Naïve Bayes Classifiers
Naïve Bayes Classifiers

- Combines all ideas we’ve covered
 - Conditional Independence
 - Bayes’ Rule
 - Statistical Estimation

- …in a simple, yet accurate classifier
 - Classifier: Function $f(x)$ from $X = \{<x_1, \ldots, x_d>\}$ to $Class$
 - E.g., $X = \{<\text{GRE, GPA, Letters}>\}$, $Class = \{\text{yes, no, wait}\}$
Classification task
- Learn function $f(x)$ from $X = \{<x_1, \ldots, x_d>\}$ to Class
- Given: Examples $D=\{(x, y)\}$

Probabilistic Approach
- Learn $P(Class = y \mid X = x)$ from D
- Given x, pick the maximally probable y
More formally

\[f(x) = \arg \max_y P(Class = y \mid X = x, \theta_{\text{MAP}}) \]

\(\theta_{\text{MAP}} \): MAP parameters, learned from data
 - That is, parameters of \(P(Class = y \mid X = x) \)
 - …we’ll focus on using MAP estimate, but can also use ML or Bayesian

Predict next coin flip? Instance of this problem

- \(X = \text{null} \)
- Given \(D = \text{hhht...tht} \), estimate \(P(\theta \mid D) \), find MAP
- Predict \(Class = \text{heads} \) iff \(\theta_{\text{MAP}} > \frac{1}{2} \)
Dear Sir/Madam,
We are pleased to inform you of the result of the Lottery Winners International programs held on the 30/8/2004. Your e-mail address attached to ticket number: EL-23133 with serial Number: EL-123542, batch number: 8/163/EL-35, lottery Ref number: EL-9318 and drew lucky numbers 7-1-8-36-4-22 which consequently won in the 1st category, you have therefore been approved for a lump sum pay out of US$1,500,000.00 (One Million, Five Hundred Thousand United States dollars)

- SPAM

- NOT SPAM?
Representation

- $X = \text{document}$
- Task: Estimate $P(\text{Class} = \{\text{spam, non-spam}\} \mid X)$
- Question: how to represent X?
 - Lots of possibilities, common choice: “bag of words”

Dear Sir/Madam,

We are pleased to inform you of the result of the Lottery Winners International programs held on the 30/8/2004. Your e-mail address attached to ticket number: EL-23133 with serial Number: EL-123542, batch number: 8/163/EL-35, lottery Ref number: EL-9318 and drew lucky numbers 7-1-8-36-4-22 which consequently won in the 1st category, you have therefore been approved for a lump sum pay out of US$1,500,000.00 (One Million, Five Hundred Thousand United States dollars)

...
Bag of Words

- Ignores Word Order, i.e.
 - No emphasis on title
 - No compositional meaning ("Cold War" -> "cold" and "war")
 - Etc.
 - But, massively reduces dimensionality/complexity

- Still and all...
 - Presence or absence of a 100,000-word vocab => $2^{100,000}$ distinct vectors
Naïve Bayes Classifiers

- \(P(Class \mid X) \) for \(|\text{Val}(X)| = 2^{100,000} \) requires \(2^{100,000} \) parameters
 - Problematic.

- Bayes’ Rule:
 \[
P(Class \mid X) = \frac{P(X \mid Class) \cdot P(Class)}{P(X)}
 \]

- Assume presence of word \(i \) is independent of all other words given \(Class \):
 \[
P(Class \mid X) = \prod_i P(X_i \mid Class) \cdot P(Class) / P(X)
 \]

- Now only 200,001 parameters for \(P(Class \mid X) \)
Naïve Bayes Assumption

- **Features are conditionally independent given class**

 \[\text{Not } P(\text{“Republican”, “Democrat”}) = P(\text{“Republican”})P(\text{“Democrat”}) \]

 but instead

 \[P(\text{“Republican”, “Democrat” | Class = Politics}) = P(\text{“Republican” | Class = Politics})P(\text{“Democrat” | Class = Politics}) \]

- **Still, an absurd assumption**

 \[(“Lottery” \perp “Winner” | \text{SPAM})? (“lunch” \perp “noon” | \text{Not SPAM})? \]

- **But: offers massive tractability advantages and works quite well in practice**

 Lesson: Unrealistically strong independence assumptions sometimes allow you to build an accurate model where you otherwise couldn’t
Getting the parameters from data

- Parameters $\theta = \langle \theta_{ij} = P(w_i \mid \text{Class} = j) \rangle$
- Maximum Likelihood: Estimate $P(w_i \mid \text{Class} = j)$ from D by counting
 - Fraction of documents in class j containing word i
 - But if word i never occurs in class j?
- Commonly used MAP estimate:
 - $\frac{(\text{# docs in class } j \text{ with word } i) + 1}{(\text{# docs in class } j) + 2}$
Caveats

- Naïve Bayes effective as a classifier
- Not as effective in producing probability estimates
 - \(\prod_i P(w_i | \text{Class}) \) pushes estimates toward 0 or 1
- In practice, numerical underflow is typical at classification time
 - Compare sum of logs instead of product
Reading

- Elements of Statistical Learning, Ch 7: