Machine Learning

Boosting
(based on Rob Schapire’s IJCAI’99 talk and slides by B. Pardo)
Horse Race Prediction
How to Make $$$ In Horse Races?

• Ask a professional.

• Suppose:
 – Professional cannot give single highly accurate rule
 – …but presented with a set of races, can always generate better-than-random rules

• Can you get rich?
Idea

1) Ask expert for rule-of-thumb
2) Assemble set of cases where rule-of-thumb fails (hard cases)
3) Ask expert for a rule-of-thumb to deal with the hard cases
4) Goto Step 2

• Combine all rules-of-thumb
• Expert could be “weak” learning algorithm
Questions

• **How to choose** races on each round?
 – concentrate on “hardest” races
 (those most often misclassified by previous rules of thumb)

• **How to combine** rules of thumb into single prediction rule?
 – take (weighted) majority vote of rules of thumb
Boosting

• boosting = general method of converting rough rules of thumb into highly accurate prediction rule

• more technically:
 – given “weak” learning algorithm that can consistently find hypothesis (classifier) with error $\leq 1/2 - \gamma$

 – a boosting algorithm can provably construct single hypothesis with error $\leq \varepsilon$
This Lecture

• Introduction to boosting (AdaBoost)
• Analysis of training error
• Analysis of generalization error based on theory of margins
• Extensions
• Experiments
A Formal View of Boosting

• Given training set \(X = \{(x_1, y_1), \ldots, (x_m, y_m)\} \)
• \(y_i \in \{-1,+1\} \) correct label of instance \(x_i \in X \)

• for timesteps \(t = 1, \ldots, T \):
 • construct a distribution \(D_t \) on \{1,\ldots,m\}
 • Find a weak hypothesis \(h_t : X \rightarrow \{-1,+1\} \)
 with error \(\varepsilon_t \) on \(D_t \):
 \[\varepsilon_t = \Pr_{D_t} [h_t(x_i) \neq y_i] \]
 • Output a final hypothesis \(H_{\text{final}} \) that combines the weak hypotheses in a good way
Weighting the Votes

- H_{final} is a weighted combination of the choices from all our hypotheses.

$$H_{\text{final}}(x) = \text{sgn}\left(\sum_{t} \alpha_t h_t(x)\right)$$

How seriously we take hypothesis t
What hypothesis t guessed
The Hypothesis Weight

- α_t determines how “seriously” we take this particular classifier’s answer

$$\alpha_t = \frac{1}{2} \ln \left(\frac{1 - \varepsilon_t}{\varepsilon_t} \right)$$

The error on training distribution D_t
The Training Distribution

- D_t determines which elements in the training set we focus on.

$$D_1(i) = \frac{1}{m}$$

Size of the training set

$$D_{t+1}(i) = \frac{D_t(i)}{Z_t} \cdot \begin{cases} e^{-\alpha_t} & \text{if } y_i = h_t(x_i) \\ e^{\alpha_t} & \text{if } y_i \neq h_t(x_i) \end{cases}$$

The right answer

What we guessed

Normalization factor
The Hypothesis Weight

\[\alpha_t = \frac{1}{2} \ln \left(\frac{1 - \varepsilon_t}{\varepsilon_t} \right) > 0 \]

\[D_{t+1} = \frac{D_t}{Z_t} \cdot \begin{cases}
 e^{-\alpha_t} & \text{if } y_i = h_t(x_i) \\
 e^{\alpha_t} & \text{if } y_i \neq h_t(x_i)
\end{cases} \]
AdaBoost [Freund&Schapire ’97]

• constructing D_t:
 • $D_1(i) = \frac{1}{m}$
 • given D_t and h_t:

 \[D_{t+1} = \frac{D_t}{Z_t} \cdot \begin{cases}
eq & \text{if } y_i = h_t(x_i) \\ = & \text{if } y_i \neq h_t(x_i) \end{cases} \]

 \[= \frac{D_t}{Z_t} \cdot \exp(-\alpha_t \cdot y_i \cdot h_t(x_i)) \]

 where: $Z_t = \text{normalization constant}$

 \[\alpha_t = \frac{1}{2} \ln \left(\frac{1 - \varepsilon_t}{\varepsilon_t} \right) > 0 \]

