
Machine Learning 

Boosting 
(based on Rob Schapire’s IJCAI’99 talk and slides by B. 

Pardo) 



Horse Race Prediction 



How to Make $$$ In Horse Races? 

• Ask a professional. 

• Suppose: 

– Professional cannot give single highly 

accurate rule 

– …but presented with a set of races, can 

always generate better-than-random rules 

• Can you get rich? 

 



Idea 

1) Ask expert  for rule-of-thumb 

2) Assemble set of cases where rule-of-thumb 

fails (hard cases) 

3) Ask expert for a rule-of-thumb to deal with 

the hard cases 

4) Goto Step 2 

 

• Combine all rules-of-thumb 

• Expert could be “weak” learning algorithm 



Questions 

• How to choose races on each round? 

– concentrate on “hardest” races 

 (those most often misclassified by previous 

rules of thumb) 

• How to combine rules of thumb into single 

prediction rule? 

– take (weighted) majority vote of rules of 

thumb 



Boosting 

• boosting = general method of   
 converting rough rules of thumb into 
 highly accurate prediction rule 

 

• more technically: 

– given “weak” learning algorithm that can 
consistently find hypothesis (classifier) with 
error 1/2- 

 

– a boosting algorithm can provably 
construct single hypothesis with error  e 



This Lecture 

• Introduction to boosting (AdaBoost) 

• Analysis of training error 

• Analysis of generalization error based on 

theory of margins 

• Extensions 

• Experiments 



A Formal View of Boosting 

• Given training set X={(x1,y1),…,(xm,ym)} 

• yi{-1,+1} correct label of instance xiX 
 

• for timesteps t = 1,…,T: 

• construct a distribution Dt on {1,…,m} 

• Find a weak hypothesis ht : X  {-1,+1} 

  with error et on Dt: 

      

• Output a final hypothesis  Hfinal that combines 

the weak hypotheses in a good way 
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Weighting the Votes 

•  Hfinal is a weighted combination of  the 

choices from all our hypotheses.  

How seriously 

we take 

hypothesis t 

What 

hypothesis t 

guessed 



The Hypothesis Weight 

•  t determines how “seriously” we take 

this particular classifier’s answer 
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The Training Distribution 

•  Dt determines which elements in the training 

set we focus on.  
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The Hypothesis Weight 
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AdaBoost [Freund&Schapire ’97] 

• constructing Dt: 

•     

• given Dt and ht: 

 

 

 

   where: Zt = normalization constant 

 

 

• final hypothesis: 
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Toy Example 



Round 1 



Round 2 



Round 3 



Final Hypothesis 



Analyzing the Training Error 

• Theorem [Freund&Schapire ’97]: 

 write et as ½-t 
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Analyzing the Training Error 

So what? This means  AdaBoost is 

adaptive: 

• does not need to know  or T a priori 

• Works as long as  t  > 0 



Proof Intuition 

• on round t: 

 increase weight of examples incorrectly classified by ht 

 

• if xi incorrectly classified by Hfinal 

 then xi incorrectly classified by weighted majority of ht’s 

 then xi must have “large” weight under final dist. DT+1 

 

• since total weight  1: 

 number of incorrectly classified examples “small” 



Analyzing Generalization Error 

   we expect:  

 training error to continue to drop (or reach zero) 

 test error to increase when Hfinal becomes “too complex” 

(Occam’s razor)  



A Typical Run 

• Test error does not increase even after 1,000 rounds 

(~2,000,000 nodes) 

• Test error continues to drop after training error is zero! 

• Occam’s razor wrongly predicts “simpler” rule is better. 

