Machine Learning

Boosting

(based on Rob Schapire’s [JCAI'99 talk and slides by B.
Pardo)

Horse Race Prediction

How to Make $$%$ In Horse Races?

* Ask a professional.

e Suppose:

— Professional cannot give single highly
accurate rule

— ...but presented with a set of races, can
always generate better-than-random rules

« Can you get rich?

|dea

1) Ask expert for rule-of-thumb

2) Assemble set of cases where rule-of-thumb
fails (hard cases)

3) Ask expert for a rule-of-thumb to deal with
the hard cases

4) Goto Step 2

« Combine all rules-of-thumb
« Expert could be “weak” learning algorithm

Questions

 How to choose races on each round?
— concentrate on “hardest” races
(those most often misclassified by previous
rules of thumb)
 How to combine rules of thumb into single
prediction rule?

— take (weighted) majority vote of rules of
thumb

Boosting

* boosting = general method of
converting rough rules of thumb into
highly accurate prediction rule

* more technically:

— given “weak” learning algorithm that can
consistently find hypothesis (classifier) with
error <1/2-y

— a boosting algorithm can provably
construct single hypothesis with error < ¢

This Lecture

Introduction to boosting (AdaBoost)
Analysis of training error

Analysis of generalization error based on
theory of margins

Extensions
Experiments

A Formal View of Boosting

Given training set X={(X,,Y,),(X.,,Y) }

y;e{-1,+1} correct label of instance x;eX

for timestepst=1_..T - |IOW?

-@truct a distribution D, on {1,...,@

* Find a weakKhypotiiesis i, - X — {-1,+1}
with error gon D, g = PrDt [ht (Xi) =Y.

Output a final hypothesis H;g, . that/combines
the weak hypotheses in@cﬁ@

Weighting the Votes

« Hs,, is a weighted combination of the
choices from all our hypotheses.

H o (X) = S0ON

How seriously
we take
hypothesis t

/

_ t

Vo

2. oy (x)

What
hypothesis t
guessed

\

J

The Hypothesis Weight

* O, determines how “seriously” we take
this particular classifier's answer

The error on training
distribution D,

1 fl—gt\
a, =—In

2\ &

The Training Distribution

D, determines which elements in the training
set we focus on.

Size of the training set
. 1 The right What
Dl(') — E/ angvcgr gueis\évcel
B
(l) D (I) e - If yi — ht(Xi)
At leify,#h(x)

Normalization factor

The Hypothesis Weight

1

o, =—In

2

DX
Dt +1 Z_

y

e

(1 o)
1—g, .0
. St
ot Yi = ht(xi)

e

iy

It y;, = h (X)

AdaBoost [Freund&Schapire '97]

 constructing D;:

* Dl(i) — %

« given D,and h;:
D .= D, .{eat It y;, =h(x)

"z e ify, =h(x)
D
Z—t exp(—«, - Y; -h (X))

t

where: Z,= normalization constant
_1 In 1=4 > 0
2 &,

« final hypothesis: Hﬁna.(X)=sgn[Zath(X)j

Toy Example

Round 1

€1=0.30
oty=0.42

Round 2

£5=0.21
0y=0.65

Round 3

£3=0.14
0t5=0.92

Final Hypothesis

H_ =sign | 0.42 + 0.65 + (0.92
final

Analyzing the Training Error

* Theorem [Freund&Schapire *97]:
write g, as ¥2-y,

then, training error(H;, .,) < exp (—22 yfj
t

so If Vt: y,>v > 0 then

then, training error(H,) <e™

Analyzing the Training Error

So what? This means AdaBoost is
adaptive:

» does not need to know y or T a priori
* Works as long as vy, >0

Proof Intuition

e onround t:
Increase weight of examples incorrectly classified by h,

* If x;incorrectly classified by Hy.,
then x; incorrectly classified by weighted majority of h,'s
then x; must have “large” weight under final dist. D.,,

* since total weight < 1:
number of incorrectly classified examples “small”

Analyzing Generalization Error

20 40 80 80 100
of rounds (1)
we expect:

* training error to continue to drop (or reach zero)

= test error to increase when Hg,,, becomes “too complex”
(Occam'’s razor)

A Typical Run

(boosting on C4.5 on
“letter” dataset)

R T e —

10 100 1000
of rounds (1)

* Test error does not increase even after 1,000 rounds
(~2,000,000 nodes)

« Test error continues to drop after training error is zero!
« Occam’s razor wrongly predicts “simpler” rule is better.

