Machine Learning

Measuring Distance
Why measure distance?

- Nearest neighbor requires a distance measure

- Also:
 - Local search methods require a measure of "locality" (Friday)
 - Clustering requires a distance measure
 - Search engines require a measure of similarity, etc.
Euclidean Distance

- What people intuitively think of as “distance”

\[d(\vec{x}, \vec{y}) = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2} \]
Generalized Euclidean Distance

\[d(\vec{x}, \vec{y}) = \left[\sum_{i=1}^{n} |x_i - y_i|^2 \right]^{1/2} \]

where \(\vec{x} = < x_1, x_2, ..., x_n > \),
\(\vec{y} = < y_1, y_2, ..., y_n > \)
and \(\forall i (x_i, y_i \in \mathbb{R}) \)

\(n = \) the number of dimensions
\(\|x\|_1 = L^1 \text{ norm} = \text{Manhattan Distance} : p = 1 \)

\(\|x\|_2 = L^2 \text{ norm} = \text{Euclidean Distance} : p = 2 \)

Hamming Distance: \(p = 1 \) and \(x_i, y_i \in \{0,1\} \)
• Put point in the cluster with the closest center of gravity
• Which cluster should the red point go in?
• How do I measure distance in a way that gives the “right” answer for both situations?
Weighted Norms

• You can compensate by weighting your dimensions....

\[d(\vec{x}, \vec{y}) = \left[\sum_{i=1}^{n} w_i \left| x_i - y_i \right|^p \right]^{1/p} \]

This lets you turn your circle of equal-distance into an ellipse with axes parallel to the dimensions of the vectors.
Mahalanobis distance

The region of constant Mahalanobis distance around the mean of a distribution forms an ellipsoid.

The axes of this ellipsoid don’t have to be parallel to the dimensions describing the vector.

Images from: http://www.aiaccess.net/English/Glossaries/GlosMod/e_gm_mahalanobis.htm
Calculating Mahalanobis

\[d(\vec{x}, \vec{y}) = \sqrt{(\vec{x} - \vec{y})^T S^{-1} (\vec{x} - \vec{y})} \]

- This matrix \(S \) is called the “covariance” matrix and is calculated from the data distribution.
Take-away on Mahalanobis

• Is good for non-spherically symmetric distributions.

• Accounts for scaling of coordinate axes

• Can reduce to Euclidean
What is a “metric”?

• A metric has these four qualities.

\[d(x, y) = 0 \text{ iff } x = y \] \hspace{1cm} \text{(reflexivity)}

\[d(x, y) \geq 0 \] \hspace{1cm} \text{(non-negative)}

\[d(x, y) = d(y, x) \] \hspace{1cm} \text{(symmetry)}

\[d(x, y) + d(y, z) \geq d(x, z) \] \hspace{1cm} \text{(triangle inequality)}

• ...otherwise, call it a “measure”
Metric, or not?

• Driving distance with 1-way streets

• Categorical Stuff:
 - Is distance (Jazz to Blues to Rock) no less than distance (Jazz to Rock)?
Categorical Variables

• Consider feature vectors for genre & vocals:

 – Genre: \{Blues, Jazz, Rock, Hip Hop\}
 – Vocals: \{vocals, no vocals\}

\[s_1 = \{\text{rock, vocals}\}\]
\[s_2 = \{\text{jazz, no vocals}\}\]
\[s_3 = \{\text{rock, no vocals}\}\]

• Which two songs are more similar?
One Solution: Hamming distance

<table>
<thead>
<tr>
<th></th>
<th>Blues</th>
<th>Jazz</th>
<th>Rock</th>
<th>Hip Hop</th>
<th>Vocals</th>
</tr>
</thead>
<tbody>
<tr>
<td>s1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>s2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>s3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Hamming Distance = number of different bits in two binary vectors

s1 = \{rock, vocals\}
s2 = \{jazz, no_vocals\}
s3 = \{rock, no_vocals\}
Hamming Distance

\[d(\vec{x}, \vec{y}) = \sum_{i=1}^{n} |x_i - y_i| \]

where \(\vec{x} = \langle x_1, x_2, \ldots, x_n \rangle \),

\(\vec{y} = \langle y_1, y_2, \ldots, y_n \rangle \)

and \(\forall i (x_i, y_i \in \{0,1\}) \)
Defining your own distance (an example)

How often does artist x quote artist y?

Quote Frequency

<table>
<thead>
<tr>
<th></th>
<th>Beethoven</th>
<th>Beatles</th>
<th>Liz Phair</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beethoven</td>
<td>7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Beatles</td>
<td>4</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Liz Phair</td>
<td>?</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Let’s build a distance measure!
Defining your own distance
(an example)

<table>
<thead>
<tr>
<th></th>
<th>Beethoven</th>
<th>Beatles</th>
<th>Liz Phair</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beethoven</td>
<td>7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Beatles</td>
<td>4</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Liz Phair</td>
<td>?</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Quote frequency $Q_f(x, y) =$ value in table

Distance $d(x, y) = 1 - \frac{Q_f(x, y)}{\sum_{z \in \text{Artists}} Q_f(x, z)}$
• What if, for some category, on some examples, there is no value given?

• Approaches:
 – Discard all examples missing the category
 – Fill in the blanks with the mean value
 – Only use a category in the distance measure if both examples give a value
Dealing with missing data

\[w_i = \begin{cases}
 0, & \text{if both } x_i \text{ and } y_i \text{ are defined} \\
 1, & \text{else}
\end{cases} \]

\[d(\bar{x}, \bar{y}) = \frac{n}{n - \sum_{i=1}^{n} w_i} \left[\sum_{i=1}^{n} w_i \phi(x_i, y_i) \right] \]
Edit Distance

- Query = string from finite alphabet
- Target = string from finite alphabet
- Cost of Edits = Distance

Target:

\[
\begin{array}{cccccc}
C & A & G & E & D \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\end{array}
\]

Query:

\[
\begin{array}{cccccc}
C & E & A & E & D \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\end{array}
\]
One more distance measure

• Kullback–Leibler divergence
 – Related to entropy & information gain
 – not a metric, since it is not symmetric
 – Take **EECS 428:Information Theory** to find out more