• final hypothesis: $H_{\text{final}}(x) = \text{sgn} \left(\sum_t \alpha_t h_t(x) \right)$
Toy Example

D_1

+ + + + +
+ - + + +
+ - - + +
+ - - - -
Round 1

$\varepsilon_1 = 0.30$
$\alpha_1 = 0.42$
Round 2

\[h_2 \]

\[D_3 \]

\[\varepsilon_2 = 0.21 \]
\[\alpha_2 = 0.65 \]
Round 3

\[\varepsilon_3 = 0.14 \]
\[\alpha_3 = 0.92 \]
\[H_{\text{final}} = \text{sign} \left(\begin{array}{c} 0.42 \\ +0.65 \\ +0.92 \end{array} \right) \]
Analyzing the Training Error

• Theorem [Freund&Schapire ’97]:

write ε_t as $\frac{1}{2} - \gamma_t$

then, training error(H_{final}) $\leq \exp \left(-2 \sum_{t} \gamma_t^2 \right)$

so if $\forall t: \gamma_t \geq \gamma > 0$ then

then, training error(H_{final}) $\leq e^{-2\gamma^2 T}$
So what? This means AdaBoost is adaptive:

- does not need to know γ or T a priori
- Works as long as $\gamma_t > 0$
Proof Intuition

• on round t:
 increase weight of examples incorrectly classified by h_t

• if x_i incorrectly classified by H_{final}
 then x_i incorrectly classified by weighted majority of h_t’s
 then x_i must have “large” weight under final dist. D_{T+1}

• since total weight ≤ 1:
 number of incorrectly classified examples “small”
we expect:

- training error to continue to drop (or reach zero)
- test error to increase when H_{final} becomes “too complex” (Occam’s razor)
A Typical Run

- Test error does not increase even after 1,000 rounds (~2,000,000 nodes)
- Test error continues to drop after training error is zero!
- Occam’s razor wrongly predicts “simpler” rule is better.

(Boosting on C4.5 on “letter” dataset)
A Better Story: Margins

Key idea: Consider confidence (margin):

- with

\[H_{\text{final}}(x) = \text{sgn}(f(x)) \quad f(x) = \frac{\sum_t \alpha_t h_t(x)}{\sum_t \alpha_t} \in [-1,1] \]

- define: margin of \((x,y) = y \cdot f(x)\)
Margins for Toy Example

\[f = \left(\begin{array}{c} 0.42 \\ + 0.65 \\ + 0.92 \end{array} \right) \]

\[/ (0.42 + 0.65 + 0.92) \]

=

+ + +
+ + +
+ - -
+ - -
- - -
- - -
- - -
- - -

The Margin Distribution

<table>
<thead>
<tr>
<th>epoch</th>
<th>5</th>
<th>100</th>
<th>1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>training error</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>test error</td>
<td>8.4</td>
<td>3.3</td>
<td>3.1</td>
</tr>
<tr>
<td>%margins ≤ 0.5</td>
<td>7.7</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Minimum margin</td>
<td>0.14</td>
<td>0.52</td>
<td>0.55</td>
</tr>
</tbody>
</table>
Boosting Maximizes Margins

• Can be shown to minimize

\[\sum_i e^{-y_i f(x_i)} = \sum_i e^{-y_i \sum_t \alpha_t h_t(x_i)} \propto \text{to margin of } (x_i, y_i) \]
Analyzing Boosting Using Margins

generalization error bounded by function of training sample margins:

\[
\text{error} \leq \hat{\Pr}[\text{margin}_f(x, y) \leq \theta] + \tilde{O}\left(\sqrt{\frac{\text{VC}(H)}{m\theta^2}}\right)
\]

- larger margin \(\Rightarrow\) better bound
- bound independent on \# of epochs
- boosting tends to increase margins of training examples by concentrating on those with smallest margin
Relation to SVMs

SVM: map x into high-dim space, separate data linearly
Relation to SVMs (cont.)

\[H(x) = \begin{cases}
+1 & \text{if } 2x^5 - 5x^2 + x > 10 \\
-1 & \text{otherwise}
\end{cases} \]

\[\vec{h}(x) = (1, x, x^2, x^3, x^4, x^5) \]
\[\vec{\alpha} = (-10, 1, -5, 0, 0, 0, 2) \]

\[H(x) = \begin{cases}
+1 & \text{if } \vec{\alpha} \cdot \vec{h}(x) > 0 \\
-1 & \text{otherwise}
\end{cases} \]
Relation to SVMs

• Both maximize margins:

\[\theta \doteq \max_w \min_i \frac{(\alpha \cdot \vec{h}(x_i))y_i}{\|\alpha\|} \]

• SVM: \(\|\alpha\|_2 \) Euclidean norm (\(L_2 \))
• AdaBoost: \(\|\alpha\|_1 \) Manhattan norm (\(L_1 \))

• Has implications for optimization, PAC bounds

See [Freund et al ‘98] for details
Extensions: Multiclass Problems

• Reduce to binary problem by creating several binary questions for each example:

 • “does or does not example x belong to class 1?”
 • “does or does not example x belong to class 2?”
 • “does or does not example x belong to class 3?”
Extensions: Confidences and Probabilities

- Prediction of hypothesis h_t: $\text{sgn}(h_t(x))$

- Confidence of hypothesis h_t: $|h_t(x)|$

- Probability of H_{final}: $\Pr_f[y = +1 | x] = \frac{e^{f(x)}}{e^{f(x)} + e^{-f(x)}}$

[Schapire&Singer ‘98], [Friedman, Hastie & Tibshirani ‘98]
Practical Advantages of AdaBoost

• (quite) fast
• simple + easy to program
• only a single parameter to tune (T)
• no prior knowledge
• flexible: can be combined with any classifier (neural net, C4.5, …)
• provably effective (assuming weak learner)
 • shift in mind set: goal now is merely to find hypotheses that are better than random guessing
• finds outliers
Caveats

- performance depends on data & weak learner
- AdaBoost can fail if
 - weak hypothesis too complex (overfitting)
 - weak hypothesis too weak \((\gamma_t \to 0\) too quickly),
 - underfitting
 - Low margins \(\to\) overfitting
- empirically, AdaBoost seems susceptible to noise
Comparison with
• C4.5 (Quinlan’s Decision Tree Algorithm)
• Decision Stumps (only single attribute)
Text Categorization

database: Reuters
Conclusion

• boosting useful tool for classification problems
 • grounded in rich theory
 • performs well experimentally
 • often (but not always) resistant to overfitting
 • many applications

• but
 • slower classifiers
 • result less comprehensible
 • sometime susceptible to noise
Other Ensembles

- Bagging
- Stacking
Background

• [Valiant’84]
 introduced theoretical PAC model for studying machine learning

• [Kearns&Valiant’88]
 open problem of finding a boosting algorithm

• [Schapire’89], [Freund’90]
 first polynomial-time boosting algorithms

• [Drucker, Schapire&Simard ’92]
 first experiments using boosting
• [Freund & Schapire ’95]
 – introduced AdaBoost algorithm
 – strong practical advantages over previous boosting algorithms

• experiments using AdaBoost:
 [Drucker & Cortes ’95] [Schapire & Singer ’98]
 [Jackson & Cravon ’96] [Maclin & Opitz ’97]
 [Freund & Schapire ’96] [Bauer & Kohavi ’97]
 [Quinlan ’96] [Schwenk & Bengio ’98]
 [Breiman ’96] [Dietterich ’98]

• continuing development of theory & algorithms:
 [Schapire, Freund, Bartlett & Lee ’97] [Schapire & Singer ’98]
 [Breiman ’97] [Mason, Bartlett & Baxter ’98]
 [Grive and Schuurmans ’98] [Friedman, Hastie & Tibshirani ’98]