A Better Story: Margins

all /1 s all 71 °
1n?0rrect equally divided corirect
|
m— ——— -]
_final final
-1 incorrect 0 correct +1

Key idea: Consider confidence (margin):

e with Zatht ()
Hfinal (X) = Sgn(f (X)) f (X) =— Za

e [-1]]

« define: margin of (x,y) = Y- f(X)

Margins for Toy Example

f=1042 +0.65 +0.92

7(0.42 + 0.65 + 0.92)

The Margin Distribution

g 1.0-
:
test = '
o Ltrain AL %
10 100 1000 -1 05
of rounds (7 margin
epoch 5 100 |1000
training error 0.0 |0.0 |0.0
test error 34 |33 |31
%margins<0.5 /7.7 (0.0 (0.0
Minimum margin 0.14 [0.52 |0.55

Boosting Maximizes Margins

e Can be shown to minimize

_yizatht(xi)

B

oc to margin of (x;,y;)

Analyzing Boosting Using Margins

generalization error bounded by function of
training sample margins:

error < Pr[margin , (x, y) < 9]+6(\/ VC(QT))
m

» larger margin = better bound
* bound independent on # of epochs

* boosting tends to increase margins of training
examples by concentrating on those with smallest
margin

Relation to SVMs

SVM: map x into high-dim space,
separate data linearly

Input space R High dimensional space }:?x)

)
A

QI | +H+11

Relation to SVMs (cont.)

(+1 if 2x° =5x%+Xx >10

-1 otherwise

8

H(X) =+

h(x) =L x, x%, x5, x*, x°)
& = (~101,-5,0,0,2)

+1 ifa-h(x)>0

H (X) =< .
-1 otherwise

Relation to SVMs

* Both maximize margins:

0 = max m_in (0_2 ' q(xi))yi

¢ SVM: « ||, Euclidean norm (L,)
« AdaBoost: || |, Manhattan norm (L,)

« Has implications for optimization, PAC
bounds

See [Freund et al ‘98] for details

Extensions: Multiclass Problems

* Reduce to binary problem by creating several
binary questions for each example:

» “does or does not example x belong to class 1?”
» “does or does not example x belong to class 27"
» “does or does not example x belong to class 37"

Extensions: Confidences and Probabilities

« Prediction of hypothesis h;: sgn(h, (x))

« Confidence of hypothesis h;: | h,(X) |

af®

* Probability of Hg,: Pr.Jy=+1|x] = T
e Y +e

[Schapire&Singer ‘98], [Friedman, Hastie & Tibshirani ‘98]

Practical Advantages of AdaBoost

(quite) fast

simple + easy to program

only a single parameter to tune (T)
no prior knowledge

flexible: can be combined with any classifier
(neural net, C4.5, ...)

provably effective (assuming weak learner)

« shift in mind set: goal now is merely to find
hypotheses that are better than random guessing

finds outliers

Caveats

« performance depends on data & weak learner

« AdaBoost can fall if
— weak hypothesis too complex (overfitting)

— weak hypothesis too weak (y,—0 too quickly),
* underfitting
» Low margins — overfitting

« empirically, AdaBoost seems especially
susceptible to noise

UCI Benchmarks

Comparison with
* C4.5 (Quinlan’s Decision Tree Algorithm)
* Decision Stumps (only single attribute)

[eye color = brown ? J [height > 5 feet ?W

ves m ﬁ na

predict predict predict predict
+1 -1 -1 +1

% Error

16
14
12
10

Text Categorization

..

e e e e e en g Sm e e memmm e e ememn Smmmmaee memmmm e emn mmmmme Smemmmmn Smm e s mkan e e —]

m mmmmas mmemmmem mmemmees mmeemen saas e b REELGnn mame e S emmesan mmmasmn mammmees smmemses smmaemae semmmee= smeesnes smefenan smm—a——-

AdaBoost ——
Sleeping-ex erj[s IV
chio -

Na"ﬂ% %EYSE :::E*"_:

4 5 6
Number of Classes

database: Reuters

Conclusion

* boosting useful tool for classification problems
« grounded in rich theory
« performs well experimentally
 often (but not always) resistant to overfitting
* many applications
* but
 slower classifiers
 result less comprehensible
¢ sometime susceptible to noise

Background

[Valiant'84]

Introduced theoretical PAC model for studying
machine learning

[Kearns&Valiant’88]

open problem of finding a boosting algorithm

[Schapire’89], [Freund 90]

first polynomial-time boosting algorithms

[Drucker, Schapire&Simard '92]

first experiments using boosting

Backgroung (cont.)

« [Freund&Schapire '95]

— Introduced AdaBoost algorithm
— strong practical advantages over previous boosting algorithms

« experiments using AdaBoost:

[Drucker&Cortes '95] [Schapire&Singer '98]
[Jackson&Cravon '906] [Maclin&Opitz '97]
[Freund&Schapire '906] [Bauer&Kohavi '97]
[Quinlan "96] [Schwenk&Bengio 98]
[Breiman '96] [Dietterich’98]

« continuing development of theory & algorithms:
[Schapire,Freund,Bartlett&Lee '97] [Schapire&Singer '98]
[Breiman ’97] [Mason, Bartlett&Baxter '98]
[Grive and Schuurmans’98] [Friedman, Hastie&Tibshirani '98]

