Machine Learning

Measuring Distance
Why measure distance?

• Nearest neighbor requires a distance measure

• Also:
 – Local search methods require a measure of “locality” (Friday)
 – Clustering requires a distance measure (later)
 – Search engines require a measure of similarity, etc.
Euclidean Distance

- What people intuitively think of as “distance”

$$d(\vec{x}, \vec{y}) = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2}$$
Generalized Euclidean Distance

\[d(\vec{x}, \vec{y}) = \left[\sum_{i=1}^{n} |x_i - y_i|^2 \right]^{1/2} \]

where \(\vec{x} = \langle x_1, x_2, \ldots, x_n \rangle \),

\(\vec{y} = \langle y_1, y_2, \ldots, y_n \rangle \)

and \(\forall i (x_i, y_i \in \mathbb{R}) \)

\(n = \) the number of dimensions
L^p norms

- L^p norms are all special cases of this:

\[d(\vec{x}, \vec{y}) = \left[\sum_{i=1}^{n} |x_i - y_i|^p \right]^{1/p} \]

\[p \text{ changes the norm} \]

- \(\|x\|_1 = L^1 \text{ norm} = \text{Manhattan Distance} : p = 1 \)

- \(\|x\|_2 = L^2 \text{ norm} = \text{Euclidean Distance} : p = 2 \)

- Hamming Distance: \(p = 1 \) and \(x_i, y_i \in \{0,1\} \)
Weighting Dimensions

- Put point in cluster with the closest center of gravity?
- Which cluster should the red point go in?
- How do I measure distance in a way that gives the “right” answer for both situations?
• Put point in cluster with the closest center of gravity?
• Which cluster **should** the red point go in?
• How do I measure distance in a way that gives the “right” answer for both situations?
• Put point in cluster with the closest center of gravity?
• Which cluster **should** the red point go in?
• How do I measure distance in a way that gives the “right” answer for both situations?
• Put point in cluster with the closest center of gravity?
• Which cluster should the red point go in?
• How do I measure distance in a way that gives the “right” answer for both situations?
Weighted Norms

- You can compensate by weighting your dimensions...

\[
d(\vec{x}, \vec{y}) = \left[\sum_{i=1}^{n} w_i \left| x_i - y_i \right|^p \right]^{1/p}
\]

This lets you turn your circle of equal-distance into an ellipse with axes parallel to the dimensions of the vectors.
The region of constant Mahalanobis distance around the mean of a distribution forms an ellipsoid. The axes of this ellipsoid don’t have to be parallel to the dimensions describing the vector.

Images from: http://www.aiaccess.net/English/Glossaries/GlosMod/e_gm_mahalanobis.htm
Calculating Mahalanobis

\[d(\vec{x}, \vec{y}) = \sqrt{(\vec{x} - \vec{y})^T S^{-1} (\vec{x} - \vec{y})} \]

- This matrix \(S \) is called the “covariance” matrix and is calculated from the data distribution.
Take-away on Mahalanobis

- Is good for non-spherically symmetric distributions.
- Accounts for scaling of coordinate axes
- Can reduce to Euclidean
What is a “metric”?

- A metric has these four qualities.

\[d(x, y) = 0 \quad \text{iff} \quad x = y \]
(reflexivity)
\[d(x, y) \geq 0 \]
(non-negative)
\[d(x, y) = d(y, x) \]
(symmetry)
\[d(x, y) + d(y, z) \geq d(x, z) \]
(triangle inequality)

- ...otherwise, call it a “measure”
Metric, or not?

• Driving distance with 1-way streets

• Categorical Stuff:
 – Is distance (Jazz to Blues to Rock) no less than distance (Jazz to Rock)?
Categorical Variables

• Consider feature vectors for genre & vocals:
 – Genre: \{Blues, Jazz, Rock, Hip Hop\}
 – Vocals: \{vocals, no vocals\}

s1 = \{rock, vocals\}

s2 = \{jazz, no vocals\}

s3 = \{ rock, no vocals\}

• Which two songs are more similar?
One Solution: Hamming distance

<table>
<thead>
<tr>
<th></th>
<th>Blues</th>
<th>Jazz</th>
<th>Rock</th>
<th>Hip Hop</th>
<th>Vocals</th>
</tr>
</thead>
<tbody>
<tr>
<td>s1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>s2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>s3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

- **s1** = \{rock, vocals\}
- **s2** = \{jazz, no_vocals\}
- **s3** = \{rock, no_vocals\}

Hamming Distance = number of different bits in two binary vectors
Hamming Distance

\[d(\vec{x}, \vec{y}) = \sum_{i=1}^{n} |x_i - y_i| \]

where \(\vec{x} = < x_1, x_2, \ldots, x_n > \),
\(\vec{y} = < y_1, y_2, \ldots, y_n > \)

and \(\forall i (x_i, y_i \in \{0,1\}) \)
Defining your own distance
(an example)

How often does artist x quote artist y?

Quote Frequency

<table>
<thead>
<tr>
<th></th>
<th>Beethoven</th>
<th>Beatles</th>
<th>Liz Phair</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beethoven</td>
<td>7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Beatles</td>
<td>4</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Liz Phair</td>
<td>?</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Let’s build a distance measure!
Defining your own distance
(an example)

<table>
<thead>
<tr>
<th></th>
<th>Beethoven</th>
<th>Beatles</th>
<th>Liz Phair</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beethoven</td>
<td>7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Beatles</td>
<td>4</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Liz Phair</td>
<td>?</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Quote frequency $Q_f(x, y) = \text{value in table}$

Distance $d(x, y) = 1 - \frac{Q_f(x, y)}{\sum_{z \in \text{Artists}} Q_f(x, z)}$
What if, for some category, on some examples, there is no value given?

Approaches:
- Discard all examples missing the category
- Fill in the blanks with the mean value
- Only use a category in the distance measure if both examples give a value
Dealing with missing data

\[w_i = \begin{cases}
1, & \text{if both } x_i \text{ and } y_i \text{ are defined} \\
0, & \text{else}
\end{cases} \]

\[
d(\bar{x}, \bar{y}) = \frac{n}{n - \sum_{i=1}^{n} w_i} \left[\sum_{i=1}^{n} w_i \phi(x_i, y_i) \right]
\]
Edit Distance

- Query = string from finite alphabet
- Target = string from finite alphabet
- Cost of Edits = Distance

Target: C A G E D

Query: C E A E D

Cost of Edits = Distance
Semantic Relatedness

d(Portland, Hippies)

<<

d(Portland, Monster trucks)
Semantic Relatedness

• Several measures have been proposed

• One that works well: “Milne-Witten”

$$\text{SR}_{MW}(x, y) \propto \text{fraction of Wikipedia in-links to either } x \text{ or } y \text{ that link to both}$$
Ad-hoc Reference Systems

Country music

Rock music

Hip hop music
Ad-hoc Reference Systems
Ad-hoc Reference Systems
Ad-hoc Reference Systems

Tim McGraw
Ad-hoc Reference Systems

Tim McGraw

Country music

Jay-Z

Hip hop music

Rock music

Tim McGraw

Jay-Z
One more distance measure

• Kullback–Leibler divergence
 – Related to entropy & information gain
 – not a metric, since it is not symmetric
 – Take EECS 428:Information Theory to find out more