements that go beyond the original ID3 algorithm: you must handle numeric 

attributes as well as missing data. 

Choosing Attributes to Split on  

For this assignment, for choosing attributes we’ll use a slightly improved metric over the 

standard information gain metric discussed in class.  Specifically, you should use the 

Information Gain Ratio.  It normalizes the information gain (IG) expression we learned in class 

to adjust for the fact that attributes with more distinct values have an “unfair” advantage in IG. 

Numeric Attributes 

Then, for numeric attributes, we’ll be using a simple discretization scheme.  Instead of testing 

all possible numeric split points, we will only test every ith one, where i is an argument (steps) 

to the relevant function (gain_ratio_numeric). 

What value should I use for steps?  Make steps=1 by default.  This should allow all tests 

in auto_grader.py to pass.  You can temporarily increase steps when you execute your runs on 

the larger data sets, so that your code runs more quickly.  But make sure that your turned-in 

code uses steps = 1 by default, that is what we will be expect when grading your assignment. 

What is numerical_split_counts?  That’s an array (of length = number of attributes) 

that gives the maximum number of times you should split on each numeric attribute down any 

path in the tree. For nominal attributes, the array entries can be ignored.  For numeric attributes, 

you should not return the attribute from pick_best_attributes if its corresponding entry 

in numeric_split_counts is zero.  Likewise, in ID3, the tree you return must not contain 

more than numeric_split_counts[i] splits of attribute i on any given path from the root 

to a leaf.  

Can I Add Functions? 

Yes, and it may be helpful to do so.  Just make sure that the interfaces to the functions that are 

tested in auto_grader.py remain unchanged – the tests in auto_grader.py should all pass for you 

to get full credit on the assignment. 

Which Functions will I be Graded on? 

We will automatically grade all the functions that are currently tested in auto_grader.py (we will 

test on some additional examples beyond those in auto_grader.py).  We will manually examine 

the other key functions.  

My code takes forever to train on the large data sets! 

You have three knobs for ID3 that allow you to increase efficiency, potentially at the cost of 

accuracy.  Try adjusting steps, numeric_split_counts, and depth. 

 

https://en.wikipedia.org/wiki/Information_gain_ratio


 

What is Disjunctive Normal Form? 

Say we have a tree that looks like: 

      A 

A=0/   \A=1 

  /     \ 

 1       B 

     B=0/ \B=1 

       /   \ 

      1     0 

Disjunctive Normal Form (DNF) expresses a boolean expression as an "or of ands".  So for this 

tree the DNF is: A=0 v (A=1 ^ B=0). 

Where v represents OR and ^ represents AND. 

 

Questions 

Put answers to the following questions in a PDF file, as described in the submission instructions. 

Answer concisely. You may include pseudocode or short fragments of actual code if it helps to 

answer the question. However, please keep the answer document self-contained. It should not be 

necessary to look at your source files to understand your answers. 

1. How did you handle missing attributes in examples? 

2. Apply your algorithm to the training set, without pruning. Print out a Boolean formula in 

disjunctive normal form that corresponds to the unpruned tree learned from the training 

set. For the DNF assume that group label "1" refers to the positive examples.  NOTE: if 

you find your tree is cumbersome to print in full, you may restrict your print-out to only 

16 leaf nodes. 

3. Explain in English one of the rules in this (unpruned) tree. 

4. How did you implement pruning? 

5. Apply your algorithm to the training set, with pruning. Print out a Boolean formula in 

disjunctive normal form that corresponds to the pruned tree learned from the training set. 

6. What is the difference in size (number of splits) between the pruned and unpruned trees? 

7. Test the unpruned and pruned trees on the validation set. What are the accuracies of each tree? 

Explain the difference, if any. 

8. Create learning curve graphs for both unpruned and pruned trees (include the learning curves 

in your pdf document for the homework).  Is there a difference between the two graphs? 

9. Which tree do you think will perform better on the unlabeled test set? Why? Run this tree on 

the test file and submit your predictions as described in the submission instructions. 

10. Which members of the group worked on which parts of the assignment? 

https://en.wikipedia.org/wiki/Disjunctive_normal_form


11. BONUS: This assignment used Information Gain Ratio instead of Information Gain (IG) 

to pick attributes to split on, which is expected to boost accuracy over IG.  We also used 

a limited step side for numeric attributes instead of testing all possible attributes as split 

points.  Were these good model selections?  Try using plain IG and see if this impacts 

validation set accuracy.  Likewise, try testing all numeric split points (doing so 

efficiently will probably require writing new code, rather than just setting steps = 1), 

and evaluate whether this improves validation set accuracy. 

 

 

Grading Breakdown 

This assignment is worth 15 points, broken down as follows: 

• Code completion and correctness  

◦ 5 points 

• Disjunctive Normal Form (Questions 2, 5) 

◦ 2 points 

• Pruning (Questions 4-5) 

◦ 3 points 

• Learning Curve (Question 8) 

◦ 1 point 

• Output of Algorithm (Question 9) 

◦ 3 points 

• Who worked on what (Question 10) 

◦ 1 point 

• Bonus (Question 11) 

◦ 2 points 

 

 

It is possible to get up to 12 points of credit without implementing pruning. 

 