(boosting on C4.5 on 

“letter” dataset) 



A Better Story: Margins 

Key idea: Consider confidence (margin): 

• with 

 

 

• define: margin of (x,y) =  

]1,1[
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Margins for Toy Example 



The Margin Distribution 

epoch 5 100 1000 

training error 0.0 0.0 0.0 

test error 8.4 3.3 3.1 

%margins0.5 7.7 0.0 0.0 

Minimum margin 0.14 0.52 0.55 



Boosting Maximizes Margins 

• Can be shown to minimize 

 



-

-

i i

xhy
xfy t

itti

ii ee
)(

)(


 to margin of (xi,yi)  



Analyzing Boosting Using Margins 

 generalization error bounded by function of 

training sample margins: 

 

 

 

 larger margin  better bound 

 bound independent on # of epochs 

 boosting tends to increase margins of training 

examples by concentrating on those with smallest 

margin 
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Relation to SVMs 

 SVM: map x into high-dim space, 

separate data linearly 

 



Relation to SVMs (cont.) 
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Relation to SVMs 

• Both maximize margins: 

 

 

 

• SVM:   Euclidean norm (L2) 

• AdaBoost:  Manhattan norm (L1) 

 

• Has implications for optimization, PAC 
bounds  
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See [Freund et al ‘98] for details 



Extensions: Multiclass Problems 

• Reduce to binary problem by creating several 

binary questions for each example: 

 

• “does or does not example x belong to class 1?” 

• “does or does not example x belong to class 2?” 

• “does or does not example x belong to class 3?” 

 

. 
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Extensions: Confidences and Probabilities 

• Prediction of hypothesis  ht: 

 

 

• Confidence of hypothesis  ht: 

 

 

• Probability of Hfinal: 
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[Schapire&Singer ‘98], [Friedman, Hastie & Tibshirani ‘98] 



Practical Advantages of AdaBoost 

• (quite) fast 

• simple + easy to program 

• only a single parameter to tune (T) 

• no prior knowledge 

• flexible: can be combined with any classifier 
(neural net, C4.5, …) 

• provably effective (assuming weak learner) 
• shift in mind set: goal now is merely to find 

hypotheses that are better than random guessing 

• finds outliers 



Caveats 

• performance depends on data & weak learner 

• AdaBoost can fail if 

– weak hypothesis too complex (overfitting) 

– weak hypothesis too weak (t0 too quickly), 

• underfitting 

• Low margins  overfitting 

• empirically, AdaBoost seems especially 

susceptible to noise 



UCI Benchmarks 

Comparison with 

• C4.5 (Quinlan’s Decision Tree Algorithm) 

• Decision Stumps (only single attribute) 



Text Categorization 

database: Reuters 



Conclusion 

• boosting useful tool for classification problems 

• grounded in rich theory 

• performs well experimentally 

• often (but not always) resistant to overfitting 

• many applications 

• but 

• slower classifiers 

• result less comprehensible 

• sometime susceptible to noise 

 



Background 

• [Valiant’84] 

 introduced theoretical PAC model for studying 

machine learning 

• [Kearns&Valiant’88] 

 open problem of finding a boosting algorithm 

• [Schapire’89], [Freund’90] 

 first polynomial-time boosting algorithms 

• [Drucker, Schapire&Simard ’92] 

 first experiments using boosting 



Backgroung (cont.) 

• [Freund&Schapire ’95] 
– introduced AdaBoost algorithm 

– strong practical advantages over previous boosting algorithms 

• experiments using AdaBoost: 
[Drucker&Cortes ’95]  [Schapire&Singer ’98] 

[Jackson&Cravon ’96]  [Maclin&Opitz ’97] 

[Freund&Schapire ’96]  [Bauer&Kohavi ’97] 

[Quinlan ’96]   [Schwenk&Bengio ’98] 

[Breiman ’96]  [ Dietterich’98] 

• continuing development of theory & algorithms: 
[Schapire,Freund,Bartlett&Lee ’97] [Schapire&Singer ’98] 

[Breiman ’97]   [Mason, Bartlett&Baxter ’98] 

[Grive and Schuurmans’98] [Friedman, Hastie&Tibshirani ’98] 

 


