Machine Learning

Measuring Distance
Why measure distance?

• Nearest neighbor requires a distance measure

• Also:
 – Local search methods require a measure of “locality” (Friday)
 – Clustering requires a distance measure (later)
 – Search engines require a measure of similarity, etc.
Euclidean Distance

- What people intuitively think of as “distance”

\[d(x, y) = \sqrt{(x_1 - y_1) + (x_2 - y_2)^2} \]
Generalized Euclidean Distance

\[d(\vec{x}, \vec{y}) = \left[\sum_{i=1}^{n} |x_i - y_i|^2 \right]^{1/2} \]

where \(\vec{x} = \langle x_1, x_2, \ldots, x_n \rangle \),

\(\vec{y} = \langle y_1, y_2, \ldots, y_n \rangle \)

and \(\forall i (x_i, y_i \in \mathbb{R}) \)

n = the number of dimensions
\(L^p \) norms

- \(L^p \) norms are all special cases of this:

\[
d(\vec{x}, \vec{y}) = \left[\sum_{i=1}^{n} |x_i - y_i|^p \right]^{1/p}
\]

- \(p \) changes the norm

\[\|x\|_1 = L^1 \text{ norm} = \text{Manhattan Distance} : p = 1 \]

\[\|x\|_2 = L^2 \text{ norm} = \text{Euclidean Distance} : p = 2 \]

Hamming Distance: \(p = 1 \) and \(x_i, y_i \in \{0,1\} \)
Weighting Dimensions

- Put point in cluster with the closest center of gravity?
- Which cluster should the red point go in?
- How do I measure distance in a way that gives the “right” answer for both situations?
Weighting Dimensions

Think

• Put point in cluster with the closest center of gravity?
• Which cluster should the red point go in?
• How do I measure distance in a way that gives the “right” answer for both situations?
Weighting Dimensions

Pair

Start

End

- Put point in cluster with the closest center of gravity?
- Which cluster should the red point go in?
- How do I measure distance in a way that gives the “right” answer for both situations?
Weighting Dimensions

Share

• Put point in cluster with the closest center of gravity?
• Which cluster should the red point go in?
• How do I measure distance in a way that gives the “right” answer for both situations?
Weighted Norms

• You can compensate by weighting your dimensions.

\[d(\vec{x}, \vec{y}) = \left[\sum_{i=1}^{n} w_i |x_i - y_i|^p \right]^{1/p} \]

This lets you turn your circle of equal-distance into an ellipse with axes parallel to the dimensions of the vectors.
The region of constant Mahalanobis distance around the mean of a distribution forms an ellipsoid. The axes of this ellipsoid don’t have to be parallel to the dimensions describing the vector.
Calculating Mahalanobis

\[d(\vec{x}, \vec{y}) = \sqrt{(\vec{x} - \vec{y})^T S^{-1} (\vec{x} - \vec{y})} \]

• This matrix \(S \) is called the “covariance” matrix and is calculated from the data distribution.
Take-away on Mahalanobis

- Is good for non-spherically symmetric distributions.
- Accounts for scaling of coordinate axes.
- Can reduce to Euclidean
What is a “metric”?

• A metric has these four qualities.

\[
d(x, y) = 0 \quad \text{iff} \quad x = y \quad \quad \text{(reflexivity)}
\]
\[
d(x, y) \geq 0 \quad \quad \quad \quad \quad \quad \text{(non-negative)}
\]
\[
d(x, y) = d(y, x) \quad \quad \quad \quad \text{(symmetry)}
\]
\[
d(x, y) + d(y, z) \geq d(x, z) \quad \quad \text{(triangle inequality)}
\]

• …otherwise, call it a “measure”
Metric, or not?

• Driving distance with 1-way streets

• Categorical Stuff:
 - Is distance (Jazz to Blues to Rock) no less than distance (Jazz to Rock)?
Categorical Variables

• Consider feature vectors for genre & vocals:

 - Genre: {Blues, Jazz, Rock, Hip Hop}
 - Vocals: {vocals, no vocals}

s1 = {rock, vocals}
s2 = {jazz, no vocals}
s3 = {rock, no vocals}

• Which two songs are more similar?
One Solution: Hamming distance

<table>
<thead>
<tr>
<th>Blues</th>
<th>Jazz</th>
<th>Rock</th>
<th>Hip Hop</th>
<th>Vocals</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

s1 = \{\text{rock, vocals}\}
s2 = \{\text{jazz, no_vocals}\}
s3 = \{\text{rock, no_vocals}\}

Hamming Distance = number of different bits in two binary vectors
Hamming Distance

\[d(\vec{x}, \vec{y}) = \sum_{i=1}^{n} |x_i - y_i| \]

where \(\vec{x} = \langle x_1, x_2, \ldots, x_n \rangle \),
\(\vec{y} = \langle y_1, y_2, \ldots, y_n \rangle \)

and \(\forall i(x_i, y_i \in \{0,1\}) \)
Defining your own distance
(an example)

How often does artist \(x \) quote artist \(y \)?

Quote Frequency

<table>
<thead>
<tr>
<th></th>
<th>Beethoven</th>
<th>Beatles</th>
<th>Liz Phair</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beethoven</td>
<td>7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Beatles</td>
<td>4</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Liz Phair</td>
<td>?</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Let’s build a distance measure!
Defining your own distance
(an example)

<table>
<thead>
<tr>
<th></th>
<th>Beethoven</th>
<th>Beatles</th>
<th>Liz Phair</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beethoven</td>
<td>7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Beatles</td>
<td>4</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Liz Phair</td>
<td>?</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Quote frequency $Q_f(x, y) =$ value in table

Distance $d(x, y) = 1 - \frac{Q_f(x, y)}{\sum_{z \in \text{Artists}} Q_f(x, z)}$
What if, for some category, on some examples, there is no value given?

Approaches:
- Discard all examples missing the category
- Fill in the blanks with the mean value
- Only use a category in the distance measure if both examples give a value
Dealing with missing data

\[w_i = \begin{cases} 1, & \text{if both } x_i \text{ and } y_i \text{ are defined} \\ 0, & \text{otherwise} \end{cases} \]

\[
d(\vec{x}, \vec{y}) = \frac{n}{\sum_{i=1}^{n} w_i} \left[\sum_{i=1}^{n} w_i \phi(x_i, y_i) \right]
\]
Edit Distance

- Query = string from finite alphabet
- Target = string from finite alphabet
- Cost of Edits = Distance

Target:

Query:
d(Portland, Hippies)

<<

d(Portland, Monster trucks)
Semantic Relatedness

• Several measures have been proposed

• One that works well: “Milne-Witten”

\[\text{SR}_{\text{MW}} (x, y) \propto \text{fraction of Wikipedia in-links to either } x \text{ or } y \text{ that link to both} \]
Ad-hoc Reference Systems

Country music

Rock music

Hip hop music
Ad-hoc Reference Systems
Ad-hoc Reference Systems
Ad-hoc Reference Systems

Tim McGraw

Country music

Jay-Z

Rock music

Hip hop music
One more distance measure

• Kullback–Leibler divergence
 - Related to entropy & information gain
 - not a metric, since it is not symmetric
 - Take EECS 428: Information Theory to find out more